1
|
Mani SK, Kadolkar R, Prajapati T, Ahuja P, Shajahan M, Lee J, Tolosa M, McWilliams M, Welty C, Frey DD, Srinivasan V, Ujjain SK, Rao G. Microfluidic-electrochemical sensor utilizing statistical modeling for enhanced nitrate detection in surface water towards environmental monitoring. Analyst 2025; 150:2179-2189. [PMID: 40241506 DOI: 10.1039/d5an00092k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
The presence of nitrate (NO3-) in surface water and groundwater used for potable supply needs to be closely monitored since in elevated amounts it can adversely affect aquatic life and human health by causing hypoxia and methemoglobinemia. Many of the existing EPA-certified sensors used for environmental monitoring are expensive, bulky, and labor-intensive. To address these concerns, we have successfully developed a low-cost microfluidic electrochemical impedimetric sensor, consisting of a nitrate-binding nickel complex within a polyaniline/carbon nanocomposite (Ni@Pani/C) enabling nitrate monitoring in field samples. Under optimized conditions, our sensor demonstrated a high sensitivity of 2.31 ± 0.09 Ω ppm-1 cm-2 across a wide nitrate concentration range (0.6-10 ppm). It also showed a desirable low detection limit of 0.015 ppm and a swift response time under 20 seconds. It maintained repeatability over a wide temperature range (5-65 °C) and exhibited consistent performance over an extended period (∼1 month). The sensor exhibited high specificity towards nitrate when tested against potential interferences (SO42-, C2H3O2-, HCO3-, NH4+, Cl-) and showed good reproducibility for test water samples collected from various streams in Maryland, U.S.A. A statistical model was used to confirm the sensor's accuracy, which yielded a maximum standard deviation of ±0.6 ppm (absolute value). Our sensor was also benchmarked against a commercial SUNA device resulting in comparable performance.
Collapse
Affiliation(s)
- Sai Kiran Mani
- Center for Advanced Sensor Technology, Department of Chemical, Biochemical and Environmental Engineering, University of Maryland Baltimore County, Baltimore, MD 21250, USA.
| | - Revati Kadolkar
- Center for Advanced Sensor Technology, Department of Chemical, Biochemical and Environmental Engineering, University of Maryland Baltimore County, Baltimore, MD 21250, USA.
- Department of Chemical, Biochemical and Environmental Engineering, University of Maryland Baltimore County, Baltimore, MD 21250, USA
| | - Tithi Prajapati
- Center for Advanced Sensor Technology, Department of Chemical, Biochemical and Environmental Engineering, University of Maryland Baltimore County, Baltimore, MD 21250, USA.
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD, 21250, USA
| | - Preety Ahuja
- Center for Advanced Sensor Technology, Department of Chemical, Biochemical and Environmental Engineering, University of Maryland Baltimore County, Baltimore, MD 21250, USA.
| | - Mesha Shajahan
- Center for Advanced Sensor Technology, Department of Chemical, Biochemical and Environmental Engineering, University of Maryland Baltimore County, Baltimore, MD 21250, USA.
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD, 21250, USA
| | - JungHun Lee
- Center for Advanced Sensor Technology, Department of Chemical, Biochemical and Environmental Engineering, University of Maryland Baltimore County, Baltimore, MD 21250, USA.
- Department of Chemical, Biochemical and Environmental Engineering, University of Maryland Baltimore County, Baltimore, MD 21250, USA
| | - Michael Tolosa
- Center for Advanced Sensor Technology, Department of Chemical, Biochemical and Environmental Engineering, University of Maryland Baltimore County, Baltimore, MD 21250, USA.
| | - Mary McWilliams
- Center for Urban Environmental Research and Education, University of Maryland Baltimore County, Baltimore, MD 21250, USA
| | - Claire Welty
- Department of Chemical, Biochemical and Environmental Engineering, University of Maryland Baltimore County, Baltimore, MD 21250, USA
- Center for Urban Environmental Research and Education, University of Maryland Baltimore County, Baltimore, MD 21250, USA
| | - Douglas D Frey
- Center for Advanced Sensor Technology, Department of Chemical, Biochemical and Environmental Engineering, University of Maryland Baltimore County, Baltimore, MD 21250, USA.
- Department of Chemical, Biochemical and Environmental Engineering, University of Maryland Baltimore County, Baltimore, MD 21250, USA
| | - Venkatesh Srinivasan
- Center for Advanced Sensor Technology, Department of Chemical, Biochemical and Environmental Engineering, University of Maryland Baltimore County, Baltimore, MD 21250, USA.
| | - Sanjeev Kumar Ujjain
- Center for Advanced Sensor Technology, Department of Chemical, Biochemical and Environmental Engineering, University of Maryland Baltimore County, Baltimore, MD 21250, USA.
| | - Govind Rao
- Center for Advanced Sensor Technology, Department of Chemical, Biochemical and Environmental Engineering, University of Maryland Baltimore County, Baltimore, MD 21250, USA.
