1
|
Simon L, Livi S, Barra GM, Merlini C. Electrospun Poly(vinylidene fluoride) Nanocomposites with Ionic Liquid Functionalized Graphene Nanoplatelets by a Noncovalent Method for Piezoresistive Pressure Sensor Applications. ACS OMEGA 2024; 9:46104-46116. [PMID: 39583696 PMCID: PMC11579777 DOI: 10.1021/acsomega.4c06452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/10/2024] [Accepted: 10/23/2024] [Indexed: 11/26/2024]
Abstract
Piezoresistive pressure sensors have been prepared by the electrospinning of poly(vinylidene fluoride) (PVDF) containing graphene nanoplatelets (GNP) functionalized using 1-butyl-3-methylimidazolium trifluoromethanesulfonate (BMIM(OTf)) ionic liquid (IL). Optical microscopy demonstrated that the functionalized GNP powder presented particles with a smaller lateral size. The obtained mats were characterized by scanning electron microscopy, Fourier transform infrared spectroscopy, energy-dispersive X-ray spectroscopy, X-ray diffraction, differential scanning calorimetry, electrical resistivity using two and four probes, and electromechanical testing with up to 32 load-unload cycles. Functionalization with BMIM(OTf) resulted in a higher PVDF electroactive phase. Electrospun mats obtained without the IL displayed a signal comparable to noise, while mats obtained with the BMIM(OTf) functionalized GNP displayed a clear signal, indicating that the IL helped with the dispersion of GNP on the PVDF matrix. Electrospun mats containing 1.0%m functionalized GNP presented the best performance among the evaluated samples, presenting low hysteresis and a lower distribution of the read values especially in the working range of 0 to 250 kPa. The piezoresistive behavior of the sample was tested under 32 load-unload cycles, remaining stable. Higher ranges of axial load resulted in the rupture of the fibers and swift degradation of the piezoresistive signal under a high number of cycles. A simple load cell was assembled to demonstrate the capacity of the membranes to act as piezoresistive compressive sensors capable of detecting the pressing of a human finger and differentiating between applied weights.
Collapse
Affiliation(s)
- Lucas Simon
- Mechanical
Engineering Department, Federal University
of Santa Catarina (UFSC), Florianópolis, SC 88040-900, Brazil
| | - Sébastien Livi
- Université
Claude Bernard Lyon 1, INSA Lyon, Université Jean Monnet, CNRS
UMR 5223, Ingénierie des Matériaux Polymères, F-69621, Villeurbanne
Cédex, France
| | - Guilherme M.O. Barra
- Mechanical
Engineering Department, Federal University
of Santa Catarina (UFSC), Florianópolis, SC 88040-900, Brazil
| | - Claudia Merlini
- Materials
Engineering Special Coordination, Universidade
Federal de Santa Catarina (UFSC), Blumenau, SC 89036-256,Brazil
| |
Collapse
|
2
|
Ma L, Song H, Gong X, Chen L, Gong J, Chen Z, Shen J, Gu M. A High-Methanol-Permeation Resistivity Polyamide-Based Proton Exchange Membrane Fabricated via a Hyperbranching Design. Polymers (Basel) 2024; 16:2480. [PMID: 39274112 PMCID: PMC11397882 DOI: 10.3390/polym16172480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/25/2024] [Accepted: 08/27/2024] [Indexed: 09/16/2024] Open
Abstract
Four non-fluorinated sulfonimide polyamides (s-PAs) were successfully synthesized and a series of membranes were prepared by blending s-PA with polyvinylidene fluoride (PVDF) to achieve high-methanol-permeation resistivity for direct methanol fuel cell (DMFC) applications. Four membranes were fabricated by blending 50 wt% PVDF with s-PA, named BPD-101, BPD-102, BPD-111 and BPD-211, respectively. The s-PA/PVDF membranes exhibit high methanol resistivity, especially for the BPD-111 membrane with methanol resistivity of 8.13 × 10-7 cm2/s, which is one order of magnitude smaller than that of the Nafion 117 membrane. The tensile strength of the BPD-111 membrane is 15 MPa, comparable to that of the Nafion 117 membrane. Moreover, the four membranes also show good thermal stability up to 230 °C. The BPD-x membrane exhibits good oxidative stability, and the measured residual weights of the BPD-111 membrane are 97% and 93% after treating in Fenton's reagent (80 °C) for 1 h and 24 h, respectively. By considering the mechanical, thermal and dimensional properties, the polyamide proton-exchange membrane exhibits promising application potential for direct methanol fuel cells.
