1
|
Wu W, Ye W, He L, Wu M, Li J, Yue Z, Deng R. The restoration of zinc pollution in smelting site soil using nanohydroxyapatite-modified cyanobacterial biochar and its mechanism. ENVIRONMENTAL RESEARCH 2025; 277:121652. [PMID: 40254237 DOI: 10.1016/j.envres.2025.121652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 04/03/2025] [Accepted: 04/18/2025] [Indexed: 04/22/2025]
Abstract
Heavy metal pollution in the soils at smelting sites must be effectively controlled. Recent advancements in stabilization technology have shown promising results in the remediation of heavy metal-contaminated soils. In this study, nanohydroxyapatite (nHAP) and cyanobacterial biochar were co-pyrolyzed to produce nHAP-modified cyanobacterial biochar (nHAP-CBC), which was applied to remediate Zn contamination of soils at smelting sites. The remediation effect of nHAP-CBC on Zn-contaminated soil was evaluated using batch experiments, and the materials were characterized using XRD, SEM, TEM, BET, and FTIR. These analyses confirmed the uniform dispersion of nHAP on the CBC to form a stable nHAP-CBC material. The results demonstrated that nHAP-CBC effectively converted Zn from an unstable state to a stable state, achieving a 65.79 % conversion rate and a 64.24 % stabilization rate during toxicity characteristic leaching after 45 days of treatment. nHAP-CBC was the most effective at fixing Zn and significantly increased the organic matter (OM) content, suggesting that OM played a key role in Zn fixation. In conclusion, the nHAP-CBC developed in this study can effectively stabilize heavy metals in smelting site soils and offers promising potential for expanding cyanobacterial resource utilization.
Collapse
Affiliation(s)
- Wentao Wu
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, Anhui, 230009, China; Anhui Engineering Research Center of Industrial Wastewater Treatment and Resource Recovery, Hefei University of Technology, Hefei, Anhui, 230009, China; Key Laboratory of Nanominerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, Anhui, 230009, China
| | - Wanning Ye
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, Anhui, 230009, China; Anhui Engineering Research Center of Industrial Wastewater Treatment and Resource Recovery, Hefei University of Technology, Hefei, Anhui, 230009, China
| | - Liu He
- Donghua Engineering Technology Co., Ltd, Hefei, Anhui, 230024, China
| | - Mingru Wu
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, Anhui, 230009, China; Anhui Engineering Research Center of Industrial Wastewater Treatment and Resource Recovery, Hefei University of Technology, Hefei, Anhui, 230009, China
| | - Jiaqi Li
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, Anhui, 230009, China; Anhui Engineering Research Center of Industrial Wastewater Treatment and Resource Recovery, Hefei University of Technology, Hefei, Anhui, 230009, China
| | - Zhengbo Yue
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, Anhui, 230009, China; Anhui Engineering Research Center of Industrial Wastewater Treatment and Resource Recovery, Hefei University of Technology, Hefei, Anhui, 230009, China; Key Laboratory of Nanominerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, Anhui, 230009, China
| | - Rui Deng
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, Anhui, 230009, China; Anhui Engineering Research Center of Industrial Wastewater Treatment and Resource Recovery, Hefei University of Technology, Hefei, Anhui, 230009, China; Key Laboratory of Nanominerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, Anhui, 230009, China.
| |
Collapse
|
2
|
Senila M, Cadar O. Composites Based on Natural Zeolites and Green Materials for the Immobilization of Toxic Elements in Contaminated Soils: A Review. MATERIALS (BASEL, SWITZERLAND) 2024; 17:5977. [PMID: 39685413 DOI: 10.3390/ma17235977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 11/29/2024] [Accepted: 12/04/2024] [Indexed: 12/18/2024]
Abstract
Soil contamination by toxic elements is a global problem, and the remediation of contaminated soils requires complex and time-consuming technology. Conventional methods of soil remediation are often inapplicable, so an intensive search is underway for innovative and environmentally friendly ways to clean up ecosystems. The use of amendments that stabilize the toxic elements in soil by reducing their mobility and bioavailability is one of the simplest and most cost-effective ways to remediate soil. This paper provides a summary of studies related to the use of composites based on natural zeolites and green materials for the immobilization of toxic elements in contaminated soils and highlights positive examples of returning land to agricultural use. The published literature on natural zeolites and their composites has shown that combinations of zeolite with biochar, chitosan and other clay minerals have beneficial synergistic effects on toxic element immobilization and soil quality. The effects of zeolite properties, different combinations, application rates, or incubation periods on toxic elements immobilization were tested in laboratory scale or field experiments, whereas the mobility of toxic elements in soil was evaluated by chemical extractions of toxic elements transferred to the plants. This review highlights the excellent potential of natural zeolites to be used as single or combined sustainable green materials to solve environmental pollution problems related to the presence of toxic elements.
Collapse
Affiliation(s)
- Marin Senila
- INCDO-INOE 2000, Research Institute for Analytical Instrumentation, 67 Donath Street, 400293 Cluj-Napoca, Romania
| | - Oana Cadar
- INCDO-INOE 2000, Research Institute for Analytical Instrumentation, 67 Donath Street, 400293 Cluj-Napoca, Romania
| |
Collapse
|
3
|
Ferrel-Luna R, García-Arreola ME, González-Rodríguez LM, Loredo-Cancino M, Escárcega-González CE, De Haro-Del Río DA. Reducing toxic element leaching in mine tailings with natural zeolite clinoptilolite. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:39961-39975. [PMID: 37277584 DOI: 10.1007/s11356-023-27896-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 05/21/2023] [Indexed: 06/07/2023]
Abstract
The use of natural zeolite clinoptilolite to reduce the leaching rate of potentially toxic elements such as Cd, Pb, and Mn in soil from mine tailings was studied. Soil from the surroundings of the mine El Bote in Zacatecas, Mexico, was analyzed, and the zeolite was characterized by X-ray diffraction, Fourier-transform infrared spectroscopy, and nitrogen physisorption. An ammonium-exchange method for the zeolite was employed. Leaching experiments using packed columns with polluted soil and zeolite mixtures were carried out and the effect of the pH of the carrier solutions was studied. Incorporation of zeolite in the soil achieved a beneficial increase in pH, from 5.03 to 6.95. The concentration of Cd and Mn was reduced when zeolite was present in the column and the ammonium-modified zeolite with ammonia also enhanced the concentration reduction of metallic species in leachates in a range of 28 to 68%. The first-order model best fits the experimental data, suggesting that the leaching rate is controlled by concentration difference between the liquid and the soil matrix. These results demonstrate the potential for using natural zeolite clinoptilolite to reduce the leaching rate of potentially toxic elements in soil from mine tailings.