- Department of Chemical, Biochemical and Environmental Engineering, University of Maryland Baltimore County, Baltimore, MD 21250, USA
| |
Collapse
|
2
|
Tran CV, Lai DV, Nguyen TM, Quynh Thi Le X, Nguyen HH, Quan NTM, Nguyen TT, La DD. Enhanced photocatalytic performance of polyaniline nanoparticles for efficient dye degradation under simulated sunlight. NANOSCALE ADVANCES 2025; 7:800-807. [PMID: 39677008 PMCID: PMC11635629 DOI: 10.1039/d4na00707g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 12/05/2024] [Indexed: 12/17/2024]
Abstract
This study investigates the effectiveness of polyaniline oxide (PANI) nanoparticles as photocatalysts for the degradation of organic dyes under visible light irradiation. Known for their stability and adjustable conductivity, PANI nanoparticles were synthesized via a hydrothermal method using P123 surfactants, followed by calcination. The morphology, structural phase, and optical properties of the synthesized PANI materials were analyzed using scanning electron microscopy (SEM), X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDS), Raman spectroscopy, and Fourier transform infrared spectroscopy (FTIR). Results indicated that the synthesized PANI nanoparticles agglomerated into spherical particles with an average size of 70-80 nm. The photocatalytic properties of PANI materials were evaluated by the decolorization of rhodamine B (RhB) and methylene blue (MB) under simulated sunlight irradiation. The PANI photocatalyst was found to be highly effective in removing MB dye, achieving a removal efficiency of approximately 97.09% with a rate constant of 2.08 × 10-2 min-1. In comparison, the removal efficiency for RhB was about 58.01%. Additionally, the mechanism behind the photocatalytic degradation of MB dye by PANI was investigated and discussed. The study highlights the photostability and reproducibility of PANI nanoparticles through recycling experiments, contributing to the development of sustainable photocatalytic materials for efficient water treatment.
Collapse
Affiliation(s)
| | - Duy Van Lai
- Institute of Chemistry and Materials Hanoi Vietnam
- Institute of Materials Science, Vietnam Academy of Science and Technology Hanoi Vietnam
| | - Thu Minh Nguyen
- Institute of Materials Science, Vietnam Academy of Science and Technology Hanoi Vietnam
| | - Xuan Quynh Thi Le
- Institute of Materials Science, Vietnam Academy of Science and Technology Hanoi Vietnam
| | | | - Nguyet Thi Minh Quan
- School of Engineering Physics, Hanoi University of Science and Technology (HUST) Hanoi Vietnam
| | - Tung Thanh Nguyen
- Institute of Materials Science, Vietnam Academy of Science and Technology Hanoi Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology Hanoi Vietnam
| | - Duong Duc La
- Institute of Chemistry and Materials Hanoi Vietnam
| |
Collapse
|
3
|
Al-Fakeh MS, O. Alsaedi R, Aldoghaim M, Ibrahim ABM, Mostafa AM. Nickel Oxide Nanoparticles Derived from Coordination Polymer of PVA and Aminobenzoic Acid Derivative: Synthesis, Characterization and Antimicrobial Activity. Polymers (Basel) 2025; 17:301. [PMID: 39940502 PMCID: PMC11819888 DOI: 10.3390/polym17030301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 01/11/2025] [Accepted: 01/14/2025] [Indexed: 02/16/2025] Open
Abstract
This study focused on the synthesis, properties, and antibiological activity of NiO nanoparticles derived from polyvinyl alcohol (PVA) and aminobenzoic acid (P-ABA) derivatives by calcination method. The nanoparticles were synthesized using a simple, cost-effective method that involved the thermal decomposition of PVA and the incorporation of aminobenzoic acid. Characterization techniques such as X-ray diffraction (XRD), Kinetic analysis, and the thermal properties of nickel(II) metal complex in dynamic air were analyzed via TG and DTG. The kinetic analyses and thermodynamic parameters (∆H*, ∆G*, and ∆S*) for this compound were calculated by the Coats-Redfern and Horowitz-Metzger methods. The obtained kinetic parameters displayed the kinetic compensation effect. Electron microscopy (SEM and TEM) and (FT-IR) were employed to confirm the formation, morphology, and structural properties of the nanoparticles. The results indicated the successful synthesis of NiO nanoparticles with distinct crystalline phases and difference distributions. XRD confirmed that the resulting oxide was pure single-crystalline NiO nanoparticles. Scanning electron microscopy indicated that the crystallite size of nickel oxide nano-crystals was in the range of 26-36 nm. The magnetic moment was 2.59 B.M for Ni(II) complex. The antibiological activity of the synthesized nanoparticles was evaluated against bacterial strains, both Gram-positive and Gram-negative bacteria. The findings revealed significant antimicrobial properties, with the NiO nanoparticles demonstrating higher inhibitory effects against bacterial and fungal strains. This study highlights the potential of PVA and aminobenzoic acid derivatives as effective precursors for producing metal oxide nanoparticles with promising applications in antimicrobial treatments and materials science.
Collapse
Affiliation(s)
- Maged S. Al-Fakeh
- Department of Chemistry, College of Science, Qassim University, Buraidah 51452, Saudi Arabia;
| | - Roaa O. Alsaedi
- Department of Chemistry, College of Science, Qassim University, Buraidah 51452, Saudi Arabia;
| | - Maryam Aldoghaim
- Department of Chemistry, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
| | - Ahmed B. M. Ibrahim
- Chemistry Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia;
| | - Ayman M. Mostafa
- Department of Physics, College of Science, Qassim University, Buraidah 51452, Saudi Arabia;
| |
Collapse
|
4
|
Ibrahim N, Hefnawy MA, Fadlallah SA, Medany SS. Recent advances in electrochemical approaches for detection of nitrite in food samples. Food Chem 2025; 462:140962. [PMID: 39241683 DOI: 10.1016/j.foodchem.2024.140962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/02/2024] [Accepted: 08/21/2024] [Indexed: 09/09/2024]
Abstract
Nitrite is a common ingredient in the industry and agriculture; it is everywhere, like water, food, and surroundings. Recently, several approaches have been developed to measure the nitrite levels. So, this review was presented as a summary of many approaches utilized to detect the nitrite. Furthermore, the types of information that may be acquired using these methodologies, including optic and electrical signals, were discussed. In electrical signal methods, electrochemical sensors are usually developed using different materials, including carbon, polymers, oxides, and hydroxides. At the same time, optic signals receiving techniques involve utilizing fluorescence chromatography, absorption, and spectrometry instruments. Furthermore, these methodologies' benefits, drawbacks, and restrictions are examined. Lastly, due to the efficiency and fast means of electrochemical detectors, it was suggested that they can be used for detecting nitrite in food safety. Futuristic advancements in the techniques used for nitrite determination are subsequently outlined.
