1
|
Stefi AL, Vorgias KE. Valorizing Bio-Waste and Residuals. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2025. [PMID: 40111455 DOI: 10.1007/10_2025_278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
The circular bioeconomy connects waste recycling with utilizing organic biomass waste for bioenergy, bio-based materials, and biochemical production. This integration promotes efficient resource utilization, reduced greenhouse gas emissions, and sustainable economic growth. Several technologies such as composting, anaerobic digestion, biochar production, gasification, pyrolysis, pelletization, and advanced thermal conversion technologies are utilized to manage agricultural waste efficiently. Waste-to-energy systems and food waste valorization techniques are employed to convert agro-waste into renewable energy sources such as bioethanol, biodiesel, and biogas through fermentation, transesterification, and anaerobic digestion. These biofuels offer renewable alternatives to fossil fuels, reducing greenhouse gas emissions and dependence on non-renewable resources. Rice husk, a globally abundant agricultural waste, can be utilized for energy production through technologies like direct combustion and fast pyrolysis. Biobutanol, synthesized from acetone-butanol-ethanol fermentation of agricultural residues like orange peel, presents a promising fuel option. Agricultural waste can also serve as feedstock for bio-based chemicals like organic acids, solvents, and polymers, reducing reliance on petroleum-based chemicals. Agro-waste materials like grass, garlic peel, and rice bran have shown potential for dye adsorption in wastewater treatment applications. Moreover, agricultural waste can be repurposed as animal feed, contributing to waste reduction and providing sustainable nutrition for livestock. Plant seeds and green biomass offer sustainable protein sources, while residues like straw and sawdust can be used for mushroom cultivation. Agro-waste biopolymers like starch and cellulose can be transformed into biodegradable plastics and biocomposites, offering eco-friendly alternatives. Additionally, agro-waste materials like straw, rice husks, and bamboo can be processed into construction materials, reducing environmental impact in building projects. Extracts from plant residues and fruit pomace can be utilized in pharmaceuticals, nutraceuticals, and cosmetics. Valorizing agro-waste for food, feed, fibers, and fuel offers opportunities to minimize waste and maximize resource efficiency, resulting in high-value products.
Collapse
Affiliation(s)
- Aikaterina L Stefi
- Section of Botany, Department of Biology, Faculty of Sciences, National and Kapodistrian University of Athens, Athens, Greece
| | - Konstantinos E Vorgias
- Section of Biochemistry and Molecular Biology, Department of Biology, Faculty of Sciences, RI-Bio3, National and Kapodistrian University of Athens, Athens, Greece.
| |
Collapse
|
2
|
Oyedeji S, Patel N, Krishnamurthy R, Fatoba PO. Agricultural Wastes to Value-Added Products: Economic and Environmental Perspectives for Waste Conversion. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2024. [PMID: 39739110 DOI: 10.1007/10_2024_274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
Abstract
The conversion of agricultural wastes to value-added products has emerged as a pivotal strategy in fostering economic transformation. This chapter explores the transformative potential of converting agricultural residues into valued commodities that contribute to sustainability and economic growth. Agricultural wastes, often considered environmental liabilities, possess untapped benefits with great economic value. By employing innovative technologies, these wastes can be converted into a range of value-added products, such as substrates for agricultural production, biofuels, organic fertilizers, natural dyes, pharmaceuticals, and packaging materials. This approach not only mitigates the environmental impact of waste disposal but also provides new revenue streams for farmers, entrepreneurs and governments. In the economic landscape, the creation of value-added products from agricultural wastes serves as a catalyst for job creation, income generation, and rural development. Additionally, the development of a value chain around agricultural waste-derived products strengthens the resilience of the agricultural sector while diversifying the sources of income for farmers and reducing their dependence on major crops as income source. It also fosters innovation by encouraging the development of new technologies and industrial processes for efficient waste utilization and creation of novel products with diverse applications. From the environmental perspective, the conversion of agricultural waste to valuable products reduces environmental pollution, mitigates climate change, and improves the quality of life. The production of biofuels from agricultural residues has the potential to address energy security concerns, provide alternative and renewable energy sources, and allow for energy sufficiency. This chapter exposes the hidden economic potentials in agricultural wastes for farmers, entrepreneurs, policymakers, and government to explore. The transformation of agricultural wastes into value-added products if fully harnessed will play a critical role in the economic transformation of many nations across the globe while addressing the environmental challenges that come with waste management and industrialization.
