1
|
Mardani-Talaee M, Razmjou J, Ajdari A, Serrão JE, Vivekanandhan P. Green synthesis of zinc oxide nanoparticles from Sargassum ilicifolium to enhance tomato resistance against Tuta absoluta. Sci Rep 2025; 15:13596. [PMID: 40253463 PMCID: PMC12009322 DOI: 10.1038/s41598-025-97535-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 04/04/2025] [Indexed: 04/21/2025] Open
Abstract
This study evaluated the effects of ZnO and green-synthesized ZnO nanoparticles (ZnO-NPs) from Sargassum ilicifolium extract on the biochemical interactions between tomato leaves and the destructive pest Tuta absoluta. The average size and stability of ZnO-NPs were characterized using DLS, X-RD, and FE-SEM. Peaks in the FT-IR spectrum of the extract of the algae and ZnO-NPs, indicated the presence of carboxyl groups, amines, alkynes and alcohols. Treated tomato leaves exhibited increased total chlorophyll and anthocyanin contents, particularly at 100 and 50 ppm, compared to the control. A significant increase in total flavonoid content was observed at 100 ppm, while total phenolic content was also enhanced at 50 ppm. In T. absoluta larvae, exposure to 50 and 100 ppm ZnO-NPs led to a reduction in α-amylase, total protease, total protein, and TAG levels, alongside increased catalase activity. Additionally, G6PD and ALT activities decreased at 50 ppm compared to the control. Lactate, MDA, and the RSSR/RSH increased at 100 ppm. Furthermore, ZnO-NPs at 50 and 100 ppm elevated larval aldolase activity, while AST and γ-GT activities declined. These findings indicate that ZnO-NPs enhance tomato defense mechanisms and mitigate larval damage, supporting their potential use in integrated pest management strategies against T. absoluta.
Collapse
Affiliation(s)
- Mozhgan Mardani-Talaee
- Department of Plant Protection, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran.
| | - Jabraeil Razmjou
- Department of Plant Protection, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran.
| | - Ashkan Ajdari
- Agricultural Research Education and Extension Organization (AREEO), Iranian Fisheries Science Research Institute (IFSRI), Offshore Research Center, Chabahar, Iran
| | | | - Perumal Vivekanandhan
- Department of General Pathology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, Tamil Nadu, 600077, India
| |
Collapse
|
2
|
Szekalska M, Kasparavičienė G, Bernatonienė J, Wolska E, Misiak P, Markiewicz KH, Wilczewska AZ, Czajkowska-Kośnik A, Winnicka K. Zinc Acetate as a Cross-Linking Agent in the Development of Enteric Microcapsules for Posaconazole. Pharmaceutics 2025; 17:291. [PMID: 40142955 PMCID: PMC11946752 DOI: 10.3390/pharmaceutics17030291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 02/14/2025] [Accepted: 02/20/2025] [Indexed: 03/28/2025] Open
Abstract
Background/Objectives: Posaconazole is an antifungal agent from triazoles with variable bioavailability. To avoid its irregular absorption caused by gastric conditions and ensure more repeatable pharmacokinetic enabling the maximization of its absorption regardless of food intake without the need to administer multiple doses, can be provided by the technology of enteric drug preparations. The cross-linking of polysaccharide polymers with divalent and trivalent cations enables multi-unit formulations to be obtained that prevent drug absorption in the stomach. Microcapsules, as an example of multi-unit drug dosage forms, provide more predictable gastric emptying, depending on nutritional status, and spread extensively throughout the gastrointestinal tract. Methods: Therefore, the utilization of zinc acetate for the cross-linking of the alginate and pectin mixture was evaluated. The obtained formulations were evaluated for the impact of cross-linking process and pectin's presence on their pharmaceutical, mucoadhesive, physicochemical and antifungal properties. Results: It was shown that cross-linked microcapsules by zinc acetate provided delayed posaconazole release. Additionally, the cross-linking process with Zn2+ ions significantly enhanced antifungal activity against the analyzed Candida strains. It was observed that pectin content in the formulation enhanced the swelling ability in an intestinal condition and increased the mucoadhesive properties of drug-loaded formulations to the intestinal mucosa.