Collapse
Affiliation(s)
- Rosalinda Ferrel-Luna
- Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, 66455, San Nicolás de los Garza, Nuevo León, Mexico
| | | | - Luis Mario González-Rodríguez
- Instituto Politécnico Nacional, Unidad Profesional Interdisciplinaria de Ingeniería Campus Zacatecas, Zacatecas, 98160, México
| | - Margarita Loredo-Cancino
- Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, 66455, San Nicolás de los Garza, Nuevo León, Mexico
| | | | | |
Collapse
|
4
|
Afzal S, Alghanem SMS, Alsudays IM, Malik Z, Abbasi GH, Ali A, Noreen S, Ali M, Irfan M, Rizwan M. Effect of biochar, zeolite and bentonite on physiological and biochemical parameters and lead and zinc uptake by maize (Zea mays L.) plants grown in contaminated soil. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133927. [PMID: 38447373 DOI: 10.1016/j.jhazmat.2024.133927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/11/2024] [Accepted: 02/28/2024] [Indexed: 03/08/2024]
Abstract
Heavy metals (HMs) are common contaminants with major concern of severe environmental and health problems. This study evaluated the effects of organo-mineral amendments (mesquite biochar (MB), zeolite (ZL) and bentonite (BN) alone and in combination) applied at different rates to promote the maize (Zea mays L.) growth by providing essential nutrient and improving the soil physio-chemical properties under zinc (Zn) and lead (Pb) contamination. Result revealed that the incorporation of organo-mineral amendments had significantly alleviated Pb and Zn contamination by maize plants and improved the physiological and biochemical attributes of plants. Combined application of organo-mineral amendments including BMA-1, BMA-2 and BMA-3 performed excellently in terms of reducing Pb and Zn concentrations in both leaves (19-60%, 43-75%, respectively) and roots (24-59%, 42-68%, respectively) of maize. The amendments decreased the extractable, reducible, oxidisable and residual fractions of metals in soil and significantly reduced the soil DTPA-extractable Pb and Zn. BMA-1 substantially improved antioxidant enzyme activities in metal-stressed plants. This study indicated that combined use of organo-mineral amendments can effectively reduce the bioavailability and mobility of Pb and Zn in co-contaminated soils. Combined application of organo-mineral amendments could be viable remediation technology for immobilization and metal uptake by plants in polluted soils.
Collapse
Affiliation(s)
- Sobia Afzal
- Department of Soil Science, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | | | | | - Zaffar Malik
- Department of Soil Science, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan.
| | - Ghulam Hassan Abbasi
- Institute of Agro-Industry and Environment, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Ahmad Ali
- Department of Soil Science, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Sana Noreen
- Department of Soil Science, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Muhammad Ali
- Institute of Agro-Industry and Environment, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Muhammad Irfan
- Institute of Agro-Industry and Environment, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Muhammad Rizwan
- Department of Environmental Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan.
| |
Collapse
|
5
|
Koskinen J, Frimodig J, Samulinen M, Tiihonen A, Siljanto J, Haukka M, Väisänen A. Optimization of Selective Hydrometallurgical Tantalum Recovery from E-Waste Using Zeolites. ACS OMEGA 2024; 9:14947-14954. [PMID: 38585115 PMCID: PMC10993384 DOI: 10.1021/acsomega.3c08907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/20/2024] [Accepted: 03/08/2024] [Indexed: 04/09/2024]
Abstract
To protect future high-tech metal demand, a selective and efficient recovery method for tantalum from a tantalum-rich e-waste component sample was developed. Ultrasound-assisted digestion of the component sample was optimized, and the highest dissolution rate was achieved using a mixture of 8 mol/L H2SO4 and HF at a temperature of 60 °C. The determined amount of tantalum was as high as 11 000 ± 1000 mg/kg, which results in a high potential for recyclable tantalum. The other major elements of this complex e-waste fraction were silicon, iron, aluminum, and tin. Efficient recovery of tantalum from the leachate was performed using the zeolite material ZSM-5. Extremely high selectivity and a recovery rate of over 98% were obtained. In terms of adsorption efficiency, selectivity, and durability of the material, optimal adsorption was obtained using the diluted sample at 0.5 mol/L of H2SO4. The adsorption capacity of ZSM-5 for tantalum was determined to be 10.5 ± 0.6 mg/g, and tantalum was selectively eluted with 1:4 diluted ethanolamine with a yield of 87.2 ± 1.5%.
Collapse
Affiliation(s)
- Jutta Koskinen
- Department
of Chemistry, University of Jyväskylä, P.O. Box 35, Jyväskylä FI-40014, Finland
| | - Janne Frimodig
- Department
of Chemistry, University of Jyväskylä, P.O. Box 35, Jyväskylä FI-40014, Finland
| | | | - Antti Tiihonen
- Department
of Chemistry, University of Jyväskylä, P.O. Box 35, Jyväskylä FI-40014, Finland
| | - Jimi Siljanto
- Department
of Chemistry, University of Jyväskylä, P.O. Box 35, Jyväskylä FI-40014, Finland
| | - Matti Haukka
- Department
of Chemistry, University of Jyväskylä, P.O. Box 35, Jyväskylä FI-40014, Finland
| | - Ari Väisänen
- Department
of Chemistry, University of Jyväskylä, P.O. Box 35, Jyväskylä FI-40014, Finland
| |
Collapse
|
6
|
Cha-Um K, Juansawang A, Tisarum R, Praseartkul P, Sotesaritkul T, Singh HP, Cha-Um S. Bioaccumulation efficacy and physio-morphological adaptations in response to iron and aluminium contamination of Indian camphorweed (Pluchea indica L.) using different growth substrates. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:23623-23637. [PMID: 38418794 DOI: 10.1007/s11356-024-32686-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 02/24/2024] [Indexed: 03/02/2024]
Abstract
The aim of this study was to assess the removal capability of Fe/Al contamination of Indian camphorweed (Pluchea indica; hereafter, P. indica) using different growth substrates (100% sand, gardening soil, vermiculite, and zeolite). In addition, the study aimed at observing the physio-morphological adaptation strategies of P. indica under excess Fe/Al levels in a controlled greenhouse environment. After a 4-week treatment, P. indica plants under excess Fe in the 100% sand substrate exhibited signs of decay and eventually death. In contrast, the growth performances of P. indica under gardening soil substrate remained sustained even when exposed to Fe/Al stress. Under zeolite substrate, Fe in the root tissues was 23.1 and 34.7 mg g-1 DW after 1 and 4 weeks of incubation, respectively. In addition, Al in the root tissues also increased to 1.54 mg g-1 DW after 1 week and 1.59 mg g-1 DW after 4 weeks, when subjected to 20 mM Al treatment. Zeolite was observed to be a promising substrate to regulate the uptake of Fe (3.31 mg plant-1) and Al (0.51 mg plant-1) by the root tissues. The restriction of Fe and Al in the root and a low translocation to the leaf organ was indicated by a low translocation factor (< 1.0). High Fe concentrations in the root and leaf tissues negatively affected root elongation, and the net photosynthetic rate decreased by > 40% compared to positive control. Gas exchange parameters and leaf temperature were found the most sensitive to Fe/Al stress. Moreover, the limited transpiration rate under Fe/Al stress caused an increase of the leaf temperature and crop stress index. The findings suggest that P. indica grown using zeolite substrate may serve as a good model system for constructed wetlands, storing excess Al in the root tissues without any significant growth inhibition.