Collapse
Affiliation(s)
- Stephen Oyedeji
- Plant Ecology and Environmental Botany Unit, Department of Plant Biology, University of Ilorin, Ilorin, Nigeria.
- C.G. Bhakta Institute of Biotechnology, Uka Tarsadia University, Surat, Gujarat, India.
- Kishorbhai Institute of Agriculture Science and Research Centre, Uka Tarsadia University, Surat, Gujarat, India.
| | - Nikita Patel
- C.G. Bhakta Institute of Biotechnology, Uka Tarsadia University, Surat, Gujarat, India
- Kishorbhai Institute of Agriculture Science and Research Centre, Uka Tarsadia University, Surat, Gujarat, India
| | - Ramar Krishnamurthy
- Kishorbhai Institute of Agriculture Science and Research Centre, Uka Tarsadia University, Surat, Gujarat, India
| | - Paul Ojo Fatoba
- Plant Ecology and Environmental Botany Unit, Department of Plant Biology, University of Ilorin, Ilorin, Nigeria
| |
Collapse
|
3
|
Mileti O, Baldino N, Marchio V, Lupi FR, Gabriele D. Rheological and Textural Investigation to Design Film for Packaging from Potato Peel Waste. Gels 2024; 10:681. [PMID: 39590037 PMCID: PMC11593490 DOI: 10.3390/gels10110681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 10/17/2024] [Accepted: 10/21/2024] [Indexed: 11/28/2024] Open
Abstract
The recovery of potato waste for circular-economy purposes is a growing area of industrial research. This waste, rich in nutrients and potential for reuse, can be a valuable source of starch for packaging applications. Rheology plays a crucial role in characterizing film-forming solutions before casting. In this work, packaging film was prepared from potato waste using rheological information to formulate the film-forming solution. To this aim, rheological measurements were carried out on starch/glycerol-only samples, and the data obtained were used to optimize the formulation from the waste. The polyphenol content of the peels was analyzed, and the resulting films were comprehensively characterized. This included assessments of color, extensibility, Fourier-transform infrared (FT-IR) spectroscopy, surface microscopy, and contact angle. Polyphenol-loaded films, suitable for packaging applications, were developed from potato waste. These films exhibited distinct properties compared to those made with pure starch, including an improved wettability of about 75° for the best sample and a high elastic modulus of about 36 MPa, which reduces the deformability but enhances the resistance against the stress. Through rheological studies, we were able to design films from potato peel waste. These films demonstrated promising mechanical performance.
Collapse
Affiliation(s)
- Olga Mileti
- Department of Information, Modeling, Electronics and System Engineering (D.I.M.E.S.), University of Calabria, Via P. Bucci, Cubo 39C, I-87036 Rende, Italy; (O.M.); (F.R.L.); (D.G.)
| | - Noemi Baldino
- Department of Information, Modeling, Electronics and System Engineering (D.I.M.E.S.), University of Calabria, Via P. Bucci, Cubo 39C, I-87036 Rende, Italy; (O.M.); (F.R.L.); (D.G.)
| | - Vittoria Marchio
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via Pietro Bucci, I-87036 Rende, Italy;
| | - Francesca R. Lupi
- Department of Information, Modeling, Electronics and System Engineering (D.I.M.E.S.), University of Calabria, Via P. Bucci, Cubo 39C, I-87036 Rende, Italy; (O.M.); (F.R.L.); (D.G.)
| | - Domenico Gabriele
- Department of Information, Modeling, Electronics and System Engineering (D.I.M.E.S.), University of Calabria, Via P. Bucci, Cubo 39C, I-87036 Rende, Italy; (O.M.); (F.R.L.); (D.G.)