Collapse
Affiliation(s)
- Marta Szekalska
- Department of Pharmaceutical Technology, Medical University of Białystok, Mickiewicza 2C, 15-222 Białystok, Poland; (A.C.-K.); (K.W.)
| | - Giedrė Kasparavičienė
- Department of Drug Technology and Social Pharmacy, Faculty of Pharmacy, Medical Academy, Lithuanian University of Health Sciences, Sukileliu pr. 13, LT-50161 Kaunas, Lithuania; (G.K.); (J.B.)
| | - Jurga Bernatonienė
- Department of Drug Technology and Social Pharmacy, Faculty of Pharmacy, Medical Academy, Lithuanian University of Health Sciences, Sukileliu pr. 13, LT-50161 Kaunas, Lithuania; (G.K.); (J.B.)
| | - Eliza Wolska
- Department of Pharmaceutical Technology, Medical University of Gdańsk, Hallera 107, 80-416 Gdańsk, Poland;
| | - Paweł Misiak
- Department of Polymers and Organic Synthesis, Faculty of Chemistry, University of Białystok, Ciołkowskiego 1K, 15-245 Białystok, Poland; (P.M.); (K.H.M.); (A.Z.W.)
| | - Karolina Halina Markiewicz
- Department of Polymers and Organic Synthesis, Faculty of Chemistry, University of Białystok, Ciołkowskiego 1K, 15-245 Białystok, Poland; (P.M.); (K.H.M.); (A.Z.W.)
| | - Agnieszka Zofia Wilczewska
- Department of Polymers and Organic Synthesis, Faculty of Chemistry, University of Białystok, Ciołkowskiego 1K, 15-245 Białystok, Poland; (P.M.); (K.H.M.); (A.Z.W.)
| | - Anna Czajkowska-Kośnik
- Department of Pharmaceutical Technology, Medical University of Białystok, Mickiewicza 2C, 15-222 Białystok, Poland; (A.C.-K.); (K.W.)
| | - Katarzyna Winnicka
- Department of Pharmaceutical Technology, Medical University of Białystok, Mickiewicza 2C, 15-222 Białystok, Poland; (A.C.-K.); (K.W.)
| |
Collapse
|
3
|
Alsolmi MM, El-Naggar NEA, Alqurashi MI, Hamouda RA. Biofabrication of zinc oxide nanoparticles using Moringa oleifera, characterization and statistical optimization for their application in crystal violet adsorption. Sci Rep 2025; 15:3780. [PMID: 39885265 PMCID: PMC11782614 DOI: 10.1038/s41598-025-86629-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 01/13/2025] [Indexed: 02/01/2025] Open
Abstract
Crystal violet (Cry) is an essential textile dye belonging to the triphenylmethane group, that is widely used in the textile industry. It is also applied for paper printing and Gram staining. Previously, it was significant as a topical antiseptic due to its antibacterial, antifungal, and anthelmintic properties. Despite its various applications, crystal violet has been recognized as a biohazard dye due to its toxic and carcinogenic properties. It persists in the environment with long-lasting effects and has detrimental impacts. In this research, water extract from Moringa oleifera leaves is employed as environmentally friendly methods to synthesize zinc oxide nanoparticles (Mo/ZnO-NPs), and characterized by TEM, EDX, FT-IR, and Zeta potential. Mo/ZnO-NPs exhibit a Zeta potential of - 21.9 mV, and X-ray diffraction (XRD) analysis confirms their crystallographic structure. The size of the biogenic Mo/ZnO-NPs ranges from 5.52 to 41.59 nm. This study was designed to estimate and maximize the ability of Mo/ZnO-NPs to remove crystal violet using Central Composite Design (CCD), considering pH (ranging from 3 to 11), incubation time (ranging from 30 to 150), nanoparticles concentrations (ranging from 0.2 to 1.8 mg/mL), and crystal violet concentrations (ranging from 25 to 125 ppm). The maximum percentage value of removal of crystal violet by Mo/ZnO-NPs was 97.26 with optimal conditions of pH 9, incubation time 120 min, Mo/ZnO-NPs 1.4 mg/mL, and crystal violet concentration of 50 ppm. The best-predicted conditions that caused the highest removal of crystal violet (97.8%) were determined using the desirability function as pH 10, incubation time of 140 min, Mo/ZnO-NPs concentrations of 1.3 mg/mL, and a concentration of crystal violet of 80 ppm. Under these optimal conditions, the maximum experimental crystal violet removal% by Mo/ZnO-NPs was (98.7%) was verified. Mo/ZnO-NPs synthesized by Moringa oleifera can be a promising candidate for the adsorption of crystal violet.
