1
|
Rashid MS, Wang Y, Yin Y, Yousaf B, Jiang S, Mirza AF, Chen B, Li X, Liu Z. Quantitative Soil Characterization for Biochar-Cd Adsorption: Machine Learning Prediction Models for Cd Transformation and Immobilization. TOXICS 2024; 12:535. [PMID: 39195637 PMCID: PMC11359006 DOI: 10.3390/toxics12080535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/17/2024] [Accepted: 07/22/2024] [Indexed: 08/29/2024]
Abstract
Soil pollution with cadmium (Cd) poses serious health and environmental consequences. The study investigated the incubation of several soil samples and conducted quantitative soil characterization to assess the influence of biochar (BC) on Cd adsorption. The aim was to develop predictive models for Cd concentrations using statistical and modeling approaches dependent on soil characteristics. The potential risk linked to the transformation and immobilization of Cd adsorption by BC in the soil could be conservatively assessed by pH, clay, cation exchange capacity, organic carbon, and electrical conductivity. In this study, Long Short-Term Memory (LSTM), Bidirectional Gated Recurrent Unit (BiGRU), and 5-layer CNN Convolutional Neural Networks (CNNs) were applied for risk assessments to establish a framework for evaluating Cd risk in BC amended soils to predict Cd transformation. In the case of control soils (CK), the BiGRU model showed commendable performance, with an R2 value of 0.85, indicating an approximate 85.37% variance in the actual Cd. The LSTM model, which incorporates sequence data, produced less accurate results (R2=0.84), while the 5-layer CNN model had an R2 value of 0.91, indicating that the CNN model could account for over 91% of the variation in actual Cd levels. In the case of BC-applied soils, the BiGRU model demonstrated a strong correlation between predicted and actual values with R2 (0.93), indicating that the model explained 93.21% of the variance in Cd concentrations. Similarly, the LSTM model showed a notable increase in performance with BC-treated soil data. The R2 value for this model stands at a robust R2 (0.94), reflecting its enhanced ability to predict Cd levels with BC incorporation. Outperforming both recurrent models, the 5-layer CNN model attained the highest precision with an R2 value of 0.95, suggesting that 95.58% of the variance in the actual Cd data can be explained by the CNN model's predictions in BC-amended soils. Consequently, this study suggests developing ecological soil remediation strategies that can effectively manage heavy metal pollution in soils for environmental sustainability.
Collapse
Affiliation(s)
- Muhammad Saqib Rashid
- Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture, Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation, Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (M.S.R.); (Y.W.); (Y.Y.); (S.J.)
| | - Yanhong Wang
- Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture, Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation, Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (M.S.R.); (Y.W.); (Y.Y.); (S.J.)
| | - Yilong Yin
- Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture, Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation, Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (M.S.R.); (Y.W.); (Y.Y.); (S.J.)
| | - Balal Yousaf
- Department of Technologies and Installations for Waste Management, Faculty of Energy and Environmental Engineering, Silesian University of Technology, 44-100 Gliwice, Poland;
| | - Shaojun Jiang
- Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture, Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation, Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (M.S.R.); (Y.W.); (Y.Y.); (S.J.)
| | - Adeel Feroz Mirza
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China;
| | - Bing Chen
- Key Laboratory of Animal Nutrition and Feed Science in South China, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Collaborative Innovation Center of Aquatic Sciences, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China;
| | - Xiang Li
- Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture, Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation, Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (M.S.R.); (Y.W.); (Y.Y.); (S.J.)
| | - Zhongzhen Liu
- Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture, Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation, Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (M.S.R.); (Y.W.); (Y.Y.); (S.J.)
| |
Collapse
|
2
|
Hu Y, Wang J, Yang Y, Li S, Wu Q, Nepovimova E, Zhang X, Kuca K. Revolutionizing soil heavy metal remediation: Cutting-edge innovations in plant disposal technology. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 918:170577. [PMID: 38311074 DOI: 10.1016/j.scitotenv.2024.170577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 01/08/2024] [Accepted: 01/28/2024] [Indexed: 02/06/2024]
Abstract
Soil contamination with heavy metals has emerged as a global environmental threat, compromising agricultural productivity, ecosystem integrity, and human health. Conventional remediation techniques often fall short due to high costs, operational complexities, and environmental drawbacks. Plant-based disposal technologies, including biochar, phytometallurgy, and phrolysis, have emerged as promising solutions in this regard. Grounded in a novel experimental framework, biochar is studied for its dual role as soil amendment and metal adsorbent, while phytometallurgy is explored for its potential in resource recovery and economic benefits derived from harvested metal-rich plant biomass. Pyrolysis, in turn, is assessed for transforming contaminated biomass into value-added products, thereby minimizing waste. These plant disposal technologies create a circular model of remediation and resource utilization that holds the potential for application in large-scale soil recovery projects, development of environmentally friendly agro-industries, and advancement in sustainable waste management practices. This review mainly discussed cutting-edge plant disposal technologies-biochar application, phytometallurgy, and pyrolysis-as revolutionary approaches to soil heavy metal remediation. The efficacy, cost-effectiveness, and environmental impact of these innovative technologies are especially evaluated in comparison with traditional methods. The success of these applications could signal a paradigm shift in how we approach both environmental remediation and resource recovery, with profound implications for sustainable development and circular economy strategies.