Collapse
Affiliation(s)
- Kwankhao Cha-Um
- Science Classrooms in University-Affiliated School Project (SCIUS), Thamasart University, Paholyothin Road, Khlong Nueng, Khlong Luang, 12120, Pathum Thani, Thailand
| | - Araya Juansawang
- Science Classrooms in University-Affiliated School Project (SCIUS), Thamasart University, Paholyothin Road, Khlong Nueng, Khlong Luang, 12120, Pathum Thani, Thailand
| | - Rujira Tisarum
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, 113 Thailand Science Park, Paholyothin Road, Khlong Nueng, Khlong Luang, 12120, Pathum Thani, Thailand
| | - Patchara Praseartkul
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, 113 Thailand Science Park, Paholyothin Road, Khlong Nueng, Khlong Luang, 12120, Pathum Thani, Thailand
| | - Thanyaporn Sotesaritkul
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, 113 Thailand Science Park, Paholyothin Road, Khlong Nueng, Khlong Luang, 12120, Pathum Thani, Thailand
| | - Harminder Pal Singh
- Department of Environment Studies, Faculty of Science, Panjab University, Chandigarh, 160014, India
| | - Suriyan Cha-Um
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, 113 Thailand Science Park, Paholyothin Road, Khlong Nueng, Khlong Luang, 12120, Pathum Thani, Thailand.
| |
Collapse
|
7
|
Kordala N, Wyszkowski M. Zeolite Properties, Methods of Synthesis, and Selected Applications. Molecules 2024; 29:1069. [PMID: 38474578 DOI: 10.3390/molecules29051069] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/19/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
Zeolites, a group of minerals with unique properties, have been known for more than 250 years. However, it was the development of methods for hydrothermal synthesis of zeolites and their large-scale industrial applications (oil processing, agriculture, production of detergents and building materials, water treatment processes, etc.) that made them one of the most important materials of the 20th century, with great practical and research significance. The orderly, homogeneous crystalline and porous structure of zeolites, their susceptibility to various modifications, and their useful physicochemical properties contribute to the continuous expansion of their practical applications in both large-volume processes (ion exchange, adsorption, separation of mixture components, catalysis) and specialized ones (sensors). The following review of the knowledge available in the literature on zeolites aims to present the most important information on the properties, synthesis methods, and selected applications of this group of aluminosilicates. Special attention is given to the use of zeolites in agriculture and environmental protection.
Collapse
Affiliation(s)
- Natalia Kordala
- Department of Agricultural and Environmental Chemistry, University of Warmia and Mazury in Olsztyn, Łódzki 4 Sq., 10-727 Olsztyn, Poland
| | - Mirosław Wyszkowski
- Department of Agricultural and Environmental Chemistry, University of Warmia and Mazury in Olsztyn, Łódzki 4 Sq., 10-727 Olsztyn, Poland
| |
Collapse
|
8
|
Senila M, Cadar O. Modification of natural zeolites and their applications for heavy metal removal from polluted environments: Challenges, recent advances, and perspectives. Heliyon 2024; 10:e25303. [PMID: 38352776 PMCID: PMC10862511 DOI: 10.1016/j.heliyon.2024.e25303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/17/2024] [Accepted: 01/24/2024] [Indexed: 02/16/2024] Open
Abstract
In recent decades, environmental pollution has become a significant problem for human health and environmental impact. The high accumulation of heavy metals in waters and soils from different sources was conducted by finding efficient and environmentally friendly treatment methods and materials for their removal. Natural zeolites have found wide-ranging applications in environmental remediation and protection, considering various treatment and modification methods designed to enhance the natural zeolites' adsorptive or ion-exchange capabilities for increased efficiency. This paper briefly consolidates the recent scientific literature related to the main characteristics of natural and modified zeolites, the advantages and limitations of their environmental remediation application, and summarizes the methodologies applied to natural zeolites in order to improve their properties. Their application for removing heavy metals from water systems and soils is also comprehensively discussed. This review highlights the excellent potential of natural zeolites to be used after specific treatment or modification as a sustainable and green material to solve numerous environmental pollution issues.
Collapse
Affiliation(s)
- Marin Senila
- INCDO-INOE 2000, Research Institute for Analytical Instrumentation, 67 Donath Street, 400293, Cluj-Napoca, Romania
| | - Oana Cadar
- INCDO-INOE 2000, Research Institute for Analytical Instrumentation, 67 Donath Street, 400293, Cluj-Napoca, Romania
| |
Collapse
|
9
|
Głąb T, Gondek K, Marcińska-Mazur L, Jarosz R, Mierzwa-Hersztek M. Effect of organic/inorganic composites as soil amendments on the biomass productivity and root architecture of spring wheat and rapeseed. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 344:118628. [PMID: 37536237 DOI: 10.1016/j.jenvman.2023.118628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/26/2023] [Accepted: 07/11/2023] [Indexed: 08/05/2023]
Abstract
Organic and inorganic soil amendments are used to increase crop yields and fertilizer efficiency, as well as to improve the physical and biological properties of soil, increase carbon sequestration, and restore contaminated and saline soils. The present study aimed to evaluate the effect of various zeolite composites mixed with either lignite or leonardite on the biomass production of spring wheat and rapeseed and their root morphology. A pot experiment involved the application of the following treatments: zeolite-carbon, zeolite-vermiculite composites, both mixed with lignite or leonardite, and a control treatment with no amendments. Inorganic composites were applied in a dose of 3% and 6%. The study also included an analysis of the root morphometric parameters and aboveground biomass of spring wheat and rapeseed. The lowest productivity was observed when both crops were not enriched with fertilizers or other amendments, 24.92 g per pot and 29.83 g per pot for spring wheat and rapeseed, respectively. The application of mineral fertilizers in combination with zeolite-carbon composite gave the highest aboveground biomass of spring wheat, 110.11 g per pot. Both zeolite-carbon and zeolite-vermiculite composites modified the morphological parameters of roots, with the control treatment showing the lowest root length and dry matter. Although mineral fertilization was found to have a positive impact root development in relation to untreated control, the treatment amended with zeolite-carbon composite and leonardite exhibited the highest root length and biomass of spring wheat. No other soil amendments improved the properties of rapeseed roots.