| |
Collapse
|
4
|
Panda J, Mishra AK, Mohanta YK, Patowary K, Rauta PR, Mishra B. Exploring Biopolymer for Food and Pharmaceuticals Application in the Circular Bioeconomy: An Agro-Food Waste-to-Wealth Approach. WASTE AND BIOMASS VALORIZATION 2024; 15:5607-5637. [DOI: 10.1007/s12649-024-02452-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 01/28/2024] [Indexed: 01/06/2025]
|
5
|
Sapna, Sharma C, Pathak P, Yadav SP, Gautam S. Potential of emerging “all-natural” edible coatings to prevent post-harvest losses of vegetables and fruits for sustainable agriculture. PROGRESS IN ORGANIC COATINGS 2024; 193:108537. [DOI: 10.1016/j.porgcoat.2024.108537] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
6
|
Kampeerapappun P, O-Charoen N, Dhamvithee P, Jansri E. Biocomposite Based on Polylactic Acid and Rice Straw for Food Packaging Products. Polymers (Basel) 2024; 16:1038. [PMID: 38674957 PMCID: PMC11054454 DOI: 10.3390/polym16081038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/27/2024] [Accepted: 04/07/2024] [Indexed: 04/28/2024] Open
Abstract
Plastic containers, commonly produced from non-biodegradable petroleum-based plastics such as polyethylene (PE), polypropylene (PP), and polyethylene terephthalate (PET), raise significant environmental concerns due to their persistence. The disposal of agricultural waste, specifically rice straw (RS), through burning, further compounds these environmental issues. In response, this study explores the integration of polylactic acid (PLA), a biodegradable material, with RS using a twin-screw extruder and injection process, resulting in the creation of a biodegradable packaging material. The inclusion of RS led to a decrease in the melt flow rate, thermal stability, and tensile strength, while concurrently enhancing the hydrophilic properties of the composite polymers. Additionally, the incorporation of maleic anhydride (MA) contributed to a reduction in the water absorption rate. The optimized formulation underwent migration testing and met the standards for food packaging products. Furthermore, no MA migration was detected from the composite. This approach not only provides a practical solution for the disposal of RS, but also serves as an environmentally-friendly alternative to conventional synthetic plastic waste.
Collapse
Affiliation(s)
- Piyaporn Kampeerapappun
- Faculty of Textile Industries, Rajamangala University of Technology Krungthep, Bangkok 10120, Thailand;
| | - Narongchai O-Charoen
- Department of Materials and Metallurgical Engineering, Faculty of Engineering, Rajamangala University of Technology Thanyaburi, Pathumthani 12110, Thailand;
| | - Pisit Dhamvithee
- Division of Food Science and Nutrition, Faculty of Agricultural Product Innovation and Technology, Srinakharinwirot University, Nakhon Nayok 26120, Thailand;
| | - Ektinai Jansri
- Division of Polymer Materials Technology, Faculty of Agricultural Product Innovation and Technology, Srinakharinwirot University, Nakhon Nayok 26120, Thailand
| |
Collapse
|
7
|
Panja A, Paul S, Jha P, Ghosh S, Prasad R. Waste and their polysaccharides: Are they worth bioprocessing? BIORESOURCE TECHNOLOGY REPORTS 2023; 24:101594. [DOI: 10.1016/j.biteb.2023.101594] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
8
|
Cruz RMS, Albertos I, Romero J, Agriopoulou S, Varzakas T. Innovations in Food Packaging for a Sustainable and Circular Economy. ADVANCES IN FOOD AND NUTRITION RESEARCH 2023; 108:135-177. [PMID: 38460998 DOI: 10.1016/bs.afnr.2023.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/11/2024]
Abstract
Packaging is fundamental to maintaining the quality of food, but its contribution with a negative footprint to the environment must be completely changed worldwide to reduce pollution and climate change. Innovative and sustainable packaging and new strategies of reutilization are necessary to reduce plastic waste accumulation, maintain food quality and safety, and reduce food losses and waste. The purpose of this chapter is to present innovations in food packaging for a sustainable and circular economy. First, to present the eco-design packaging approach as well as new strategies for recycled or recyclable materials in food packaging. Second, to show current trends in new packaging materials developed from the use of agro-industrial wastes as well as new methods of production, including 3D/4D printing, electrostatic spinning, and the use of nanomaterials.