Collapse
Affiliation(s)
- Yucheng Hu
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China
| | - Junbang Wang
- National Ecosystem Science Data Center, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Yongsheng Yang
- The Key Laboratory of Restoration Ecology in Cold Region of Qinghai Province/Northwest Institute of Plateau Biology, Chinese Academy of Science, Xining 810001, China
| | - Sha Li
- School of Geosciences and Info-Physics, Central South University, Changsha 410083, China
| | - Qinghua Wu
- College Life Science, Yangtze University, Jingzhou 434025, China; Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove 500 03, Czech Republic
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove 500 03, Czech Republic
| | - Xiujuan Zhang
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China.
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove 500 03, Czech Republic.
| |
Collapse
|
3
|
Maqbool Z, Shahbaz Farooq M, Rafiq A, Uzair M, Yousuf M, Ramzan Khan M, Huo S. Unlocking the potential of biochar in the remediation of soils contaminated with heavy metals for sustainable agriculture. FUNCTIONAL PLANT BIOLOGY : FPB 2024; 51:FP23257. [PMID: 38310926 DOI: 10.1071/fp23257] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 12/20/2023] [Indexed: 02/06/2024]
Abstract
Agricultural soils contaminated with heavy metals (HMs) impose a threat to the environmental and to human health. Amendment with biochar could be an eco-friendly and cost-effective option to decrease HMs in contaminated soil. This paper reviews the application of biochar as a soil amendment to immobilise HMs in contaminated soil. We discuss the technologies of its preparation, their specific properties, and effect on the bioavailability of HMs. Biochar stabilises HMs in contaminated soil, enhance the overall quality of the contaminated soil, and significantly reduce HM uptake by plants, making it an option in soil remediation for HM contamination. Biochar enhances the physical (e.g. bulk density, soil structure, water holding capacity), chemical (e.g. cation exchange capacity, pH, nutrient availability, ion exchange, complexes), and biological properties (e.g. microbial abundance, enzymatic activities) of contaminated soil. Biochar also enhances soil fertility, improves plant growth, and reduces the plant availability of HMs. Various field studies have shown that biochar application reduces the bioavailability of HMs from contaminated soil while increasing crop yield. The review highlights the positive effects of biochar by reducing HM bioavailability in contaminated soils. Future work is recommended to ensure that biochars offer a safe and sustainable solution to remediate soils contaminated with HMs.
Collapse
Affiliation(s)
- Zubaira Maqbool
- School of Food Science and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China; and Department of Soil Science and Environmental Science, Arid Agriculture University, Rawalpindi, Pakistan
| | - Muhammad Shahbaz Farooq
- School of Food Science and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China; and Rice Research Program, Crop Sciences Institute (CSI), National Agricultural Research Centre (NARC), Park Road, Islamabad 44000, Pakistan
| | - Anum Rafiq
- Institute Soil and Water Conservation, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Muhammad Uzair
- National Institute of Genomics and Advanced Biotechnology (NIGAB), National Agriculture Research Center (NARC), Park Road, Islamabad, Pakistan
| | - Muhammad Yousuf
- Pakistan Agriculture Research Council (PARC), G5, Islamabad, Pakistan
| | - Muhammad Ramzan Khan
- National Institute of Genomics and Advanced Biotechnology (NIGAB), National Agriculture Research Center (NARC), Park Road, Islamabad, Pakistan
| | - Shuhao Huo
- School of Food Science and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| |
Collapse
|
4
|
Qin Y, Li Z, Sun J, Xu M, Gu M, Wei Y, Lei J. Manganese (II) sulfate affects the formation of iron-manganese oxides in soil and the uptake of cadmium and arsenic by rice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 263:115360. [PMID: 37597287 DOI: 10.1016/j.ecoenv.2023.115360] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/07/2023] [Accepted: 08/10/2023] [Indexed: 08/21/2023]
Abstract
Rice (Oryza sativa L.) consumption represents a major route of human exposure to cadmium (Cd) and arsenic (As), especially in Asia. This study investigated the effects of adding MnSO4 (0, 200, 400, and 800 mg kg-1-1) on the formation of soil Fe/Mn oxides and Cd and As uptake in rice. The application of MnSO4 reduced soil pH, increased Eh, increased the contents of Fe/Mn oxides in the soil, and decreased the total Fe and Mn2+ contents in the porewater. It also led to lower contents of available Cd and As, higher levels of Cd and As bound to Fe/Mn oxides, and higher abundances of Thiobacillus and Syntrophobacter. Furthermore, Mn application increased the Fe and Mn contents in the root Fe/Mn plaque and decreased the grain Cd and As contents. Therefore, Mn application may modify the microbial community and porewater composition in soil, resulting in higher levels of Fe/Mn oxides in soil and Fe/Mn plaque at the root surface and in a lower accumulation of Cd and As in rice grains. Thus, Mn application can be a promising strategy for Cd and As stabilization in soils.