Collapse
Affiliation(s)
- Tomasz Głąb
- Department of Machinery Exploitation, Ergonomics and Production Processes, University of Agriculture in Krakow, ul. Balicka 116B, 31-149, Krakow, Poland
| | - Krzysztof Gondek
- Department of Agricultural and Environmental Chemistry, University of Agriculture in Krakow, al. Mickiewicza 21, 31-120, Kraków, Poland
| | - Lidia Marcińska-Mazur
- Department of Mineralogy, Petrography and Geochemistry, AGH University of Science and Technology, al. Mickiewicza 30, 30-059, Krakow, Poland.
| | - Renata Jarosz
- Department of Mineralogy, Petrography and Geochemistry, AGH University of Science and Technology, al. Mickiewicza 30, 30-059, Krakow, Poland
| | - Monika Mierzwa-Hersztek
- Department of Agricultural and Environmental Chemistry, University of Agriculture in Krakow, al. Mickiewicza 21, 31-120, Kraków, Poland; Department of Mineralogy, Petrography and Geochemistry, AGH University of Science and Technology, al. Mickiewicza 30, 30-059, Krakow, Poland
| |
Collapse
|
10
|
Zong Y, Gong J, Zhang J, Su Y, Hu C, Li T, Wu Y, Jiang M. Research status of soda residue in the field of environmental pollution control. RSC Adv 2023; 13:28975-28983. [PMID: 37799308 PMCID: PMC10548433 DOI: 10.1039/d3ra04863b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 09/25/2023] [Indexed: 10/07/2023] Open
Abstract
High-quality soda ash (Na2CO3) is mainly produced using the ammonia-alkaline method, generating a significant amount of industrial waste called soda residue. In China, the annual production of soda residue exceeds 10 million tons. The large-scale open-air storage of soda residue not only occupies land but also causes severe pollution to the surrounding environment. Soda residue displays characteristics such as strong alkalinity, high reactivity, and a well-developed pore structure, making it a valuable raw material for producing environmentally functional materials. This article provided an overview and summary of soda residue, including its sources and hazards, basic properties, applications in environmental management (wastewater treatment, flue gas desulfurization, and soil remediation), and associated risks. The limitations of using soda residue in "waste to waste" technologies were also analyzed. Based on this analysis, the article suggests focusing on simultaneous removal of heavy metal ions using soda residue, safely disposing of and acquiring resources from metal-laden sludge, efficiently dechlorinating soda residue, using soda residue for contaminated soil solidification, stabilization, and assisted remediation, controlling pollution via green and circular utilization approaches, and assessing long-term risk.
Collapse
Affiliation(s)
- Yonglan Zong
- College of Resources and Environment, Yunnan Agricultural University Kunming China
| | - Jiantao Gong
- College of Resources and Environment, Yunnan Agricultural University Kunming China
| | - Jilai Zhang
- College of Resources and Environment, Yunnan Agricultural University Kunming China
| | - Youbo Su
- College of Resources and Environment, Yunnan Agricultural University Kunming China
| | - Chenglei Hu
- College of Resources and Environment, Yunnan Agricultural University Kunming China
| | - Tianguo Li
- College of Resources and Environment, Yunnan Agricultural University Kunming China
| | - Yonglin Wu
- College of Resources and Environment, Yunnan Agricultural University Kunming China
| | - Ming Jiang
- College of Resources and Environment, Yunnan Agricultural University Kunming China
| |
Collapse
|
11
|
Wang W, Zheng Z, Feng C, Gao X, Qiao Y, Xu M. Application of zeolite synthesized from coal fly ash via wet milling as a sustainable resource on lead(II) removal. WASTE MANAGEMENT & RESEARCH : THE JOURNAL OF THE INTERNATIONAL SOLID WASTES AND PUBLIC CLEANSING ASSOCIATION, ISWA 2023; 41:1246-1254. [PMID: 36964723 DOI: 10.1177/0734242x231160077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In this work, zeolite based on coal fly ash was firstly synthesized via wet milling for the adsorption of lead (Pb(II)). The effects of contact time, solid-to-liquid ratio and initial pH of solution on Pb(II) removal were investigated in detail. The experimental data showed that synthesized zeolite has high adsorption capacity of 99.082 mg of Pb(II) per gram of adsorbent. Coal fly ash zeolite synthesized by wet milling has good Pb(II) adsorption performance when the initial pH of the solution is above 5. The adsorption kinetic results demonstrated that removal of Pb(II) via the synthesized zeolite followed pseudo-second-order kinetic model. X-ray photoelectron spectroscopy results directly demonstrated the adsorption between Pb(II) and synthesized zeolite, and a possible reaction pathway was proposed. Specifically, the removing mechanism of Pb(II) from aqueous solution via the synthesized zeolite involves two stages: one is that Pb(II) in aqueous solution is absorbed on the interior of the synthesized zeolite, and the other is chemical precipitation.