Collapse
Affiliation(s)
- Nora Ibrahim
- Biotechnology Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Mahmoud A Hefnawy
- Chemistry Department, Faculty of Science, Cairo University, Giza, Egypt.
| | - Sahar A Fadlallah
- Biotechnology Department, Faculty of Science, Cairo University, Giza, Egypt; Chemistry Department, Faculty of Science, Cairo University, Giza, Egypt.
| | - Shymaa S Medany
- Chemistry Department, Faculty of Science, Cairo University, Giza, Egypt.
| |
Collapse
|
5
|
Hefnawy MA, Abdel-Gaber R, Gomha SM, Zaki MEA, Medany SS. Green Synthesis of Cobalt Oxide Decorated Chitosan Substrates for Electrochemical Detection of Nitrite and Hydrogen Evolution Reactions. Electrocatalysis (N Y) 2024; 15:496-506. [DOI: 10.1007/s12678-024-00889-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/02/2024] [Indexed: 05/14/2025]
|
6
|
Zhang L, Han Y, Sun M, Li S. Non-enzymatic electrochemical sensor based on ionic liquid [BMIM][PF 6] functionalized zirconium‑copper bimetallic MOF composite for the detection of nitrite in food samples. Food Chem 2024; 456:140023. [PMID: 38878537 DOI: 10.1016/j.foodchem.2024.140023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/04/2024] [Accepted: 06/06/2024] [Indexed: 07/24/2024]
Abstract
In this study, we developed an electrochemical sensor utilizing a composite material consisting of zirconium‑copper bimetallic metal-organic framework functionalized with ionic liquid [BMIM][PF6]. This composite material was fabricated by simple wet impregnation method, which not only maintains excellent electrocatalytic activity but also enhances electron transfer rate and electroactive surface area. The ZrCu-MOF-818/ILs composite modified electrode has been demonstrated as an effective tool for the detection of nitrite. The electrode exhibited a remarkable limit of detection (LOD) of 0.148 μM and wide linear ranges of 6-3000 μM and 3000-5030 μM. It is worth noting that the sensor displayed excellent reproducibility and repeatability, with relative standard deviation (RSD) values of 1.06% and 1.37%, respectively. Furthermore, the proposed method was successfully applied for the detection of nitrite in tap water and pickle juice.
Collapse
Affiliation(s)
- Li Zhang
- College of Materials Science and Engineering, Heilongjiang Provincial Key Laboratory of Polymeric Composite Materials, Qiqihar University, Qiqihar 161006, China
| | - Yu Han
- College of Materials Science and Engineering, Heilongjiang Provincial Key Laboratory of Polymeric Composite Materials, Qiqihar University, Qiqihar 161006, China
| | - Ming Sun
- College of Materials Science and Engineering, Heilongjiang Provincial Key Laboratory of Polymeric Composite Materials, Qiqihar University, Qiqihar 161006, China
| | - Shaobin Li
- College of Materials Science and Engineering, Heilongjiang Provincial Key Laboratory of Polymeric Composite Materials, Qiqihar University, Qiqihar 161006, China.
| |
Collapse
|
7
|
Alamro FS, Hefnawy MA, Al-Kadhi NS, Mostafa AM, Motawea MM, Ahmed HA, Alshomrany AS, Medany SS. Synthesis of spinel Nickel Ferrite (NiFe 2O 4)/CNT electrocatalyst for ethylene glycol oxidation in alkaline medium. Heliyon 2024; 10:e35791. [PMID: 39220931 PMCID: PMC11365345 DOI: 10.1016/j.heliyon.2024.e35791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/25/2024] [Accepted: 08/02/2024] [Indexed: 09/04/2024] Open
Abstract
Nickel-iron-based spinel oxide was prepared and supported on multi-walled carbon nanotubes to enhance the electrochemical oxidation of ethylene glycol in an alkaline medium. NiFe2O4 was prepared using facile sol-gel techniques. Then the prepared material was characterized using different bulk and surface techniques like powder X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscope (SEM), and transmitted electron microscope (TEM). Different electrodes of NiFe2O4/CNT ratios were prepared to find out the optimum spinel oxide/CNT ratio. The activity of the metal spinel oxides composite was characterized toward ethylene glycol conversion by different electrochemical techniques like cyclic voltammetry (CV), Chronoamperometry (CA), and electrochemical impedance spectroscopy (EIS). The modified electrode reached an oxidation current of 43 mA cm-2 in a solution of 1.0 M ethylene glycol and 1.0 M NaOH. Furthermore, some kinetics parameters (like diffusion coefficient, and rate constant) were calculated to evaluate the catalytic performance. Additionally, the electrode showed extreme stability for long-term ethylene glycol oxidation.