Collapse
Affiliation(s)
- Liying Ma
- School of Chemistry and Materials Science, Guizhou Normal University, 116 Baoshan North Road, Guiyang 550001, China
| | - Hongxia Song
- School of Chemistry and Materials Science, Guizhou Normal University, 116 Baoshan North Road, Guiyang 550001, China
| | - Xiaofei Gong
- Kaili No. 8 Middle School, 70 Qingjiang Road, Kaili 556000, China
| | - Lu Chen
- School of Chemistry and Materials Science, Guizhou Normal University, 116 Baoshan North Road, Guiyang 550001, China
| | - Jiangning Gong
- School of Chemistry and Materials Science, Guizhou Normal University, 116 Baoshan North Road, Guiyang 550001, China
| | - Zhijiao Chen
- School of Chemistry and Materials Science, Guizhou Normal University, 116 Baoshan North Road, Guiyang 550001, China
| | - Jing Shen
- School of Chemistry and Materials Science, Guizhou Normal University, 116 Baoshan North Road, Guiyang 550001, China
| | - Manqi Gu
- School of Chemistry and Materials Science, Guizhou Normal University, 116 Baoshan North Road, Guiyang 550001, China
| |
Collapse
|
3
|
Lee JE, Kim SU, Kim JY. Fabrication of a Capacitive 3D Spacer Fabric Pressure Sensor with a Dielectric Constant Change for High Sensitivity. SENSORS (BASEL, SWITZERLAND) 2024; 24:3395. [PMID: 38894186 PMCID: PMC11174641 DOI: 10.3390/s24113395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/20/2024] [Accepted: 05/22/2024] [Indexed: 06/21/2024]
Abstract
Smart wearable sensors are increasingly integrated into everyday life, interfacing with the human body to enable real-time monitoring of biological signals. This study focuses on creating high-sensitivity capacitive-type sensors by impregnating polyester-based 3D spacer fabric with a Carbon Nanotube (CNT) dispersion. The unique properties of conductive particles lead to nonlinear variations in the dielectric constant when pressure is applied, consequently affecting the gauge factor. The results reveal that while the fabric without CNT particles had a gauge factor of 1.967, the inclusion of 0.04 wt% CNT increased it significantly to 5.210. As sensor sensitivity requirements vary according to the application, identifying the necessary CNT wt% is crucial. Artificial intelligence, particularly the Multilayer Perception (MLP) model, enables nonlinear regression analysis for this purpose. The MLP model created and validated in this research showed a high correlation coefficient of 0.99564 between the model predictions and actual target values, indicating its effectiveness and reliability.
Collapse
Affiliation(s)
- Ji-Eun Lee
- Department of Materials Science and Engineering, Soongsil University, Seoul 06978, Republic of Korea;
| | - Sang-Un Kim
- Department of Smart Wearable Engineering, Soongsil University, Seoul 06978, Republic of Korea;
| | - Joo-Yong Kim
- Department of Materials Science and Engineering, Soongsil University, Seoul 06978, Republic of Korea;
| |
Collapse
|
4
|
Wang R, Sun Y, Hou Y, Tian Y, Zhang Y, Liu F, Han J. Effect of ionic liquid modified carbon nanotubes on the properties of nitrile butadiene rubber and nitrile butadiene latex nanocomposites. J Appl Polym Sci 2022. [DOI: 10.1002/app.53020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Rui Wang
- School of Chemical Engineering Qingdao University of Science and Technology Qingdao China
| | - Yiwen Sun
- School of Chemical Engineering Qingdao University of Science and Technology Qingdao China
| | - Yanbing Hou
- School of Chemical Engineering Qingdao University of Science and Technology Qingdao China
| | - Yong Tian
- School of Chemical Engineering Qingdao University of Science and Technology Qingdao China
| | - Yandan Zhang
- School of Chemical Engineering Qingdao University of Science and Technology Qingdao China
| | - Fusheng Liu
- School of Chemical Engineering Qingdao University of Science and Technology Qingdao China
| | - Jingjie Han
- School of Chemical Engineering Qingdao University of Science and Technology Qingdao China
| |
Collapse
|
5
|
Tunable α-γ-phase of polyvinylidene fluoride to enhance piezoelectric coefficient. JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-022-03087-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
6
|