Collapse
Affiliation(s)
- Meshayil M Alsolmi
- College of Science and Arts at Khulis, Department of Mathematics, University of Jeddah, Jeddah, Saudi Arabia
| | - Noura El-Ahmady El-Naggar
- Department of Bioprocess Development, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTACity), New Borg El-Arab City, Alexandria, 21934, Egypt.
| | - Mashael I Alqurashi
- Department of Biology, College of Sciences and Arts Khulais, University of Jeddah, 21959, Jeddah, Saudi Arabia
| | - Ragaa A Hamouda
- Department of Biology, College of Sciences and Arts Khulais, University of Jeddah, 21959, Jeddah, Saudi Arabia.
- Microbial Biotechnology Department, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City, 32897, Egypt.
- Department of Applied Radiologic Technology, College of Applied Medical Sciences, University of Jeddah, 23218, Jeddah, Saudi Arabia.
| |
Collapse
|
4
|
Selim MI, Sonbol FI, El-Banna TE, Negm WA, Elekhnawy E. Antibacterial and wound healing potential of biosynthesized zinc oxide nanoparticles against carbapenem-resistant Acinetobacter baumannii: an in vitro and in vivo study. Microb Cell Fact 2024; 23:281. [PMID: 39415253 PMCID: PMC11484456 DOI: 10.1186/s12934-024-02538-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 09/25/2024] [Indexed: 10/18/2024] Open
Abstract
Carbapenem-resistant Acinetobacter baumannii denotes a significant menace to public health, and it mandates an urgent development of new effective medications. Here, we aimed to estimate the efficiency of the zinc oxide nanoparticles (ZnO NP) biosynthesized from Arthrospira maxima (Spirulina) both in vitro and in vivo. Carbapenem-resistant A. baumannii isolates were collected, identified, tested for their antibiotic susceptibility, and then subjected to PCR to detect carbapenemase-producing genes. The most predominant carbapenemase resistance gene was blaKPC. The biosynthesized ZnO NP were characterized using UV, FTIR, XRD, SEM, and TEM. The prepared ZnO NP was then tested against A. baumannii isolates to determine the minimum inhibitory concentration (MIC), which ranged from 250 to 1000 μg/ml. Burn wound was persuaded in twenty rats and inoculated with carbapenem-resistant A. baumannii isolate. Rats were allocated into four groups: a negative control group, a positive control group treated with topical 0.9% saline, a test treatment group that received topical ZnO NP, and a standard treatment group. All groups received treatment for 15 consecutive days and then euthanized. Skin samples were harvested and then subjected to histopathological and immunochemical investigations. ZnO NP revealed a comparable antibacterial activity to colistin as it revealed a lower level of fibrosis, mature surface epithelization with keratinization, and restoration of the normal skin architecture. In addition, it significantly decreased the immunoreactivity of the studied inflammatory markers. Thus, ZnO NP synthesized by A. maxima could be considered a promising, safe, and biocompatible alternative to traditional antibiotics in the therapy of carbapenem-resistant A. baumannii infections.
Collapse
Affiliation(s)
- Mohamed I Selim
- Pharmaceutical Microbiology Department, Faculty of Pharmacy, Tanta University, Tanta, 31527, Egypt
| | - Fatma I Sonbol
- Pharmaceutical Microbiology Department, Faculty of Pharmacy, Tanta University, Tanta, 31527, Egypt
| | - Tarek E El-Banna
- Pharmaceutical Microbiology Department, Faculty of Pharmacy, Tanta University, Tanta, 31527, Egypt
| | - Walaa A Negm
- Department of Pharmacognosy, Faculty of Pharmacy, Tanta University, Tanta, 31527, Egypt
| | - Engy Elekhnawy
- Pharmaceutical Microbiology Department, Faculty of Pharmacy, Tanta University, Tanta, 31527, Egypt.