Collapse
Affiliation(s)
- Rui M S Cruz
- Department of Food Engineering, Institute of Engineering, Universidade do Algarve, Campus da Penha, Faro, Portugal; MED-Mediterranean Institute for Agriculture, Environment and Development and CHANGE-Global Change and Sustainability Institute, Faculty of Sciences and Technology, Campus de Gambelas, Universidade do Algarve, Faro, Portugal.
| | - Irene Albertos
- Nursing Department, Nursing Faculty, University of Valladolid, Valladolid, Spain
| | - Janira Romero
- Faculty of Sciences and Art, Universidad Católica de Ávila (UCAV), Calle Canteros s/n, Ávila, Spain
| | - Sofia Agriopoulou
- Department of Food Science and Technology, University of Peloponnese, Tripoli, Greece
| | - Theodoros Varzakas
- Department of Food Science and Technology, University of Peloponnese, Tripoli, Greece
| |
Collapse
|
9
|
Pacheco A, Evangelista-Osorio A, Muchaypiña-Flores KG, Marzano-Barreda LA, Paredes-Concepción P, Palacin-Baldeón H, Dos Santos MSN, Tres MV, Zabot GL, Olivera-Montenegro L. Polymeric Materials Obtained by Extrusion and Injection Molding from Lignocellulosic Agroindustrial Biomass. Polymers (Basel) 2023; 15:4046. [PMID: 37896290 PMCID: PMC10610583 DOI: 10.3390/polym15204046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/03/2023] [Accepted: 10/03/2023] [Indexed: 10/29/2023] Open
Abstract
This review presents the advances in polymeric materials achieved by extrusion and injection molding from lignocellulosic agroindustrial biomass. Biomass, which is derived from agricultural and industrial waste, is a renewable and abundant feedstock that contains mainly cellulose, hemicellulose, and lignin. To improve the properties and functions of polymeric materials, cellulose is subjected to a variety of modifications. The most common modifications are surface modification, grafting, chemical procedures, and molecule chemical grafting. Injection molding and extrusion technologies are crucial in shaping and manufacturing polymer composites, with precise control over the process and material selection. Furthermore, injection molding involves four phases: plasticization, injection, cooling, and ejection, with a focus on energy efficiency. Fundamental aspects of an injection molding machine, such as the motor, hopper, heating units, nozzle, and clamping unit, are discussed. Extrusion technology, commonly used as a preliminary step to injection molding, presents challenges regarding fiber reinforcement and stress accumulation, while lignin-based polymeric materials are challenging due to their hydrophobicity. The diverse applications of these biodegradable materials include automotive industries, construction, food packaging, and various consumer goods. Polymeric materials are positioned to offer even bigger contributions to sustainable and eco-friendly solutions in the future, as research and development continues.
Collapse
Affiliation(s)
- Ada Pacheco
- Bioprocesses and Biomass Conversion Research Group, Universidad San Ignacio de Loyola, La Molina 15024, Peru; (A.P.); (A.E.-O.); (K.G.M.-F.); (L.A.M.-B.); (H.P.-B.)
| | - Arian Evangelista-Osorio
- Bioprocesses and Biomass Conversion Research Group, Universidad San Ignacio de Loyola, La Molina 15024, Peru; (A.P.); (A.E.-O.); (K.G.M.-F.); (L.A.M.-B.); (H.P.-B.)
| | - Katherine Gabriela Muchaypiña-Flores
- Bioprocesses and Biomass Conversion Research Group, Universidad San Ignacio de Loyola, La Molina 15024, Peru; (A.P.); (A.E.-O.); (K.G.M.-F.); (L.A.M.-B.); (H.P.-B.)
| | - Luis Alejandro Marzano-Barreda
- Bioprocesses and Biomass Conversion Research Group, Universidad San Ignacio de Loyola, La Molina 15024, Peru; (A.P.); (A.E.-O.); (K.G.M.-F.); (L.A.M.-B.); (H.P.-B.)