Nofal MM, Aziz SB, Ghareeb HO, Hadi JM, Dannoun EMA, Al-Saeedi SI. Impedance and Dielectric Properties of PVC:NH 4I Solid Polymer Electrolytes (SPEs): Steps toward the Fabrication of SPEs with High Resistivity. MATERIALS (BASEL, SWITZERLAND) 2022; 15:2143. [PMID: 35329595 PMCID: PMC8950392 DOI: 10.3390/ma15062143] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/02/2022] [Accepted: 03/04/2022] [Indexed: 02/04/2023]
Abstract
In the present article, a simple technique is provided for the fabrication of a polymer electrolyte system composed of polyvinyl chloride (PVC) and doped with varying content of ammonium iodide (NH4I) salt using solution-casting methodology. The influences of NH4I on the structural, electrochemical, and electrical properties of PVC have been investigated using X-ray diffraction, electrochemical impedance spectroscopy (EIS), and dielectric properties. The X-ray study reveals the amorphous nature of the polymer-salt complex. The EIS measurement revealed an ionic conductivity of 5.57 × 10-10 S/cm for the electrolyte containing 10 wt.% of salt. Our hypothesis is provided, which demonstrated the likelihood of designing highly resistive solid electrolytes using the concept of a polymer electrolyte. Here, the results showed that the resistivity of the studied samples is not dramatically decreased with increasing NH4I. Bode plots distinguish the decrease in resistance or impedance with increasing salt contents. Dielectric measurements revealed a decrease in the dielectric constant with the increase of NH4I content in the PVC polymer. The relaxation time and dielectric properties of the electrolytes confirmed their non-Debye type behavior. This pattern has been validated by the existence of an incomplete semicircle in the Argand plot. Insulation materials with low εr have found widespread applications in electronic devices due to the reduction in delay, power dissipation, and crosstalk. In addition, an investigation of real and imaginary parts of electric modulus leads to the minimized electrode polarization being reached.
Collapse
Affiliation(s)
- Muaffaq M. Nofal
- Department of Mathematics and Science, Prince Sultan University, P.O. Box 66833, Riyadh 11586, Saudi Arabia;
| | - Shujahadeen B. Aziz
- Hameed Majid Advanced Polymeric Materials Research Lab., Physics Department, College of Science, University of Sulaimani, Qlyasan Street, Sulaimani 46001, Kurdistan Regional Government, Iraq
- Department of Civil Engineering, College of Engineering, Komar University of Science and Technology, Sulaimani 46001, Kurdistan Regional Government, Iraq
| | - Hewa O. Ghareeb
- Department of Chemistry, College of Science, University of Sulaimani, Qlyasan Street, Sulaimani 46001, Kurdistan Regional Government, Iraq;
| | - Jihad M. Hadi
- Department of Medical Laboratory of Science, College of Health Sciences, University of Human Development, Sulaimani 46001, Kurdistan Regional Government, Iraq;
| | - Elham M. A. Dannoun
- Department of Mathematics and Science, Woman Campus, Prince Sultan University, P.O. Box 66833, Riyadh 11586, Saudi Arabia;
| | - Sameerah I. Al-Saeedi
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, P.O.Box 84428, Riyadh 11671, Saudi Arabia;
| |
Collapse
|
7
|
A Succinct Review on the PVDF/Imidazolium-Based Ionic Liquid Blends and Composites: Preparations, Properties, and Applications. Processes (Basel) 2021. [DOI: 10.3390/pr9050761] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Poly(vinylidene fluoride) (PVDF) is a versatile thermoplastic fluoropolymer with intriguing characteristics, which is receiving considerable attention from researchers in many areas. Recently, PVDF and its copolymer, such as poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) have been blended with ionic liquids to produce blend and composite materials for target applications. In this succinct review, two types of ionic liquids that are utilized for the preparation of PVDF and PVDF-HFP blends and composites, namely, hydrophilic and hydrophobic imidazolium-based ionic liquids, are reviewed. In addition, the effect of the ionic liquids on the physicochemical properties of the PVDF and PVDF-HFP blends and composites, is described as well. On top of that, a multitude of applications of the blends and composites are also succinctly reviewed. This review may give inspirations to the polymer blend and composite researchers in diversifying the applications of thermoplastic fluoropolymers through the utilization of ionic liquids.