| |
Collapse
|
5
|
Ansari AA, Lv R, Gai S, Parchur AK, Solanki PR, Archana, Ansari Z, Dhayal M, Yang P, Nazeeruddin M, Tavakoli MM. ZnO nanostructures – Future frontiers in photocatalysis, solar cells, sensing, supercapacitor, fingerprint technologies, toxicity, and clinical diagnostics. Coord Chem Rev 2024; 515:215942. [DOI: 10.1016/j.ccr.2024.215942] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
6
|
Divya M, Chen J, Durán-Lara EF, Kim KS, Vijayakumar S. Revolutionizing healthcare: Harnessing nano biotechnology with zinc oxide nanoparticles to combat biofilm and bacterial infections-A short review. Microb Pathog 2024; 191:106679. [PMID: 38718953 DOI: 10.1016/j.micpath.2024.106679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 04/25/2024] [Accepted: 05/04/2024] [Indexed: 05/12/2024]
Abstract
A crucial pathogenic mechanism in many bacterial diseases is the ability to create biofilms. Biofilms are suspected to play a role in over 80 % of microbial illnesses in humans. In light of the critical requirement for efficient management of bacterial infections, researchers have explored alternative techniques for treating bacterial disorders. One of the most promising ways to address this issue is through the development of long-lasting coatings with antibacterial properties. In recent years, antibacterial treatments based on metallic nanoparticles (NPs) have emerged as an effective strategy in the fight over bacterial drug resistance. Zinc oxide nanoparticles (ZnO-NPs) are the basis of a new composite coating material. This article begins with a brief overview of the mechanisms that underlie bacterial resistance to antimicrobial drugs. A detailed examination of the properties of metallic nanoparticles (NPs) and their potential use as antibacterial drugs for curing drug-sensitive and resistant bacteria follows. Furthermore, we assess metal nanoparticles (NPs) as powerful agents to fight against antibiotic-resistant bacteria and the growth of biofilm, and we look into their potential toxicological effects for the development of future medicines.
Collapse
Affiliation(s)
- Mani Divya
- BioMe-Live Analytical Centre, Karaikudi, Tamil Nadu, India.
| | - Jingdi Chen
- Marine College, Shandong University, Weihai, 264209, PR China.
| | - Esteban F Durán-Lara
- Bio&NanoMaterialsLab| Drug Delivery and Controlled Release, Universidad de Talca, Talca, 3460000, Maule, Chile; Departamento de Microbiología, Facultad de Ciencias de La Salud, Universidad de Talca, Talca, 3460000, Maule, Chile
| | - Kwang-Sun Kim
- Department of Chemistry and Chemistry Institute of Functional Materials, Pusan National University, Busan, 462s41, Republic of Korea.
| | | |
Collapse
|
7
|
Hamouda RA, Aljohani ES. Assessment of Silver Nanoparticles Derived from Brown Algae Sargassum vulgare: Insight into Antioxidants, Anticancer, Antibacterial and Hepatoprotective Effect. Mar Drugs 2024; 22:154. [PMID: 38667771 PMCID: PMC11051400 DOI: 10.3390/md22040154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 03/22/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024] Open
Abstract
Algae are used as safe materials to fabricate novel nanoparticles to treat some diseases. Marine brown alga Sargassum vulgare are used to fabricate silver nanoparticles (Sv/Ag-NPs). The characterization of Sv/Ag-NPs was determined by TEM, EDX, Zeta potential, XRD, and UV spectroscopy. The Sv/Ag-NPs were investigated as antioxidant, anticancer, and antibacterial activities against Gram-positive bacteria Bacillus mojavensis PP400982, Staphylococcus caprae PP401704, Staphylococcus capitis PP402689, and Staphylococcus epidermidis PP403851. The activity of the Sv/Ag-NPs was evaluated as hepatoprotective in vitro in comparison with silymarin. The UV-visible spectrum of Sv/Ag-NPs appeared at 442 nm; the size of Sv/Ag-NPs is in range between 6.90 to 16.97 nm, and spherical in shape. Different concentrations of Sv/Ag-NPs possessed antioxidant, anticancer activities against (HepG-2), colon carcinoma (HCT-116), cervical carcinoma (HeLa), and prostate carcinoma (PC-3) with IC50 50.46, 45.84, 78.42, and 100.39 µg/mL, respectively. The Sv/Ag-NPs induced the cell viability of Hep G2 cells and hepatocytes treated with carbon tetrachloride. The Sv/Ag-NPs exhibited antibacterial activities against Staphylococcus caprae PP401704, Staphylococcus capitis PP402689, and Staphylococcus epidermidis PP403851. This study strongly suggests the silver nanoparticles derived from Sargassum vulgare showed potential hepato-protective effect against carbon tetrachloride-induced liver cells, and could be used as anticancer and antibacterial activities.