Collapse
Affiliation(s)
- Fowzia S. Alamro
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia
| | - Mahmoud A. Hefnawy
- Chemistry Department, Faculty of Science, Cairo University, 12613-Giza, Egypt
| | - Nada S. Al-Kadhi
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia
| | - Ayman M. Mostafa
- Department of Physics, College of Science, Qassim University, Buraidah, 51452, Saudi Arabia
- Spectroscopy Department, Physics Research Institute, National Research Center, Giza, 12622, Egypt
| | - Mariem M. Motawea
- Department of Chemistry, College of Science, University of Bisha, Bisha, 61922, Saudi Arabia
| | - Hoda A. Ahmed
- Chemistry Department, Faculty of Science, Cairo University, 12613-Giza, Egypt
- Chemistry Department, Faculty of Science at Yanbu, Taibah University, Yanbu, 46423, Saudi Arabia
| | - Ali S. Alshomrany
- Department of Physics, College of Sciences, Umm Al-Qura University, Al Taif HWY, Mecca, 24381, Saudi Arabia
| | - Shymaa S. Medany
- Chemistry Department, Faculty of Science, Cairo University, 12613-Giza, Egypt
| |
Collapse
|
8
|
Wahyuni WT, Rahman HA, Afifah S, Anindya W, Hidayat RA, Khalil M, Fan B, Putra BR. Comparison of the analytical performance of two different electrochemical sensors based on a composite of gold nanorods with carbon nanomaterials and PEDOT:PSS for the sensitive detection of nitrite in processed meat products. RSC Adv 2024; 14:24856-24873. [PMID: 39119281 PMCID: PMC11307257 DOI: 10.1039/d4ra04629c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 08/01/2024] [Indexed: 08/10/2024] Open
Abstract
Herein, two platforms for electrochemical sensors were developed based on a combination of gold nanorods (AuNRs) with electrochemically reduced graphene oxide (ErGO) or with multiwalled carbon nanotubes (MWCNTs) and PEDOT:PSS for nitrite detection. The first and second electrodes were denoted as AuNRs/ErGO/PEDOT:PSS/GCE and AuNRs/MWCNT/PEDOT:PSS/GCE, respectively. Both materials for electrode modifiers were then characterized using UV-Vis and Raman spectroscopy, SEM, and HR-TEM. In addition, both sensors exhibit good electrochemical and electroanalytical performance for nitrite detection when investigated using voltammetric techniques. The synergistic effect between the AuNRs and their composites enhanced the electrocatalytic activity toward nitrite oxidation compared with the unmodified electrode, and the electroanalytical performance of the second electrode was superior to the first electrode. This is because the high surface area and conductivity of the MWCNTs in the second electrode provide the highest electrochemically active area (0.1510 cm2) among the other electrodes. Moreover, the second electrode exhibited a higher value for the surface coverage and the diffusion coefficient than the first electrode for nitrite detection. The electroanalytical performances of the first and second electrode for nitrite detection in terms of concentration range are 0.8-100 μM and 0.2-100 μM, limit of detection (0.2 μM and 0.08 μM), and measurement sensitivity (0.0451 μA μM-1 cm-2 and 0.0634 μA μM-1 cm-2). Good selectivity was also shown from both sensors in the presence of NaCl, Na2SO4, Na3PO4, MgSO4, NaHCO3, NaNO3, glucose, and ascorbic acid as interfering species for nitrite detection. Furthermore, both sensors were employed to detect nitrite as a food preservative in the beef sample, and the results showed no significant difference compared with the spectrophotometric technique. These results indicate that both proposed nitrite sensors may be further applied as promising electrochemical sensing platforms for in situ nitrite detection.
Collapse
Affiliation(s)
- Wulan Tri Wahyuni
- Department of Chemistry, Analytical Chemistry Division, Faculty of Mathematics and Natural Sciences, IPB University Bogor 16680 Indonesia
- Tropical Biopharmaca Research Center, IPB University Bogor 16680 Indonesia
| | - Hemas Arif Rahman
- Department of Chemistry, Analytical Chemistry Division, Faculty of Mathematics and Natural Sciences, IPB University Bogor 16680 Indonesia
| | - Salmi Afifah
- Department of Chemistry, Analytical Chemistry Division, Faculty of Mathematics and Natural Sciences, IPB University Bogor 16680 Indonesia
| | - Weni Anindya
- Department of Chemistry, Analytical Chemistry Division, Faculty of Mathematics and Natural Sciences, IPB University Bogor 16680 Indonesia
| | - Rayyan Azzahra Hidayat
- Department of Chemistry, Analytical Chemistry Division, Faculty of Mathematics and Natural Sciences, IPB University Bogor 16680 Indonesia
| | - Munawar Khalil
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, University of Indonesia Depok 16424 Indonesia
| | - Bingbing Fan
- School of Material Science and Engineering, Zhengzhou University Zhengzhou 450001 China
| | - Budi Riza Putra
- Research Center for Metallurgy, National Research and Innovation Agency (BRIN) PUSPIPTEK Gd. 470 South Tangerang Banten 15315 Indonesia
| |
Collapse
|
9
|
Ezzat N, Hefnawy MA, Fadlallah SA, El-Sherif RM, Medany SS. Synthesis of nickel-sphere coated Ni-Mn layer for efficient electrochemical detection of urea. Sci Rep 2024; 14:14818. [PMID: 38937495 PMCID: PMC11211473 DOI: 10.1038/s41598-024-64707-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 06/12/2024] [Indexed: 06/29/2024] Open
Abstract
Using a trustworthy electrochemical sensor in the detection of urea in real blood samples received a great attention these days. A thin layer of nickel-coated nickel-manganese (Ni@NiMn) is electrodeposited on a glassy carbon electrode (GC) (Ni@NiMn/GC) surface and used to construct the electrochemical sensor for urea detection. Whereas, electrodeposition is considered as strong technique for the controllable synthesis of nanoparticles. Thus, X-ray diffraction (XRD), atomic force microscope (AFM), and scanning electron microscope (SEM) techniques were used to characterize the produced electrode. AFM and SEM pictures revealed additional details about the surface morphology, which revealed a homogenous and smooth coating. Furthermore, electrochemical research was carried out in alkaline medium utilizing various electrochemical methods, including cyclic voltammetry (CV), chronoamperometry (CA), and electrochemical impedance spectroscopy (EIS). The electrochemical investigations showed that the electrode had good performance, high stability and effective charge transfer capabilities. The structural, morphological, and electrochemical characteristics of Ni@NiMn/GC electrodes were well understood using the analytical and electrochemical techniques. The electrode showed a limit of detection (LOD) equal to 0.0187 µM and a linear range of detection of 1.0-10 mM of urea. Furthermore, real blood samples were used to examine the efficiency of the prepared sensor. Otherwise, the anti-interfering ability of the modified catalyst was examined toward various interfering species.