Collapse
Affiliation(s)
- Wenxia Wang
- State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan, China
| | - Zihan Zheng
- State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan, China
| | - Chao Feng
- State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan, China
| | - Xiangpeng Gao
- Centre for Water, Energy and Waste, Harry Butler Institute, Murdoch University, Murdoch, WA, Australia
| | - Yu Qiao
- State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan, China
| | - Minghou Xu
- State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
12
|
Schnackenberg A, Billmann M, Bidar G, Douay F, Pelfrêne A. Is the co-application of self-produced compost and natural zeolite interesting to reduce environmental and toxicological availability in metal-contaminated kitchen garden soils? ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:4737-4760. [PMID: 36928804 DOI: 10.1007/s10653-023-01505-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
Composting can turn organic waste into a valuable soil amendment that can improve physical, chemical, and biological soil quality. Compost amendments can also contribute to the remediation of areas anthropogenically degraded by metals. However, it is well known that compost, particularly self-produced compost, can show enrichment in metals. An experimental study was conducted to examine the short- and long-term distribution and the mobility of metals in soils amended with a self-produced compost when it was added alone or in combination with different doses of a natural zeolite to soil. The aim was also to study the interest of managing moderately metal-contaminated kitchen garden soils by assessing the chemical extractability, phytoavailability, and oral bioaccessibility of metals. When zeolite was added to compost alone, it had the tendency to better reduce extractability of Cd and Zn at 25%, and those of Pb at 15%. When the self-produced compost alone or in co-application with zeolite at these doses was applied to soils, the results showed (1) a decrease of NH4NO3-extractable Zn; (2) a reduction of Pb environmental availability, but not Pb bioaccessibility, and (3) an increase of ryegrass biomass. Nevertheless, the risk posed by the self-produced compost was minimal when applied at the proper rate (0.6% w/w). In the selected experimental conditions, the study recommends that self-produced compost be mixed with 15% zeolite to maximize vegetal biomass and minimize environmental risk. The question of sustainability of the results with repeated compost addition is also raised.
Collapse
Affiliation(s)
- Ashley Schnackenberg
- Univ. Lille, Institut Mines-Télécom, Univ. Artois, Junia, ULR 4515 - LGCgE Laboratoire de Génie Civil et geo-Environnement, 59000, Lille, France.
| | - Madeleine Billmann
- Univ. Lille, Institut Mines-Télécom, Univ. Artois, Junia, ULR 4515 - LGCgE Laboratoire de Génie Civil et geo-Environnement, 59000, Lille, France
| | - Géraldine Bidar
- Univ. Lille, Institut Mines-Télécom, Univ. Artois, Junia, ULR 4515 - LGCgE Laboratoire de Génie Civil et geo-Environnement, 59000, Lille, France
| | - Francis Douay
- Univ. Lille, Institut Mines-Télécom, Univ. Artois, Junia, ULR 4515 - LGCgE Laboratoire de Génie Civil et geo-Environnement, 59000, Lille, France
| | - Aurélie Pelfrêne
- Univ. Lille, Institut Mines-Télécom, Univ. Artois, Junia, ULR 4515 - LGCgE Laboratoire de Génie Civil et geo-Environnement, 59000, Lille, France
| |
Collapse
|
13
|
Assessment of surface and electrical properties of the TiO 2@zeolite hybrid materials. Sci Rep 2023; 13:3650. [PMID: 36871048 PMCID: PMC9985630 DOI: 10.1038/s41598-023-30529-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 02/24/2023] [Indexed: 03/06/2023] Open
Abstract
Degradation of pollutants in aqueous medium is of high interest due to the impact on environment and human health, therefore, design and study of the physico-chemical properties of photocatalysts for water remediation are of major significance. Among properties of photocatalyst, those related to the surface and electrical mechanism are crucial to the photocatalyst´s performance. Here we report the chemical and morphological characteristics of TiO2@zeolite photocatalyst by X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM) respectively, and a coherent electrical conduction mechanism was proposed based on data obtained from assisted laser impedance spectroscopy (ALIS), in which the zeolite was synthesized from recycled coal fly ash. The results obtained by SEM and XPS verified the presence of spherical particles of TiO2 anatase with presence of Ti3+ state. ALIS results showed that impedance of the entire system increases when the amount of TiO2 increases and the samples with lower capacitive performance allowed a larger transfer of the charges between the solid-liquid interface. All results showed that higher photocatalytic performance of TiO2 growth over hydroxysodalite with 8.7 wt% and 25 wt% of TiO2 can be explained in terms of the morphology of TiO2 and the interactions between substrate-TiO2 mainly.
Collapse
|
14
|
Jawad R, Nawaz A, Ejaz S, Ali S, Saleem MS, Hammad HM. Zeolite amendment reduces lead accumulation and improves growth and yield in tomato plants irrigated with sewage water. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:41970-41982. [PMID: 36640240 DOI: 10.1007/s11356-023-25190-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 01/03/2023] [Indexed: 06/17/2023]
Abstract
Although sewage water (SW) is a source of nutrients, it also causes heavy metal accumulation in soil; especially, lead (Pb+) contamination of soil is a serious concern in agriculture. Soil contaminants limit the bioavailability of nutrients to plants. So, they affect plant growth and produce quality. Therefore, a pot experiment was conducted to investigate the effect of zeolite soil amendment on the accumulation of Pb+ in tomato crop grown with SW irrigation. The pot media of SW-irrigated plants was amended with different concentrations of zeolite, viz., 0.75%, 1.50%, and 2.25%. The results showed that the application of 0.75% zeolite increased leaf area, plant height, fruit number, and plant fresh and dry biomasses by 37%, 17%, 14%, 24%, and 7% compared to freshwater irrigation. Moreover, the lowest zeolite dose also led to higher chlorophyll content (68.02 SPAD) compared to SW-irrigated plants (55.13 SPAD). Similarly physiological traits, such as A, gs, and E, were higher (17.68 µmol m-2 s-1, gs 0.28 mmol m-2 s-1, and 7.88 mmol m-2 s-1, respectively) in 0.75% zeolite-treated plants than in SW-irrigated plants (12.99 µmol m-2 s -1, 0.19 mmol m-2 s-1, and 7.00 mmol m-2 s -1, respectively). On the contrary, a reduced level of hydrogen peroxide and malondialdehyde and decreased activity of antioxidant enzymes were observed in low-dose zeolite applied plants. Zeolite reduced Pb+ accumulation in tomato plants as compared to SW-irrigated plants, whereby Pb accumulation in the fruits of SW-irrigated plants was 80% more than those of zeolite + SW-treated plants. Conclusively, this study has revealed the improvement in morphological and physiological growth attributes of the SW-irrigated tomato plant in response to zeolite application.