Collapse
Affiliation(s)
- Ragaa A. Hamouda
- Department of Biology, College of Sciences and Arts Khulais, University of Jeddah, Jeddah 21959, Saudi Arabia;
- Microbial Biotechnology Department, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City 32897, Egypt
| | - Ebtehail S. Aljohani
- Department of Biology, College of Sciences and Arts Khulais, University of Jeddah, Jeddah 21959, Saudi Arabia;
| |
Collapse
|
8
|
Abushahba F, Kylmäoja E, Areid N, Hupa L, Vallittu PK, Tuukkanen J, Närhi T. Osteoblast Attachment on Bioactive Glass Air Particle Abrasion-Induced Calcium Phosphate Coating. Bioengineering (Basel) 2024; 11:74. [PMID: 38247951 PMCID: PMC10813256 DOI: 10.3390/bioengineering11010074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/29/2023] [Accepted: 01/09/2024] [Indexed: 01/23/2024] Open
Abstract
Air particle abrasion (APA) using bioactive glass (BG) effectively decontaminates titanium (Ti) surface biofilms and the retained glass particles on the abraded surfaces impart potent antibacterial properties against various clinically significant pathogens. The objective of this study was to investigate the effect of BG APA and simulated body fluid (SBF) immersion of sandblasted and acid-etched (SA) Ti surfaces on osteoblast cell viability. Another goal was to study the antibacterial effect against Streptococcus mutans. Square-shaped 10 mm diameter Ti substrates (n = 136) were SA by grit blasting with aluminum oxide particles, then acid-etching in an HCl-H2SO4 mixture. The SA substrates (n = 68) were used as non-coated controls (NC-SA). The test group (n = 68) was further subjected to APA using experimental zinc-containing BG (Zn4) and then mineralized in SBF for 14 d (Zn4-CaP). Surface roughness, contact angle, and surface free energy (SFE) were calculated on test and control surfaces. In addition, the topography and chemistry of substrate surfaces were also characterized. Osteoblastic cell viability and focal adhesion were also evaluated and compared to glass slides as an additional control. The antibacterial effect of Zn4-CaP was also assessed against S. mutans. After immersion in SBF, a mineralized zinc-containing Ca-P coating was formed on the SA substrates. The Zn4-CaP coating resulted in a significantly lower Ra surface roughness value (2.565 μm; p < 0.001), higher wettability (13.35°; p < 0.001), and higher total SFE (71.13; p < 0.001) compared to 3.695 μm, 77.19° and 40.43 for the NC-SA, respectively. APA using Zn4 can produce a zinc-containing calcium phosphate coating that demonstrates osteoblast cell viability and focal adhesion comparable to that on NC-SA or glass slides. Nevertheless, the coating had no antibacterial effect against S. mutans.
Collapse
Affiliation(s)
- Faleh Abushahba
- Department of Biomaterials Science and Turku Clinical Biomaterial Center—TCBC, Institute of Dentistry, University of Turku, 20520 Turku, Finland;
- Department of Prosthetic Dentistry and Stomatognathic Physiology, Institute of Dentistry, University of Turku, 20520 Turku, Finland;
- Department of Restorative Dentistry and Periodontology, Faculty of Dentistry, Libyan International Medical University (LIMU), Benghazi 339P+62Q, Libya
| | - Elina Kylmäoja
- Department of Anatomy and Cell Biology, Research Unit of Translational Medicine, Medical Research Center, University of Oulu, 90014 Oulu, Finland; (E.K.); (J.T.)
| | - Nagat Areid
- Department of Prosthetic Dentistry and Stomatognathic Physiology, Institute of Dentistry, University of Turku, 20520 Turku, Finland;
| | - Leena Hupa
- Johan Gadolin Process Chemistry Center, Åbo Akademi University, Henriksgatan 2, 20500 Turku, Finland;
| | - Pekka K. Vallittu
- Department of Biomaterials Science and Turku Clinical Biomaterial Center—TCBC, Institute of Dentistry, University of Turku, 20520 Turku, Finland;
- The Wellbeing Service County Southwest Finland, 20521 Turku, Finland
| | - Juha Tuukkanen
- Department of Anatomy and Cell Biology, Research Unit of Translational Medicine, Medical Research Center, University of Oulu, 90014 Oulu, Finland; (E.K.); (J.T.)
| | - Timo Närhi
- Department of Biomaterials Science and Turku Clinical Biomaterial Center—TCBC, Institute of Dentistry, University of Turku, 20520 Turku, Finland;
- Department of Prosthetic Dentistry and Stomatognathic Physiology, Institute of Dentistry, University of Turku, 20520 Turku, Finland;
- The Wellbeing Service County Southwest Finland, 20521 Turku, Finland
| |
Collapse
|