Collapse
Affiliation(s)
- Nourhan Ezzat
- Bio Nanotechnology Department, Faculty of Nanotechnology, Cairo University, Giza, Egypt
| | - Mahmoud A Hefnawy
- Chemistry Department, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Sahar A Fadlallah
- Chemistry Department, Faculty of Science, Cairo University, Giza, 12613, Egypt
- Biotechnology Department, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Rabab M El-Sherif
- Bio Nanotechnology Department, Faculty of Nanotechnology, Cairo University, Giza, Egypt
- Chemistry Department, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Shymaa S Medany
- Chemistry Department, Faculty of Science, Cairo University, Giza, 12613, Egypt.
| |
Collapse
|
10
|
Medany SS, Nafady A, Soomro RA, Hefnawy MA. Construction of chitosan-supported nickel cobaltite composite for efficient electrochemical capacitor and water-splitting applications. Sci Rep 2024; 14:2453. [PMID: 38291040 PMCID: PMC10827801 DOI: 10.1038/s41598-023-49692-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 12/11/2023] [Indexed: 02/01/2024] Open
Abstract
The construction of highly efficient electrode material is of considerable interest, particularly for high capacitance and water-splitting applications. Herein, we present the preparation of a NiCo2O4-Chitosan (NC@Chit) nanocomposite using a simple hydrothermal technique designed for applications in high capacitance and water-splitting. The structure/composition of the NC@Chit composite was characterized using different analytical methods, containing electron microscope (SEM and TEM), and powder X-ray diffraction (XRD). When configured as an anode material, the NC@Chit displayed a high capacitance of 234 and 345 F g-1 (@1Ag-1 for GC/NC and NC@Chit, respectively) in an alkaline electrolyte. The direct use of the catalyst in electrocatalytic water-splitting i.e., HER and OER achieved an overpotential of 240 mV and 310 mV at a current density of 10 mA cm-2, respectively. The obtained Tafel slopes for OER and HER were 62 and 71 mV dec-1, respectively whereas the stability and durability of the fabricated electrodes were assessed through prolonged chronoamperometry measurement at constant for 10 h. The electrochemical water splitting was studied for modified nickel cobaltite surface using an impedance tool, and the charge transfer resistances were utilized to estimate the electrode activity.
Collapse
Affiliation(s)
- Shymaa S Medany
- Chemistry Department, Faculty of Science, Cairo University, 12613, Giza, Egypt.
| | - Ayman Nafady
- Department of Chemistry, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Razium Ali Soomro
- State Key Laboratory of Chemical Resource Engineering School of Chemistry, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing, 100029, People's Republic of China
| | - Mahmoud A Hefnawy
- Chemistry Department, Faculty of Science, Cairo University, 12613, Giza, Egypt.
| |
Collapse
|
11
|
Zaher HT, Hefnawy MA, Medany SS, Kamel SM, Fadlallah SA. Synergetic effect of essential oils and calcium phosphate nanoparticles for enhancement the corrosion resistance of titanium dental implant. Sci Rep 2024; 14:1573. [PMID: 38238413 PMCID: PMC10796362 DOI: 10.1038/s41598-024-52057-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 01/12/2024] [Indexed: 01/22/2024] Open
Abstract
Calcium phosphate (CaPO4) coating is one of various methods that is used to modify the topography and the chemistry of Ti dental implant surface to solve sever oral problems that result from diseases, accidents, or even caries due to its biocompatibility. In this work, anodized (Ti-bare) was coated by CaPO4 prepared from amorphous calcium phosphate nanoparticles (ACP-NPs) and confirmed the structure by X-ray diffraction (XRD) and Fourier-transform infrared spectroscopy (FT-IR) techniques. Ti-bare was coated by prepared CaPO4 through the casting process, and the morphology of Ti/CaPO4 was characterized by scanning electron microscope (SEM) where the nano-flakes shape of CaPO4 and measured to be 60 ~ 80 nm was confirmed. The stability of Ti-bare and coated Ti/CaPO4 was studied in a simulated saliva solution using electrochemical impedance spectroscopy (EIS) and linear polarization techniques to deduce their corrosion resistance. Furthermore, three essential oils (EO), Cumin, Thyme, and Coriander, were used to stimulate their synergistic effect with the CaPO4 coat to enhance the corrosion resistance of Ti implant in an oral environment. The fitting EIS parameters based on Rs [RctC]W circuit proved that the charge transfer resistance (Rct) of Ti/CaPO4 increased by 264.4, 88.2, and 437.5% for Cumin, Thyme, and Coriander, respectively, at 2% concentration.