Collapse
|
8
|
Ahmad A, Mahmood H, Mansor N, Iqbal T, Moniruzzaman M. Ionic liquid assisted polyetheretherketone‐multiwalled carbon nanotubes nanocomposites: An environmentally friendly approach. J Appl Polym Sci 2021. [DOI: 10.1002/app.50159] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Aqeel Ahmad
- Department of Chemical Engineering Universiti Teknologi PETRONAS Bandar Seri Iskandar, Perak Darul Ridzuan Malaysia
- Center of Research in Ionic Liquids (CORIL) Universiti Teknologi PETRONAS Bandar Seri Iskandar, Perak Darul Ridzuan Malaysia
| | - Hamayoun Mahmood
- Department of Chemical, Polymer and Composite Materials Engineering University of Engineering and Technology (UET) Lahore Pakistan
| | - Nurlidia Mansor
- Department of Chemical Engineering Universiti Teknologi PETRONAS Bandar Seri Iskandar, Perak Darul Ridzuan Malaysia
| | - Tanveer Iqbal
- Department of Chemical, Polymer and Composite Materials Engineering University of Engineering and Technology (UET) Lahore Pakistan
| | - Muhammad Moniruzzaman
- Department of Chemical Engineering Universiti Teknologi PETRONAS Bandar Seri Iskandar, Perak Darul Ridzuan Malaysia
- Center of Research in Ionic Liquids (CORIL) Universiti Teknologi PETRONAS Bandar Seri Iskandar, Perak Darul Ridzuan Malaysia
| |
Collapse
|
9
|
Xu Q, Zhang W. Improvement of the electromechanical properties of thermoplastic polyurethane composite by ionic liquid modified multiwall carbon nanotubes. E-POLYMERS 2021. [DOI: 10.1515/epoly-2021-0018] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Carbon nanotubes (CNTs) were non-covalently modified by two categories of ionic liquids (ILs), including 1-vinyl-3-ethylimidazole bromide (VEIMBr) and 1-vinyl-3-hexylimidazole bromide (VHIMBr) in the ratio of 1:1 and 1:4, respectively. The surface interaction between CNTs and ILs was well-characterized by FTIR, Raman spectra, XPS, etc. Thermoplastic polyurethane (TPU) containing different amounts of CNTs/ILs was fabricated by melting blending method. TPU-CNTs/ILs composites exhibited simultaneously enhanced electromechanical properties with improved dielectric constant and lowered elastic modulus. The electromechanical sensitivity of sample TPU-3CNT/12VHIMBr increased by approximately 45 times in comparison with that of pure TPU at 200 Hz. Besides, improved dispersion of CNTs/ILs in the TPU matrix was also exhibited.
Collapse
Affiliation(s)
- Qianwei Xu
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University , No. 4800 Caoan Road , Shanghai , 201804 , China
| | - Weijia Zhang
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University , No. 4800 Caoan Road , Shanghai , 201804 , China
| |
Collapse
|
10
|
Nasrallah DA, El‐Metwally EG, Ismail AM. Structural, thermal, and dielectric properties of porous
PVDF
/
Li
4
Ti
5
O
12
nanocomposite membranes for high‐power lithium‐polymer batteries. POLYM ADVAN TECHNOL 2020. [DOI: 10.1002/pat.5171] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Doaa A. Nasrallah
- Physics Department, Faculty of Science Zagazig University Zagazig Egypt
| | | | - Ahmed M. Ismail
- Physics Department, Faculty of Education Ain Shams University Cairo Egypt
| |
Collapse
|
11
|
High-k Polymer Nanocomposite Materials for Technological Applications. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10124249] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Understanding the properties of small molecules or monomers is decidedly important. The efforts of synthetic chemists and material engineers must be appreciated because of their knowledge of how utilize the properties of synthetic fragments in constructing long-chain macromolecules. Scientists active in this area of macromolecular science have shared their knowledge of catalysts, monomers and a variety of designed nanoparticles in synthetic techniques that create all sorts of nanocomposite polymer stuffs. Such materials are now an integral part of the contemporary world. Polymer nanocomposites with high dielectric constant (high-k) properties are widely applicable in the technological sectors including gate dielectrics, actuators, infrared detectors, tunable capacitors, electro optic devices, organic field-effect transistors (OFETs), and sensors. In this short colloquy, we provided an overview of a few remarkable high-k polymer nanocomposites of material science interest from recent decades.