Collapse
Affiliation(s)
- Yan Qin
- State Key Laboratory for Conservation and Utilization of Subtropical Agri-bioresources, Guangxi Key Laboratory for Agro-Environment and Agro-Products Safety, Guangxi University, Nanning 530004, China
| | - Zhiming Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agri-bioresources, Guangxi Key Laboratory for Agro-Environment and Agro-Products Safety, Guangxi University, Nanning 530004, China
| | - Jing Sun
- Institute of Geochemistry Chinese Academy of Sciences, Guiyang 550081, China
| | - Meihua Xu
- Guangxi Botanical Garden of Medicinal Plants, Nanning 530010, China
| | - Minghua Gu
- State Key Laboratory for Conservation and Utilization of Subtropical Agri-bioresources, Guangxi Key Laboratory for Agro-Environment and Agro-Products Safety, Guangxi University, Nanning 530004, China
| | - Yanyan Wei
- State Key Laboratory for Conservation and Utilization of Subtropical Agri-bioresources, Guangxi Key Laboratory for Agro-Environment and Agro-Products Safety, Guangxi University, Nanning 530004, China.
| | - Jing Lei
- State Key Laboratory for Conservation and Utilization of Subtropical Agri-bioresources, Guangxi Key Laboratory for Agro-Environment and Agro-Products Safety, Guangxi University, Nanning 530004, China.
| |
Collapse
|
5
|
Sun S, Fan X, Feng Y, Wang X, Gao H, Song F. Arbuscular mycorrhizal fungi influence the uptake of cadmium in industrial hemp (Cannabis sativa L.). CHEMOSPHERE 2023; 330:138728. [PMID: 37080470 DOI: 10.1016/j.chemosphere.2023.138728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/14/2023] [Accepted: 04/17/2023] [Indexed: 05/03/2023]
Abstract
Phytoremediation is currently a more environmentally friendly and economical measure for the remediation of cadmium (Cd) contaminated soil. Heavy metal-resistant plant species, Cannabis sativa L. was inoculated with Rhizophagus irregularis to investigate the mechanisms of mycorrhizal in improving the Cd remediation ability of C. sativa. The results showed that after inoculation with R. irregularis, C. sativa root Cd contents increased significantly, and leaf Cd enrichment decreased significantly. At the transcriptional level, R. irregularis down-regulated the expression of the ABC transporter family but up-regulated differentially expressed genes regulating low molecular weight organic acids. The levels of malic acid, citric acid, and lactic acid were significantly increased in the rhizosphere soil, and they were significantly and strongly related to oxidizable Cd concentrations. Then citric acid levels were considerably and positively connected to exchangeable Cd concentrations. Our findings revealed that through regulating the movement of root molecules, arbuscular mycorrhizal fungus enhanced the heavy metal tolerance of C. sativa even more, meanwhile, they changed the Cd chemical forms by altering the composition of low molecular weight organic acids, which in turn affected soil Cd bioavailability.
Collapse
Affiliation(s)
- Simiao Sun
- Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, School of Life Sciences, Heilongjiang University, Harbin, 150080, China; Jiaxiang Industrial Technology Research Institute, Heilongjiang University, Jining, 272400, China; Heilongjiang Fertilizer Engineering Technology Research Center, Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, China; Heilongjiang Academy of Black Soil Conservation & Utilization, Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, China
| | - Xiaoxu Fan
- Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, School of Life Sciences, Heilongjiang University, Harbin, 150080, China
| | - Yuhan Feng
- Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, School of Life Sciences, Heilongjiang University, Harbin, 150080, China; Jiaxiang Industrial Technology Research Institute, Heilongjiang University, Jining, 272400, China
| | - Xiaohui Wang
- Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, School of Life Sciences, Heilongjiang University, Harbin, 150080, China; Jiaxiang Industrial Technology Research Institute, Heilongjiang University, Jining, 272400, China
| | - Hongsheng Gao
- Heilongjiang Fertilizer Engineering Technology Research Center, Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, China; Heilongjiang Academy of Black Soil Conservation & Utilization, Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, China
| | - Fuqiang Song
- Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, School of Life Sciences, Heilongjiang University, Harbin, 150080, China; Jiaxiang Industrial Technology Research Institute, Heilongjiang University, Jining, 272400, China.