Collapse
Affiliation(s)
- Heba Tarek Zaher
- Biotechnology Department, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Mahmoud A Hefnawy
- Chemistry Department, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Shymaa S Medany
- Chemistry Department, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - S M Kamel
- Oral Biology, October University for Modern Sciences and Art, MSA University, Giza, Egypt
| | - Sahar A Fadlallah
- Chemistry Department, Faculty of Science, Cairo University, Giza, 12613, Egypt.
- Biotechnology Department, Faculty of Science, Cairo University, Giza, 12613, Egypt.
| |
Collapse
|
12
|
Medany SS, Hefnawy MA, Kamal SM. High-performance spinel NiMn 2O 4 supported carbon felt for effective electrochemical conversion of ethylene glycol and hydrogen evolution applications. Sci Rep 2024; 14:471. [PMID: 38172517 PMCID: PMC10764334 DOI: 10.1038/s41598-023-50950-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 12/28/2023] [Indexed: 01/05/2024] Open
Abstract
One of the most effective electrocatalysts for electrochemical oxidation reactions is NiMn2O4 spinel oxide. Here, a 3-D porous substrate with good conductivity called carbon felt (CF) is utilized. The composite of NiMn2O4-supported carbon felt was prepared using the facile hydrothermal method. The prepared electrode was characterized by various surface and bulk analyses like powder X-ray diffraction, X-ray photon spectroscopy (XPS), Scanning and transmitted electron microscopy, thermal analysis (DTA), energy dispersive X-ray (EDX), and Brunauer-Emmett-Teller (BET). The activity of NiMn2O4 toward the electrochemical conversion of ethylene glycol at a wide range of concentrations was investigated. The electrode showed a current density of 24 mA cm-2 at a potential of 0.5 V (vs. Ag/AgCl). Furthermore, the ability of the electrode toward hydrogen evaluation in an alkaline medium was performed. Thus, the electrode achieved a current density equal 10 mA cm-2 at an overpotential of 210 mV (vs. RHE), and the provided Tafel slope was 98 mV dec-1.
Collapse
Affiliation(s)
- Shymaa S Medany
- Department of Chemistry, Faculty of Science, Cairo University, Giza, 12613, Egypt.
| | - Mahmoud A Hefnawy
- Department of Chemistry, Faculty of Science, Cairo University, Giza, 12613, Egypt.
| | - Soha M Kamal
- Applied Electrochemistry Laboratory, Chemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef, 52511, Egypt
| |
Collapse
|
13
|
Ezzat N, Hefnawy MA, Medany SS, El-Sherif RM, Fadlallah SA. Green synthesis of Ag nanoparticle supported on graphene oxide for efficient nitrite sensing in a water sample. Sci Rep 2023; 13:19441. [PMID: 37945582 PMCID: PMC10636149 DOI: 10.1038/s41598-023-46409-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 10/31/2023] [Indexed: 11/12/2023] Open
Abstract
Water is essential for conserving biodiversity, ecology, and human health, but because of population growth and declining clean water supplies, wastewater must be treated to meet demand. Nitrite is one of the contaminants in wastewater that is well-known. It is crucial to identify nitrite since it can be fatal to humans in excessive doses. Utilizing a straightforward and effective electrochemical sensor, nitrite in actual water samples may be determined electrochemically. The sensor is created by coating the surface of a GC electrode with a thin layer of graphene oxide (GO), followed by a coating of silver nanoparticles. The modified electrode reached a linear detection range of 1-400 µM. thus, the activity of the electrode was investigated at different pH values ranging from 4 to 10 to cover acidic to highly basic environments. However, the electrode recorded limit of detection (LOD) is equal to 0.084, 0.090, and 0.055 µM for pH 4, 7, and 10, respectively. Additionally, the electrode activity was utilized in tap water and wastewater that the LOD reported as 0.16 and 0.157 µM for tape water and wastewater, respectively.
Collapse
Affiliation(s)
- Nourhan Ezzat
- Bio-Nanotechnology Department, Faculty of Nanotechnology, Cairo University, Giza, 12613, Egypt
| | - Mahmoud A Hefnawy
- Chemistry Department, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Shymaa S Medany
- Chemistry Department, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Rabab M El-Sherif
- Bio-Nanotechnology Department, Faculty of Nanotechnology, Cairo University, Giza, 12613, Egypt
- Chemistry Department, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Sahar A Fadlallah
- Chemistry Department, Faculty of Science, Cairo University, Giza, 12613, Egypt.
- Biotechnology Department, Faculty of Science, Cairo University, Giza, 12613, Egypt.
| |
Collapse
|
14
|
Bashal AH, Hefnawy MA, Ahmed HA, El-Atawy MA, Pashameah RA, Medany SS. Green Synthesis of NiFe 2O 4 Nano-Spinel Oxide-Decorated Carbon Nanotubes for Efficient Capacitive Performance-Effect of Electrolyte Concentration. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2643. [PMID: 37836284 PMCID: PMC10574157 DOI: 10.3390/nano13192643] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 09/19/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023]
Abstract
Energy storage applications received great attention due to environmental aspects. A green method was used to prepare a composite of nickel-iron-based spinel oxide nanoparticle@CNT. The prepared materials were characterized by different analytical methods like X-ray diffraction, X-ray photon spectroscopy (XPS), scanning electron microscopy (SEM), and transmitted electron microscopy (TEM). The synergistic effect between nickel-iron oxide and carbon nanotubes was characterized using different electrochemical methods like cyclic voltammetry (CV), galvanostatic charging/discharging (GCD), and electrochemical impedance spectroscopy (EIS). The capacitances of the pristine NiFe2O4 and NiFe2O4@CNT were studied in different electrolyte concentrations. The effect of OH- concentrations was studied for modified and non-modified surfaces. Furthermore, the specific capacitance was estimated for pristine and modified NiFe2O4 at a wide current range (5 to 17 A g-1). Thus, the durability of different surfaces after 2000 cycles was studied, and the capacitance retention was estimated as 78.8 and 90.1% for pristine and modified NiFe2O4. On the other hand, the capacitance rate capability was observed as 65.1% (5 to 17 A g-1) and 62.4% (5 to 17 A g-1) for NiFe2O4 and NiFe2O4@CNT electrodes.