Collapse
Affiliation(s)
- Rashid Jawad
- Department of Horticulture, Bahauddin Zakariya University, Multan, Pakistan
- Department of Horticulture, Ghazi University, Dera Ghazi Khan, Pakistan
| | - Aamir Nawaz
- Department of Horticulture, Bahauddin Zakariya University, Multan, Pakistan
| | - Shaghef Ejaz
- Department of Horticulture, Bahauddin Zakariya University, Multan, Pakistan.
| | - Sajid Ali
- Department of Horticulture, Bahauddin Zakariya University, Multan, Pakistan
| | | | - Hafiz Mohkum Hammad
- Department of Agronomy, Muhammad Nawaz Sharif University of Agriculture, Multan, Pakistan
| |
Collapse
|
15
|
Grabias-Blicharz E, Franus W. A critical review on mechanochemical processing of fly ash and fly ash-derived materials. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 860:160529. [PMID: 36574561 DOI: 10.1016/j.scitotenv.2022.160529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/08/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
Fly ash (FA) is a solid, fine powder that constitutes a by-product obtained when coal, biomass, municipal solid waste or a mixture of these are combusted. This review article focuses on the mechanochemistry of coal fly ash (CFA), as well as highlights the issue of fly ash from municipal solid waste (MSW). In general, FA is regarded as a waste of public concern (since it contains hazardous components), which is primarily consumed in the construction industry, as well as in chemical synthesis and environmental engineering. However, the actual amount of FA recycled is still less than the amount produced, with the reuse rate of only up to 30 %. Due to its relatively low reactivity and heterogeneity, FA is commonly landfilled in huge quantities. Nevertheless, the physical and chemical properties of FA can be tailored, for example, by mechanical forces, ultimately leading to a higher value-added product. Currently, mechanochemistry (MC) is drawing attention in chemical synthesis, pollution remediation and waste management, especially as a possible solution for various drawbacks of conventional syntheses and processes. Mechanochemical processing of FA can be considered eco-friendly, inexpensive and efficient, in particular for processing tons of readily available fly ash already stored in ponds or landfills. With the aim of highlighting the hidden potential and facilitating the favorable use of FA, this article deals with FA as an environmentally challenging material, FA reactivity and recycling through mechanochemical processing, mechanochemical stabilization of heavy metals in FA, as well as up-to-date challenges for life cycle assessment (LCA) in evaluating FA-derived materials. Furthermore, all these full-potential aspects of FA mechanochemistry have not been addressed before, which is a valuable contribution to the existing literature.
Collapse
Affiliation(s)
- Ewelina Grabias-Blicharz
- Department of Construction Materials Engineering and Geoengineering, Faculty of Civil Engineering and Architecture, Lublin University of Technology, Nadbystrzycka 40, 20-618 Lublin, Poland.
| | - Wojciech Franus
- Department of Construction Materials Engineering and Geoengineering, Faculty of Civil Engineering and Architecture, Lublin University of Technology, Nadbystrzycka 40, 20-618 Lublin, Poland.
| |
Collapse
|
16
|
Eberle S, Schmalz V, Börnick H, Stolte S. Natural Zeolites for the Sorption of Ammonium: Breakthrough Curve Evaluation and Modeling. Molecules 2023; 28:molecules28041614. [PMID: 36838602 PMCID: PMC9965154 DOI: 10.3390/molecules28041614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/01/2023] [Accepted: 02/03/2023] [Indexed: 02/11/2023] Open
Abstract
The excessive use of ammonium fertilizer and its associated leakage threatens aquatic environments around the world. With a focus on the treatment of drinking water, the scope of this study was to evaluate and model the breakthrough curves for NH4+ in zeolite-filled, fixed-bed columns. Breakthrough experiments were performed in single- and multi-sorbate systems with the initial K+ and NH4+ concentrations set to 0.7 mmol/L. Breakthrough curves were successfully modeled by applying the linear driving force (LDF) and Thomas models. Batch experiments revealed that a good description of NH4+ sorption was provided by the Freundlich sorption model (R2 = 0.99), while unfavorable sorption was determined for K+ (nF = 2.19). Intraparticle diffusion was identified as the rate limiting step for NH4+ and K+ during breakthrough. Compared to ultrapure water, the use of tap, river, and groundwater matrices decreased the treated bed volumes by between 25% and 69%-as measured at a NH4+ breakthrough level of 50%. The concentrations of K+ and of dissolved organic carbon (DOC) were identified as the main parameters that determine NH4+ sorption in zeolite-filled, fixed-bed columns. Based on our results, the LDF and Thomas models are promising tools to predict the breakthrough curves of NH4+ in zeolite-filled, fixed-bed columns.
Collapse
|
17
|
Soil Component: A Potential Factor Affecting the Occurrence and Spread of Antibiotic Resistance Genes. Antibiotics (Basel) 2023; 12:antibiotics12020333. [PMID: 36830244 PMCID: PMC9952537 DOI: 10.3390/antibiotics12020333] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/21/2023] [Accepted: 02/01/2023] [Indexed: 02/09/2023] Open
Abstract
In recent years, antibiotic resistance genes (ARGs) and antibiotic-resistant bacteria (ARB) in soil have become research hotspots in the fields of public health and environmental ecosystems, but the effects of soil types and soil components on the occurrence and spread of ARGs still lack systematic sorting and in-depth research. Firstly, investigational information about ARB and ARGs contamination of soil was described. Then, existing laboratory studies about the influence of the soil component on ARGs were summarized in the following aspects: the influence of soil types on the occurrence of ARGs during natural or human activities and the control of exogenously added soil components on ARGs from the macro perspectives, the effects of soil components on the HGT of ARGs in a pure bacterial system from the micro perspectives. Following that, the similarities in pathways by which soil components affect HGT were identified, and the potential mechanisms were discussed from the perspectives of intracellular responses, plasmid activity, quorum sensing, etc. In the future, related research on multi-component systems, multi-omics methods, and microbial communities should be carried out in order to further our understanding of the occurrence and spread of ARGs in soil.
Collapse
|
18
|
Effects of using substrate heating method for the preparation of zeolite coatings containing faujasite. BRAZILIAN JOURNAL OF CHEMICAL ENGINEERING 2022. [DOI: 10.1007/s43153-022-00284-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
19
|
Methylene Blue Removal by Chitosan Cross-Linked Zeolite from Aqueous Solution and Other Ion Effects: Isotherm, Kinetic, and Desorption Studies. ADSORPT SCI TECHNOL 2022. [DOI: 10.1155/2022/1853758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Developing innovative technology for removing methylene blue (MB) from water is essential since the widespread discharge of MB from industrial effluents causes problems for humans and the environment. In this study, we conducted the adsorption method, a simple technique that utilizes an adsorbent. Chitosan is cross-linked with zeolite as a promising adsorbent material and environmentally friendly. For the characterization, FTIR, SEM-EDS, DLS, and pHzpc were analyzed. It was discovered that the removal percentage reached 97% with an adsorption capacity of 242.51 mg/g for 60 minutes at pH 10. The adsorption isotherm and kinetic model were investigated. As a result, the Freundlich model and pseudo-second-order model were fitted to the adsorption process. Moreover, the effect of other ions was investigated for 5 minutes of mixing time. The results showed that the removal percentage increased in the presence of H2O2 ion. Contrary to sodium chloride, glucose, and citric acid ions, the effectiveness of H2SO4 as a desorbing agent was 99.65% for 30 minutes at 45°C.