Collapse
|
12
|
Ruiz VM, Sirera R, Martínez JM, González-Benito J. Solution blow spun graded dielectrics based on poly(vinylidene fluoride)/multi-walled carbon nanotubes nanocomposites. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2019.109397] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
13
|
Jiang Y, Zhang Z, Zhou Z, Yang H, Zhang Q. Enhanced Dielectric Performance of P(VDF-HFP) Composites with Satellite-Core-Structured Fe 2O 3@BaTiO 3 Nanofillers. Polymers (Basel) 2019; 11:polym11101541. [PMID: 31546597 PMCID: PMC6835555 DOI: 10.3390/polym11101541] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 08/26/2019] [Accepted: 09/19/2019] [Indexed: 02/06/2023] Open
Abstract
Polymer dielectric materials are extensively used in electronic devices. To enhance the dielectric constant, ceramic fillers with high dielectric constant have been widely introduced into polymer matrices. However, to obtain high permittivity, a large added amount (>50 vol%) is usually needed. With the aim of improving dielectric properties with low filler content, satellite–core-structured Fe2O3@BaTiO3 (Fe2O3@BT) nanoparticles were fabricated as fillers for a poly(vinylidene fluoride-co-hexafluoropropylene) (P(VDF-HFP)) matrix. The interfacial polarization effect is increased by Fe2O3 nanoparticles, and thus, composite permittivity is enhanced. Besides, the satellite–core structure prevents Fe2O3 particles from directly contacting each other, so that the dielectric loss remains relatively low. Typically, with 20 vol% Fe2O3@BT nanoparticle fillers, the permittivity of the composite is 31.7 (1 kHz), nearly 1.8 and 3.0 times that of 20 vol% BT composites and pure polymers, respectively. Nanocomposites also achieve high breakdown strength (>150 KV/mm) and low loss tangent (~0.05). Moreover, the composites exhibited excellent flexibility and maintained good dielectric properties after bending. These results demonstrate that composite films possess broad application prospects in flexible electronics.
Collapse
Affiliation(s)
- Yongchang Jiang
- School of Materials Science and Engineering, State Key Lab Silicon Mat, Zhejiang University, Hangzhou 310027, China.
| | - Zhao Zhang
- School of Materials Science and Engineering, State Key Lab Silicon Mat, Zhejiang University, Hangzhou 310027, China.
| | - Zheng Zhou
- School of Materials Science and Engineering, State Key Lab Silicon Mat, Zhejiang University, Hangzhou 310027, China.
| | - Hui Yang
- School of Materials Science and Engineering, State Key Lab Silicon Mat, Zhejiang University, Hangzhou 310027, China.
| | - Qilong Zhang
- School of Materials Science and Engineering, State Key Lab Silicon Mat, Zhejiang University, Hangzhou 310027, China.
| |
Collapse
|
14
|
Aziz SB, Kadir MFZ, Hamsan MH, Woo HJ, Brza MA. Development of Polymer Blends Based on PVA:POZ with Low Dielectric Constant for Microelectronic Applications. Sci Rep 2019; 9:13163. [PMID: 31511610 PMCID: PMC6739351 DOI: 10.1038/s41598-019-49715-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 08/30/2019] [Indexed: 11/09/2022] Open
Abstract
There is a huge request for the development of low dielectric constant polymeric materials for microelectronic applications. In thisstudy, polymer blends based on PVA:POZ with low dielectric constant has been fabricated. The results of XRD indicate that crystalline domain is enhanced at higher POZ concentration. Brilliant phases between spherulitesare attributed to the enhanced crystalline domains at high POZ content. White portions are appeared in SEM images on the surface of PVA:POZ blends. From EDX analysis, these leaked portions are referred to the POZ material. The number and sizes of the white portions were also found to increase with increasing the POZ content. Using electrical equivalent circuits (EEC), electrical impedance plots (Z″ vs Z') are fitted for all the samples. The results of impedance study illustrated that the resistivity of the samples increases with increasing POZ concentration. From dielectric measurements, dielectric constant was found to decrease with the introduction of more POZ into the PVA polymer. It is found to be about 1.68 at 40 wt.% POZ. Insulating materials with low dielectric constant (ε' < 2) are found to be important in the electronics manufacturing, owing to decrease in crosstalk, resistance-capacitance time delay and power dissipation in high-density circuits. Therefore, further investigations concerning the dielectric constant and impedance for all the samples are also carried out. The real and imaginary parts of electric modulus are studied, where minimizing of electrode polarization can be achieved.