Collapse
Affiliation(s)
- Ali H. Bashal
- Chemistry Department, Faculty of Science at Yanbu, Taibah University, Yanbu 46423, Saudi Arabia
| | - Mahmoud A. Hefnawy
- Chemistry Department, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Hoda A. Ahmed
- Chemistry Department, Faculty of Science at Yanbu, Taibah University, Yanbu 46423, Saudi Arabia
- Chemistry Department, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Mohamed A. El-Atawy
- Chemistry Department, Faculty of Science at Yanbu, Taibah University, Yanbu 46423, Saudi Arabia
- Chemistry Department, Faculty of Science, Alexandria University, Ibrahemia, Alexandria 21321, Egypt
| | - Rami Adel Pashameah
- Department of Chemistry, Faculty of Applied Science, Umm Al-Qura University, Makkah 24230, Saudi Arabia
| | - Shymaa S. Medany
- Chemistry Department, Faculty of Science, Cairo University, Giza 12613, Egypt
| |
Collapse
|
15
|
Eliwa AS, Hefnawy MA, Medany SS, Deghadi RG, Hosny WM, Mohamed GG. Synthesis and characterization of lead-based metal-organic framework nano-needles for effective water splitting application. Sci Rep 2023; 13:12531. [PMID: 37532800 PMCID: PMC10397286 DOI: 10.1038/s41598-023-39697-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 07/29/2023] [Indexed: 08/04/2023] Open
Abstract
Metal organic frameworks (MOFs) are a class of porous materials characterized by robust linkages between organic ligands and metal ions. Metal-organic frameworks (MOFs) exhibit significant characteristics such as high porosity, extensive surface area, and exceptional chemical stability, provided the constituent components are meticulously selected. A metal-organic framework (MOF) containing lead and ligands derived from 4-aminobenzoic acid and 2-carboxybenzaldehyde has been synthesized using the sonochemical methodology. The crystals produced were subjected to various analytical techniques such as Fourier-transform infrared spectroscopy (FT-IR), Powder X-ray diffraction (PXRD), scanning electron microscopy (SEM), energy dispersive X-ray (EDX), Brunauer-Emmett-Teller (BET), and thermal analysis. The BET analysis yielded results indicating a surface area was found to be 1304.27 m2 g-1. The total pore volume was estimated as 2.13 cm3 g-1 with an average pore size of 4.61 nm., rendering them highly advantageous for a diverse range of practical applications. The activity of the modified Pb-MOF electrode was employed toward water-splitting applications. The electrode reached the current density of 50 mA cm-2 at an overpotential of - 0.6 V (vs. RHE) for hydrogen evolution, and 50 mA cm-2 at an overpotential of 1.7 V (vs. RHE) for oxygen evolution.
Collapse
Affiliation(s)
- Ayman S Eliwa
- Chemistry Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Mahmoud A Hefnawy
- Chemistry Department, Faculty of Science, Cairo University, Giza, Egypt.
| | - Shymaa S Medany
- Chemistry Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Reem G Deghadi
- Chemistry Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Wafaa M Hosny
- Chemistry Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Gehad G Mohamed
- Chemistry Department, Faculty of Science, Cairo University, Giza, Egypt.
- Nanoscience Department, Basic and Applied Sciences Institute, Egypt-Japan University of Science and Technology, Alexandria, Egypt.
| |
Collapse
|
16
|
Medany SS, Hefnawy MA. Nickel–cobalt oxides decorated Chitosan electrocatalyst for ethylene glycol oxidation. SURFACES AND INTERFACES 2023; 40:103077. [DOI: https:/doi.org/10.1016/j.surfin.2023.103077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
|
17
|
Alamro FS, Hefnawy MA, Nafee SS, Al-Kadhi NS, Pashameah RA, Ahmed HA, Medany SS. Chitosan Supports Boosting NiCo 2O 4 for Catalyzed Urea Electrochemical Removal Application. Polymers (Basel) 2023; 15:3058. [PMID: 37514447 PMCID: PMC10384518 DOI: 10.3390/polym15143058] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/05/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Currently, wastewater containing high urea levels poses a significant risk to human health. Else, electrocatalytic methodologies have the potential to transform urea present in urea-rich wastewater into hydrogen, thereby contributing towards environmental conservation and facilitating the production of sustainable energy. The characterization of the NiCo2O4@chitosan catalyst was performed by various analytical techniques, including scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). Furthermore, the activity of electrodes toward urea removal was investigated by several electrochemical techniques. As a function of current density, the performance of the modified NiCo2O4@chitosan surface was employed to remove urea using electrochemical oxidation. Consequently, the current density measurement was 43 mA cm-2 in a solution of 1.0 M urea and 1.0 M KOH. Different kinetic characteristics were investigated, including charge transfer coefficient (α), Tafel slope (29 mV dec-1), diffusion coefficient (1.87 × 10-5 cm2 s-1), and surface coverage 4.29 × 10-9 mol cm-2. The electrode showed high stability whereas it lost 10.4% of its initial current after 5 h of urea oxidation.