Collapse
|
20
|
Cadar O, Stupar Z, Senila M, Levei L, Moldovan A, Becze A, Ozunu A, Levei EA. Zeolites Reduce the Transfer of Potentially Toxic Elements from Soil to Leafy Vegetables. MATERIALS (BASEL, SWITZERLAND) 2022; 15:5657. [PMID: 36013790 PMCID: PMC9416071 DOI: 10.3390/ma15165657] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/31/2022] [Accepted: 08/15/2022] [Indexed: 06/15/2023]
Abstract
The ability of natural zeolite amendment to reduce the uptake of potentially toxic elements (PTEs) by lettuce, spinach and parsley was evaluated using pot experiments. PTE concentrations in roots and shoots, as well as the pseudo total (PT), water soluble (WS) and bioavailable (BA) PTE fractions in the amended soils, were assessed. Although the PT PTE concentration was high, the WS fraction was very low (<0.4%), while the BA fraction varied widely (<5% for Cr, Mn and Co, <15% for Ni, Pb and Zn, >20% for Cd and Cu). PTE concentration decreased in both roots and shoots of all leafy vegetables grown on zeolite amended soils, especially at high amendment dose (10%). The uptake of PTEs mainly depended on plant species, PTE type and amendment dose. With the exception of Zn in spinach, the bioaccumulation factor for roots was higher than for shoots. Generally, lettuce displayed the highest PTE bioaccumulation capacity, followed by spinach and parsley. Except for Zn in spinach, the transfer factors were below 1 for all PTEs, all plant species and all amendment doses. Our results showed that the natural zeolites are promising candidates in the reclamation of contaminated soils due to their ability to immobilize PTEs.
Collapse
Affiliation(s)
- Oana Cadar
- INCDO-INOE 2000, Research Institute for Analytical Instrumentation, 67 Donath Street, 400293 Cluj-Napoca, Romania
| | - Zamfira Stupar
- INCDO-INOE 2000, Research Institute for Analytical Instrumentation, 67 Donath Street, 400293 Cluj-Napoca, Romania
| | - Marin Senila
- INCDO-INOE 2000, Research Institute for Analytical Instrumentation, 67 Donath Street, 400293 Cluj-Napoca, Romania
| | - Levente Levei
- INCDO-INOE 2000, Research Institute for Analytical Instrumentation, 67 Donath Street, 400293 Cluj-Napoca, Romania
- Faculty of Environmental Sciences and Engineering, Babes-Bolyai University, 30 Fantanele Street, 400294 Cluj-Napoca, Romania
| | - Ana Moldovan
- INCDO-INOE 2000, Research Institute for Analytical Instrumentation, 67 Donath Street, 400293 Cluj-Napoca, Romania
| | - Anca Becze
- INCDO-INOE 2000, Research Institute for Analytical Instrumentation, 67 Donath Street, 400293 Cluj-Napoca, Romania
| | - Alexandru Ozunu
- Faculty of Environmental Sciences and Engineering, Babes-Bolyai University, 30 Fantanele Street, 400294 Cluj-Napoca, Romania
| | - Erika Andrea Levei
- INCDO-INOE 2000, Research Institute for Analytical Instrumentation, 67 Donath Street, 400293 Cluj-Napoca, Romania
| |
Collapse
|
21
|
Senila M, Neag E, Cadar O, Hoaghia MA, Roman M, Moldovan A, Hosu A, Lupas A, Kovacs ED. Characteristics of Volcanic Tuff from Macicasu (Romania) and Its Capacity to Remove Ammonia from Contaminated Air. Molecules 2022; 27:molecules27113503. [PMID: 35684443 PMCID: PMC9182413 DOI: 10.3390/molecules27113503] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 05/18/2022] [Accepted: 05/28/2022] [Indexed: 02/01/2023] Open
Abstract
In the present work, the capability of the volcanic tuff from Macicasu (Romania) to remove ammonia (NH3) from air with different contamination levels during 24 h of adsorption experiments was investigated. The natural zeolitic volcanic tuff was characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), the Brunauer–Emmett–Teller (BET) method, inductively coupled plasma optical emission spectrometry (ICP-OES), and thermogravimetric analysis (TGA). The adsorption capacities varied between 0.022 mg NH3 g−1 zeolite and 0.282 mg NH3 g−1 zeolite, depending on the NH3 concentrations in the air and at the contact time. The nonlinear forms of the Langmuir and Freundlich isotherm models were used to fit the experimental data. Additionally, the adsorption of NH3 was studied using nonlinear pseudo-first-order (PFO), pseudo-second-order (PSO), and Elovich kinetic model. Based on the total volume of pores of used volcanic tuff, the NH3 was removed from the air both due to the physical adsorption of NH3 gas and the ion exchange of NH4+ (resulted from a reaction between NH3 and H2O adsorbed by the zeolite). Depending on the initial NH3 concentration and the amount of volcanic tuff, the NH3 concentrations can be reduced below the threshold of this contaminant in the air. The adsorption capacity of NH3 per unit of zeolite (1 g) varied in the range of 0.022–0.282 mg NH3 g−1 depending on the NH3 concentration in the air.
Collapse
Affiliation(s)
- Marin Senila
- INCDO-INOE 2000, Research Institute for Analytical Instrumentation, 67 Donath Street, 400293 Cluj-Napoca, Romania; (E.N.); (O.C.); (M.-A.H.); (M.R.); (A.M.); (E.D.K.)