| | - Perla Paredes-Concepción
- Grupo de Ciencia, Tecnología e Innovación en Alimentos, Universidad San Ignacio de Loyola, La Molina 15024, Peru;
| | - Heidy Palacin-Baldeón
- Bioprocesses and Biomass Conversion Research Group, Universidad San Ignacio de Loyola, La Molina 15024, Peru; (A.P.); (A.E.-O.); (K.G.M.-F.); (L.A.M.-B.); (H.P.-B.)
| | - Maicon Sérgio Nascimento Dos Santos
- Laboratory of Agroindustrial Processes Engineering (LAPE), Federal University of Santa Maria, 1040 Sete de Setembro St., Center DC, Cachoeira do Sul, Santa Maria 96508-010, RS, Brazil; (M.S.N.D.S.); (M.V.T.); (G.L.Z.)
| | - Marcus Vinícius Tres
- Laboratory of Agroindustrial Processes Engineering (LAPE), Federal University of Santa Maria, 1040 Sete de Setembro St., Center DC, Cachoeira do Sul, Santa Maria 96508-010, RS, Brazil; (M.S.N.D.S.); (M.V.T.); (G.L.Z.)
| | - Giovani Leone Zabot
- Laboratory of Agroindustrial Processes Engineering (LAPE), Federal University of Santa Maria, 1040 Sete de Setembro St., Center DC, Cachoeira do Sul, Santa Maria 96508-010, RS, Brazil; (M.S.N.D.S.); (M.V.T.); (G.L.Z.)
| | - Luis Olivera-Montenegro
- Bioprocesses and Biomass Conversion Research Group, Universidad San Ignacio de Loyola, La Molina 15024, Peru; (A.P.); (A.E.-O.); (K.G.M.-F.); (L.A.M.-B.); (H.P.-B.)
- Grupo de Ciencia, Tecnología e Innovación en Alimentos, Universidad San Ignacio de Loyola, La Molina 15024, Peru;
| |
Collapse
|
10
|
Kuo CC, Tasi QZ, Huang SH, Tseng SF. Enhancing Surface Temperature Uniformity in a Liquid Silicone Rubber Injection Mold with Conformal Heating Channels. MATERIALS (BASEL, SWITZERLAND) 2023; 16:5739. [PMID: 37687431 PMCID: PMC10488942 DOI: 10.3390/ma16175739] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/06/2023] [Accepted: 08/07/2023] [Indexed: 09/10/2023]
Abstract
To enhance the productivity and quality of optical-grade liquid silicone rubber (LSR) and an optical convex lens simultaneously, uniform vulcanization of the molding material is required. However, little has been reported on the uniform vulcanization of LSR in the heated cavity. This paper presents a conformal heating channel to enhance the temperature uniformity of the mold surface in the LSR injection molding. The curing rate of an optical convex lens was numerically investigated using Moldex3D molding simulation software. Two different sets of soft tooling inserts, injection mold inserts with conventional and conformal heating channels, were fabricated to validate the simulation results. The mold surface temperature uniformity was investigated by both numerical simulation and experiment. In particular, both a thermal camera and thermocouples were employed to measure the mold surface temperature after LSR injecting molding. It was found that the uniformity of the mold surface for LSR injection mold with the conformal heating channel was better. The average temperature of the mold surface could be predicted by the heating oil temperature according to the proposed prediction equation. The experimental results showed that the trend of the average temperature of five sensor modes was consistent with the simulation results. The error rate of the simulation results was about 8.31% based on the experimental result for the LSR injection mold with the conformal heating channel.