| |
Collapse
|
6
|
Jingyi D, Chaoyang L, Yu S, Yunlin Z, Huimin H, Yingzi M, Zhenggang X. Adsorption capacity of Penicillium amphipolaria XK11 for cadmium and antimony. Arch Microbiol 2023; 205:139. [PMID: 36964410 DOI: 10.1007/s00203-023-03484-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/10/2023] [Accepted: 03/12/2023] [Indexed: 03/26/2023]
Abstract
Heavy metal pollution is a global problem that affects both the environment and human health. Microorganisms play an important role in remediation. Most studies on the use of microorganisms for heavy metal remediation focus on single heavy metals. In this study, a strain of Penicillium amphipolaria, XK11 with high resistance to both antimony (Sb III) and cadmium (Cd II) was screened from the mineral slag. The strain also had a high phosphate solubilization capacity. The single-factor adsorption experiment results showed that the initial pH (pH0), adsorption time (T), and initial solution concentration (C0) all affected the adsorption of Sb and Cd by XK11. When the initial pH0 (Cd = 6, Sb = 4) and adsorption time (T = 7 d) were constant, XK11 achieved the maximum removal rate of Cd (45.6%) and Sb (34.6%). These results confirm that XK11 has potential as a biomaterial or remediation of Sb and Cd pollution.
Collapse
Affiliation(s)
- Dai Jingyi
- Hunan Research Center of Engineering Technology for Utilization of Environmental and Resources Plant, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China
| | - Li Chaoyang
- Hunan Research Center of Engineering Technology for Utilization of Environmental and Resources Plant, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China
- Central South Inventory and Planning Institute of National Forestry and Grassland Administration, Changsha, 410014, Hunan, China
| | - Sun Yu
- Changsha Environmental Protection College, Changsha, 410004, Hunan, China
| | - Zhao Yunlin
- Hunan Research Center of Engineering Technology for Utilization of Environmental and Resources Plant, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China
| | - Huang Huimin
- Hunan Research Center of Engineering Technology for Utilization of Environmental and Resources Plant, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China
- College of Forestry, Northwest A & F University, Yangling, 712100, Shaanxi, China
| | - Ma Yingzi
- Hunan Research Center of Engineering Technology for Utilization of Environmental and Resources Plant, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China.
| | - Xu Zhenggang
- Hunan Research Center of Engineering Technology for Utilization of Environmental and Resources Plant, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China.
- Changsha Environmental Protection College, Changsha, 410004, Hunan, China.
- College of Forestry, Northwest A & F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
7
|
Advances in Remediation of Contaminated Sites. Processes (Basel) 2023. [DOI: 10.3390/pr11010157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
With the development of the social economy, the population has increased sharply, and the land area involved in people’s production and life is also gradually increasing [...]
Collapse
|
8
|
Zhang K, Yi Y, Fang Z. Remediation of cadmium or arsenic contaminated water and soil by modified biochar: A review. CHEMOSPHERE 2023; 311:136914. [PMID: 36272628 DOI: 10.1016/j.chemosphere.2022.136914] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 10/10/2022] [Accepted: 10/14/2022] [Indexed: 06/16/2023]
Abstract
Biochar has a high specific surface area with abundant pore structure and functional groups, which has been widely used in remediation of cadmium or arsenic contaminated water and soil. However, the bottleneck problem of low-efficiency of pristine biochar in remediation of contaminated environments always occurs. Nowadays, the modification of biochar is a feasible way to enhance the performance of biochar. Based on the Web of science™, the research progress of modified biochar and its application in remediation of cadmium or arsenic contaminated water and soil have been systematically summarized in this paper. The main modification strategies of biochar were summarized, and the variation of physicochemical properties of biochar before and after modification were illustrated. The efficiency and key mechanisms of modified biochar for remediation of cadmium or arsenic contaminated water and soil were expounded in detail. Finally, some constructive suggestions were given for the future direction and challenges of modified biochar research.
Collapse
Affiliation(s)
- Kai Zhang
- School of Environment, South China Normal University, Guangzhou, 510006, China
| | - Yunqiang Yi
- School of Environment, South China Normal University, Guangzhou, 510006, China; College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou, 510006, China.
| | - Zhanqiang Fang
- School of Environment, South China Normal University, Guangzhou, 510006, China; SCNU Qingyuan Institute of Science and Technology Innovation Co., Ltd., Qingyuan, 511500, China; Normal University Environmental Remediation Technology Co., Ltd, Qingyuan, 511500, China.
| |
Collapse
|