Collapse
Affiliation(s)
- Shujahadeen B Aziz
- Prof. Hameeds Advanced Polymeric Materials Research Lab., Department of Physics, College of Science, University of Sulaimani, Kurdistan Regional Government, Qlyasan Street, Sulaimani, Iraq.
- Komar Research Center (KRC), Komar University of Science and Technology, Kurdistan Regional Government, Sulaimani, 46001, Iraq.
| | - M F Z Kadir
- Centre for Foundation Studies in Science, University of Malaya, Kuala Lumpur, Malaysia
| | - M H Hamsan
- Centre for Foundation Studies in Science, University of Malaya, Kuala Lumpur, Malaysia
| | - H J Woo
- Centre for Ionics, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - M A Brza
- Prof. Hameeds Advanced Polymeric Materials Research Lab., Department of Physics, College of Science, University of Sulaimani, Kurdistan Regional Government, Qlyasan Street, Sulaimani, Iraq
- Department of Manufacturing and Materials Engineering, Faculty of Engineering, International Islamic University of Malaysia, Kuala Lumpur, Gombak, Malaysia
| |
Collapse
|
15
|
Ma L, Xu G, Li S, Ma J, Li J, Cai W. Design and Optimization of a Hyper-Branched Polyimide Proton Exchange Membrane with Ultra-High Methanol-Permeation Resistivity for Direct Methanol Fuel Cells Applications. Polymers (Basel) 2018; 10:E1175. [PMID: 30961100 PMCID: PMC6403707 DOI: 10.3390/polym10101175] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 10/15/2018] [Accepted: 10/18/2018] [Indexed: 11/16/2022] Open
Abstract
A hyper-branched sulfonated polyimide (s-PI) was synthesized successfully and composited with polyvinylidene fluoride (PVDF) to achieve ultra-high methanol-permeation resistive for direct methanol fuel cell application. The optimized s-PI-PVDF composite membrane exhibited methanol resistivity low to 1.80 × 10-8 cm²/s, two orders of magnitude lower than the value of the commercial Nafion 117 membrane (60 × 10-7 cm²/s). At the same time, the tensile strength of the composite membrane is 22 MPa, which is comparable to the value of the Nafion 117 membrane. Therefore, the composite membrane is promising for application in direct methanol fuel cell.
Collapse
Affiliation(s)
- Liying Ma
- School of Chemistry and Materials Science, Guizhou Normal University, 116 Baoshan North Road, Guiyang 550001, China.
| | - Guoxiao Xu
- Sustainable Energy Laboratory, Faculty of Materials Science and Chemistry, China University of Geosciences Wuhan, 388 Lumo RD, Wuhan 430074, China.
| | - Shuai Li
- Sustainable Energy Laboratory, Faculty of Materials Science and Chemistry, China University of Geosciences Wuhan, 388 Lumo RD, Wuhan 430074, China.
| | - Jiao Ma
- School of Chemistry and Materials Science, Guizhou Normal University, 116 Baoshan North Road, Guiyang 550001, China.
| | - Jing Li
- Sustainable Energy Laboratory, Faculty of Materials Science and Chemistry, China University of Geosciences Wuhan, 388 Lumo RD, Wuhan 430074, China.
| | - Weiwei Cai
- Sustainable Energy Laboratory, Faculty of Materials Science and Chemistry, China University of Geosciences Wuhan, 388 Lumo RD, Wuhan 430074, China.
| |
Collapse
|
16
|
|