Collapse
Affiliation(s)
- Chil-Chyuan Kuo
- Department of Mechanical Engineering, Ming Chi University of Technology, New Taipei City 24301, Taiwan
- Research Center for Intelligent Medical Devices, Ming Chi University of Technology, No. 84, Gungjuan Road, New Taipei City 24301, Taiwan
- Department of Mechanical Engineering, Chang Gung University, No. 259, Wenhua 1st Road, Guishan District, Taoyuan City 33302, Taiwan
- Center for Reliability Engineering, Ming Chi University of Technology, No. 84, Gungjuan Road, New Taipei City 24301, Taiwan
| | - Qing-Zhou Tasi
- Department of Mechanical Engineering, Ming Chi University of Technology, New Taipei City 24301, Taiwan
| | - Song-Hua Huang
- Li-Yin Technology Co., Ltd., No. 37, Lane 151, Section 1, Zhongxing Road, Wugu District, New Taipei City 24101, Taiwan
| | - Shih-Feng Tseng
- Department of Mechanical Engineering, National Taipei University of Technology, No. 1, Section 3, Zhongxiao E. Road, Da’an District, Taipei City 106344, Taiwan
| |
Collapse
|
11
|
Kuo CC, Tasi QZ, Hunag SH, Tseng SF. Development of an Injection Mold with High Energy Efficiency of Vulcanization for Liquid Silicone Rubber Injection Molding of the Fisheye Optical Lens. Polymers (Basel) 2023; 15:2869. [PMID: 37447514 DOI: 10.3390/polym15132869] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/16/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
Liquid silicone rubber (LSR) techniques are experiencing exponential growth, particularly in the field of high technology due to the low-temperature flexibility, superior heat stability, chemical resistance, and aging resistance of LSR components. Enhancing the curing rate of LSR parts in liquid silicone rubber injection molding is an important research topic. In this study, an injection mold with high energy efficiency of vulcanization for the liquid silicone rubber injection molding of a fisheye lens was developed and implemented. The LSR injection mold has a conformal heating channel (CHC) and conformal cooling channel (CCC) simultaneously. The function of CHC is to enhance the curing rate of a fisheye lens in the LSR injection molding to meet the requirements of sustainable manufacturing. The curing rates of a fisheye lens were numerically examined using the Moldex3D molding simulation software. It was found that the curing rate of the fisheye optical lens cured by injection mold with CHC was better than that of the injection mold with a conventional heating channel. The curing efficiency could be increased by about 19.12% when the heating oil temperature of 180 °C was used to cure the fisheye optical lens. The simulation results showed that the equation y = -0.0026x3 + 1.3483x2 - 232.11x + 13,770 was the most suitable equation for predicting the curing time (y) through the heating oil temperature (x). It was found that the trend of the experimental results was consistent with the simulation results. In addition, the equation y = -0.0656x2 + 1.5827x - 0.894 with the correlation coefficient of 0.9974 was the most suitable equation for predicting the volumetric shrinkage of the fisheye optical lens (y) through the heating oil temperature (x). The volume shrinkage of the fisheye optical lens cured by injection mold with CHC was very similar to that of the injection mold with a conventional heating channel. The maximum volume shrinkage of the fisheye optical lens cured at 180 °C was about 8.5%.
Collapse
Affiliation(s)
- Chil-Chyuan Kuo
- Department of Mechanical Engineering, Ming Chi University of Technology, No. 84, Gungjuan Road, New Taipei City 24301, Taiwan
- Research Center for Intelligent Medical Devices, Ming Chi University of Technology, No. 84, Gungjuan Road, New Taipei City 24301, Taiwan
- Department of Mechanical Engineering, Chang Gung University, No. 259, Wenhua 1st Rd., Guishan Dist., Taoyuan City 33323, Taiwan
| | - Qing-Zhou Tasi
- Department of Mechanical Engineering, Ming Chi University of Technology, No. 84, Gungjuan Road, New Taipei City 24301, Taiwan
| | - Song-Hua Hunag
- Li-Yin Technology Co., Ltd., No. 37, Lane 151, Section 1, Zhongxing Road, Wugu District, New Taipei City 24301, Taiwan
| | - Shih-Feng Tseng
- Department of Mechanical Engineering, National Taipei University of Technology, No. 1, Sec. 3, Zhongxiao E. Rd., Da'an Dist., Taipei City 106344, Taiwan