Collapse
Affiliation(s)
- Fowzia S. Alamro
- Department of Chemistry, College of Science, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Mahmoud A. Hefnawy
- Chemistry Department, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Sherif S. Nafee
- Physics Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Nada S. Al-Kadhi
- Department of Chemistry, College of Science, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Rami Adel Pashameah
- Department of Chemistry, Faculty of Applied Science, Umm Al-Qura University, Makkah 24230, Saudi Arabia
| | - Hoda A. Ahmed
- Chemistry Department, Faculty of Science, Cairo University, Giza 12613, Egypt
- Chemistry Department, College of Sciences, Taibah University, Yanbu 30799, Saudi Arabia
| | - Shymaa S. Medany
- Chemistry Department, Faculty of Science, Cairo University, Giza 12613, Egypt
| |
Collapse
|
18
|
Al-Kadhi NS, Hefnawy MA, S. Nafee S, Alamro FS, Pashameah RA, Ahmed HA, Medany SS. Zinc Nanocomposite Supported Chitosan for Nitrite Sensing and Hydrogen Evolution Applications. Polymers (Basel) 2023; 15:2357. [DOI: https:/doi.org/10.3390/polym15102357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2023] Open
Abstract
Nanoparticles of ZnO-Chitosan (Zn-Chit) composite were prepared using precipitation methods. Several analytical techniques, such as scanning electron microscope (SEM), transmitted electron microscope (TEM), powder X-ray diffraction (XRD), infrared spectroscopy (IR), and thermal analysis, were used to characterize the prepared composite. The activity of the modified composite was investigated for nitrite sensing and hydrogen production applications using various electrochemical techniques. A comparative study was performed for pristine ZnO and ZnO loaded on chitosan. The modified Zn-Chit has a linear range of detection 1–150 µM and a limit of detection (LOD) = 0.402 µM (response time ~3 s). The activity of the modified electrode was investigated in a real sample (milk). Furthermore, the anti-interference capability of the surface was utilized in the presence of several inorganic salts and organic additives. Additionally, Zn-Chit composite was employed as an efficient catalyst for hydrogen production in an acidic medium. Thus, the electrode showed long-term stability toward fuel production and enhanced energy security. The electrode reached a current density of 50 mA cm−2 at an overpotential equal to −0.31 and −0.2 V (vs. RHE) for GC/ZnO and GC/Zn-Chit, respectively. Electrode durability was studied for long-time constant potential chronoamperometry for 5 h. The electrodes lost 8% and 9% of the initial current for GC/ZnO and GC/Zn-Chit, respectively.
Collapse
Affiliation(s)
- Nada S. Al-Kadhi
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Mahmoud A. Hefnawy
- Chemistry Department, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Sherif S. Nafee
- Physics Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Fowzia S. Alamro
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Rami Adel Pashameah
- Department of Chemistry, Faculty of Applied Science, Umm Al-Qura University, Makkah 24230, Saudi Arabia
| | - Hoda A. Ahmed
- Chemistry Department, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Shymaa S. Medany
- Chemistry Department, Faculty of Science, Cairo University, Giza 12613, Egypt
| |
Collapse
|
19
|
Al-Kadhi NS, Hefnawy MA, S. Nafee S, Alamro FS, Pashameah RA, Ahmed HA, Medany SS. Zinc Nanocomposite Supported Chitosan for Nitrite Sensing and Hydrogen Evolution Applications. Polymers (Basel) 2023; 15:2357. [PMID: 37242932 PMCID: PMC10221157 DOI: 10.3390/polym15102357] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/12/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
Nanoparticles of ZnO-Chitosan (Zn-Chit) composite were prepared using precipitation methods. Several analytical techniques, such as scanning electron microscope (SEM), transmitted electron microscope (TEM), powder X-ray diffraction (XRD), infrared spectroscopy (IR), and thermal analysis, were used to characterize the prepared composite. The activity of the modified composite was investigated for nitrite sensing and hydrogen production applications using various electrochemical techniques. A comparative study was performed for pristine ZnO and ZnO loaded on chitosan. The modified Zn-Chit has a linear range of detection 1-150 µM and a limit of detection (LOD) = 0.402 µM (response time ~3 s). The activity of the modified electrode was investigated in a real sample (milk). Furthermore, the anti-interference capability of the surface was utilized in the presence of several inorganic salts and organic additives. Additionally, Zn-Chit composite was employed as an efficient catalyst for hydrogen production in an acidic medium. Thus, the electrode showed long-term stability toward fuel production and enhanced energy security. The electrode reached a current density of 50 mA cm-2 at an overpotential equal to -0.31 and -0.2 V (vs. RHE) for GC/ZnO and GC/Zn-Chit, respectively. Electrode durability was studied for long-time constant potential chronoamperometry for 5 h. The electrodes lost 8% and 9% of the initial current for GC/ZnO and GC/Zn-Chit, respectively.
Collapse
Affiliation(s)
- Nada S. Al-Kadhi
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Mahmoud A. Hefnawy
- Chemistry Department, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Sherif S. Nafee
- Physics Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Fowzia S. Alamro
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Rami Adel Pashameah
- Department of Chemistry, Faculty of Applied Science, Umm Al-Qura University, Makkah 24230, Saudi Arabia
| | - Hoda A. Ahmed
- Chemistry Department, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Shymaa S. Medany
- Chemistry Department, Faculty of Science, Cairo University, Giza 12613, Egypt
| |
Collapse
|