| |
Collapse
|
12
|
Enhancement of bioactives, functional and nutraceutical attributes of banana peels and de-oiled groundnut cake through submerged fermentation employing Calocybe indica. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
|
13
|
Gheribi R, Taleb Y, Perrin L, Segovia C, Brosse N, Desobry S. Development of Chitosan Green Composites Reinforced with Hemp Fibers: Study of Mechanical and Barrier Properties for Packaging Application. Molecules 2023; 28:4488. [PMID: 37298964 PMCID: PMC10254671 DOI: 10.3390/molecules28114488] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/27/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
The use of bioresourced packaging materials is an interesting solution for ecological issues. This work aimed to develop novel chitosan-based packaging materials reinforced with hemp fibers (HF). For this purpose, chitosan (CH) films were filled with 15%, 30%, and 50% (w/w) of two kinds of HF: Untreated fibers cut to 1 mm (UHF) and steam exploded fibers (SEHF). The effect of HF addition and HF treatments on chitosan composites was studied in terms of mechanical properties (tensile strength (TS), elongation at break (EB), and Young's modulus (YM)), barrier properties (water vapor (WVP) and oxygen permeabilities), and thermal properties (glass transition (Tg) and melting temperatures (Tm)). The addition of HF, whether untreated or steam exploded, increased the TS of chitosan composites by 34-65%. WVP was significantly reduced by the addition of HF but no significant change was observed for O2 barrier property, which was in the range between 0.44 and 0.68 cm3·mm/m2·d. Tm of the composite films increased from 133 °C for CH films to 171 °C for films filled with 15% SEHF. However, no significant modification was observed for Tg (105-107 °C). The present study showed that the developed biocomposites had improved properties, mainly the mechanical resistance. Their use in food packaging will help industrials the move toward a sustainable development and circular economy.
Collapse
Affiliation(s)
- Rim Gheribi
- Laboratoire d'Ingénierie des Biomolécules, Université de Lorraine, ENSAIA, 2 Avenue de la Forêt de Haye, BP 20163, 54505 Vandœuvre-lès-Nancy, CEDEX, France
| | - Yassine Taleb
- Laboratoire d'Ingénierie des Biomolécules, Université de Lorraine, ENSAIA, 2 Avenue de la Forêt de Haye, BP 20163, 54505 Vandœuvre-lès-Nancy, CEDEX, France
| | - Louise Perrin
- Laboratoire d'Ingénierie des Biomolécules, Université de Lorraine, ENSAIA, 2 Avenue de la Forêt de Haye, BP 20163, 54505 Vandœuvre-lès-Nancy, CEDEX, France
| | - Cesar Segovia
- Centre d'Essais TEchnique LORrain (CETELOR), 27 rue Philippe Seguin, BP 21042, 88051 Épinal, CEDEX 9, France
| | - Nicolas Brosse
- Laboratoire d'Etudes et de Recherche sur le Matériau Bois, Faculté des Sciences et Technologies, Université de Lorraine, Boulevard des Aiguillettes, BP 70239, 54506 Vandœuvre-lès-Nancy, CEDEX, France
| | - Stephane Desobry
- Laboratoire d'Ingénierie des Biomolécules, Université de Lorraine, ENSAIA, 2 Avenue de la Forêt de Haye, BP 20163, 54505 Vandœuvre-lès-Nancy, CEDEX, France
| |
Collapse
|
14
|
Pak AM, Maiorova EA, Siaglova ED, Aliev TM, Strukova EN, Kireynov AV, Piryazev AA, Novikov VV. MIL-100(Fe)-Based Composite Films for Food Packaging. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13111714. [PMID: 37299617 DOI: 10.3390/nano13111714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 05/17/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023]
Abstract
A biocompatible metal-organic framework MIL-100(Fe) loaded with the active compounds of tea tree essential oil was used to produce composite films based on κ-carrageenan and hydroxypropyl methylcellulose with the uniform distribution of the particles of this filler. The composite films featured great UV-blocking properties, good water vapor permeability, and modest antibacterial activity against both Gram-negative and Gram-positive bacteria. The use of metal-organic frameworks as containers of hydrophobic molecules of natural active compounds makes the composites made from naturally occurring hydrocolloids attractive materials for active packaging of food products.
Collapse
Affiliation(s)
- Alexandra M Pak
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilova Str. 28, 119991 Moscow, Russia
- Moscow Institute of Physics and Technology, National Research University, Institutskiy per. 9, 141700 Dolgoprudny, Russia
| | - Elena A Maiorova
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilova Str. 28, 119991 Moscow, Russia
- Moscow Institute of Physics and Technology, National Research University, Institutskiy per. 9, 141700 Dolgoprudny, Russia
| | - Elizaveta D Siaglova
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilova Str. 28, 119991 Moscow, Russia
- Moscow Institute of Physics and Technology, National Research University, Institutskiy per. 9, 141700 Dolgoprudny, Russia
| | - Teimur M Aliev
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilova Str. 28, 119991 Moscow, Russia
| | - Elena N Strukova
- Gause Institute of New Antibiotics, Russian Academy of Sciences, B. Pirogovskaya Str. 11/1, 119021 Moscow, Russia
| | - Aleksey V Kireynov
- Scientific and Educational Center "Composites of Russia", Bauman Moscow State Technical University, 2nd Baumanskaya Str. 5, 105005 Moscow, Russia
| | - Alexey A Piryazev
- Research Center for Genetics and Life Sciences, Scientific Direction Biomaterials, Sirius University of Science and Technology, 1 Olympic Ave, 354340 Sochi, Russia
| | - Valentin V Novikov
- Moscow Institute of Physics and Technology, National Research University, Institutskiy per. 9, 141700 Dolgoprudny, Russia
- Scientific and Educational Center "Composites of Russia", Bauman Moscow State Technical University, 2nd Baumanskaya Str. 5, 105005 Moscow, Russia
| |
Collapse
|
15
|
Kuo CC, Gurumurthy N, Chen HW, Hunag SH. Mechanical Performance and Microstructural Evolution of Rotary Friction Welding of Acrylonitrile Butadiene Styrene and Polycarbonate Rods. MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16093295. [PMID: 37176175 PMCID: PMC10179590 DOI: 10.3390/ma16093295] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023]
Abstract
Rotary friction welding (RFW) is a green manufacturing technology with environmental pollution in the field of joining methods. In practice, the welding quality of the friction-welded parts was affected by the peak temperature in the weld joint during the RFW of dissimilar plastic rods. In industry, polycarbonate (PC) and acrylonitrile butadiene styrene (ABS) are two commonly used plastics in consumer products. In this study, the COMSOL multiphysics software was employed to estimate the peak temperature in the weld joint during the RFW of PC and ABS rods. After RFW, the mechanical performance and microstructural evolution of friction-welded parts were investigated experimentally. The average Shore A surface hardness, flexural strength, and impact energy are directly proportional to the rotation speed of the RFW. The quality of RFW is excellent, since the welding strength in the weld joint is better than that of the ABS base materials. The fracture occurs in the ABS rods since their brittleness is higher than that of the PC rods. The average percentage error of predicting the peak temperature using COMSOL software using a mesh element count of 875,688 for five different rotation speeds is about 16.6%. The differential scanning calorimetry curve for the friction-welded parts welded at a rotation speed of 1350 rpm shows an endothermic peak between 400 to 440 °C and an exothermic peak between 600 to 700 °C, showing that the friction-welded parts have better mechanical properties.
Collapse
Affiliation(s)
- Chil-Chyuan Kuo
- Department of Mechanical Engineering, Ming Chi University of Technology, No. 84, Gungjuan Road, New Taipei City 243, Taiwan
- Research Center for Intelligent Medical Devices, Ming Chi University of Technology, No. 84, Gungjuan Road, New Taipei City 243, Taiwan
- Department of Mechanical Engineering, Chang Gung University, No.259, Wenhua 1st Rd., Guishan Dist., Taoyuan City 333, Taiwan
| | - Naruboyana Gurumurthy
- Department of Mechanical Engineering, Ming Chi University of Technology, No. 84, Gungjuan Road, New Taipei City 243, Taiwan
- Department of Mechanical Engineering, Presidency University, Rajankunte, Near Yelhanka, Bangalore 700073, India
| | - Hong-Wei Chen
- Department of Mechanical Engineering, Ming Chi University of Technology, No. 84, Gungjuan Road, New Taipei City 243, Taiwan
| | - Song-Hua Hunag
- Li-Yin Technology Co., Ltd., No. 37, Lane 151, Section 1, Zhongxing Road, Wugu District, New Taipei City 241, Taiwan
| |
Collapse
|