- Correspondence:
| | - Emilia Neag
- INCDO-INOE 2000, Research Institute for Analytical Instrumentation, 67 Donath Street, 400293 Cluj-Napoca, Romania; (E.N.); (O.C.); (M.-A.H.); (M.R.); (A.M.); (E.D.K.)
| | - Oana Cadar
- INCDO-INOE 2000, Research Institute for Analytical Instrumentation, 67 Donath Street, 400293 Cluj-Napoca, Romania; (E.N.); (O.C.); (M.-A.H.); (M.R.); (A.M.); (E.D.K.)
| | - Maria-Alexandra Hoaghia
- INCDO-INOE 2000, Research Institute for Analytical Instrumentation, 67 Donath Street, 400293 Cluj-Napoca, Romania; (E.N.); (O.C.); (M.-A.H.); (M.R.); (A.M.); (E.D.K.)
| | - Marius Roman
- INCDO-INOE 2000, Research Institute for Analytical Instrumentation, 67 Donath Street, 400293 Cluj-Napoca, Romania; (E.N.); (O.C.); (M.-A.H.); (M.R.); (A.M.); (E.D.K.)
| | - Ana Moldovan
- INCDO-INOE 2000, Research Institute for Analytical Instrumentation, 67 Donath Street, 400293 Cluj-Napoca, Romania; (E.N.); (O.C.); (M.-A.H.); (M.R.); (A.M.); (E.D.K.)
| | - Alexandru Hosu
- GeoPlus Services SRL, 99D Braniste Street, 407310 Gilau, Romania;
| | - Angela Lupas
- Doralex Com SRL, 151A Maramureșului Street, 400268 Cluj-Napoca, Romania;
| | - Emoke Dalma Kovacs
- INCDO-INOE 2000, Research Institute for Analytical Instrumentation, 67 Donath Street, 400293 Cluj-Napoca, Romania; (E.N.); (O.C.); (M.-A.H.); (M.R.); (A.M.); (E.D.K.)
| |
Collapse
|
22
|
Amiri Zare S, Raouf F, Miveei L, Roshan Zekavat S, Abedin Pour Farahmand R. Investigation on the lead adsorption capacity of Iranian natural zeolite: modifications, structural effects, adsorption isotherms, kinetics, and mechanism studies. SEP SCI TECHNOL 2022. [DOI: 10.1080/01496395.2022.2071298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
| | - Fereshteh Raouf
- Faculty of Engineering, Chemical Engineering at University of Guilan, Rasht, Iran
| | - Leila Miveei
- Textile Engineering, University of Guilan, Rasht, Iran
| | | | | |
Collapse
|
23
|
Granular Natural Zeolites: Cost-Effective Adsorbents for the Removal of Ammonium from Drinking Water. WATER 2022. [DOI: 10.3390/w14060939] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Increasing food demand has resulted in an ever increasing demand for nitrogen fertilizers. Ammonium is the main constituent of these fertilizers and is a threat to aquatic environments around the world. With a focus on the treatment of drinking water, the scope of this study was to investigate the influence of key parameters on the suitability of granular natural zeolites as adsorbents for ammonium. Sorption experiments were performed in artificial matrices by varying the grain size, contact time, ammonium concentration, pH, content of competing ions, and regeneration solutions used. Additionally, natural matrices and the point of zero charge (pzc) were investigated. With an initial ammonium concentration of 10 mgN/L, the grain size was shown to have no significant effect on the sorption efficiency (97–98%). The experimental data obtained was best described by the Langmuir adsorption model (R2 = 0.99). Minor effects on sorption were observed at different pH values and in the presence of competing anions. In addition, the pHPZC was determined to be between pH 6.24 and pH 6.47. Potassium ions were shown to be better than sodium ions for the regeneration of previously loaded zeolites, potassium is also the main competitor to ammonium sorption. The use of tap, bank filtrate, river, and groundwater matrices decreased the ammonium sorption capacity of granular natural zeolites by up to 8%. Based on our results, granular natural zeolites are promising cost-effective adsorbents for drinking water treatment, especially in threshold and developing countries.
Collapse
|
24
|
Special Issue “Sustainable Remediation Processes Based on Zeolites”. Processes (Basel) 2021. [DOI: 10.3390/pr9122153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Zeolites are microporous tectosilicates characterized by a three-dimensional network of tetrahedral (Si, Al)O4 units with the general formula: Mx+Ly2+[Al(x+2y)Si1−(x+2y)O2n]·mH2O where M+ and L2+ are monovalent and divalent cations [...]
Collapse
|
25
|
Efficiency in Ofloxacin Antibiotic Water Remediation by Magnetic Zeolites Formed Combining Pure Sources and Wastes. Processes (Basel) 2021. [DOI: 10.3390/pr9122137] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
In this work, red mud (RM) and spinel iron oxide nanoparticles (SPIONs) were added to pure silica/alumina sources (SAs) and fly ash (FA) with the aim of synthesizing and investigating the magnetic behavior of different zeolites. SAs were used to synthesize zeolite with LTA topology (zeolite A) with the addition of both red mud and spinel iron oxide nanoparticles. FA and RM were mixed to synthesize sodalite whereas only FA with the addition of SPIONs was used to form zeolite with FAU-topology (zeolite X). All the synthetic products showed magnetic properties. However, zeolites with spinel iron oxide nanoparticles (zeolites A and X) showed ferromagnetic-like behavior. Sodalite was characterized by a reduction in saturation magnetization, whereas zeolite A with red mud displayed antiferromagnetic behavior. For the first time, all the synthetic products were tested for polluted water remediation by a persistent emerging contaminant, ofloxacin (OFL) antibiotic. The four zeolite types showed good adsorption affinity towards OFL under actual conditions (tap water, natural pH). All materials were also tested for OFL removal in real waters spiked with OFL 10 µg L−1. Satisfactory recoveries (90–92% in tap water, 83–87% in river water) were obtained for the two zeolites synthesized from industrial waste materials.
Collapse
|
26
|
Experimental and Computational Approaches for the Structural Study of Novel Ca-Rich Zeolites from Incense Stick Ash and Their Application for Wastewater Treatment. ADSORPT SCI TECHNOL 2021. [DOI: 10.1155/2021/6066906] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
At present, chemical Si/Al sources are mainly used as precursor materials for the manufacturing of zeolites. Such precursor materials are quite expensive for commercial synthesis. Here, we have reported the synthesis of Ca-based zeolite from incense stick ash waste by the alkali-treatment method for the first time. Incense stick ash (ISA) was used as a precursor material for the synthesis of low Si zeolites by the alkali-treatment method. The as-synthesized zeolites were characterized by various instruments like particle size analyzer (PSA), Fourier transform infrared (FTIR), X-ray diffraction (XRD), field emission scanning electron microscope (FESEM), electron diffraction spectroscopy (EDS), transmission electron microscopy (TEM), and X-ray fluorescence (XRF). FTIR and XRD helped in the identification of the microstructure and crystalline nature of the zeolites and also confirmed the synthesis of Ca-based zeolite with two thetas at 25.7°. The microscopic analysis by FESEM and TEM exhibited that the size of synthesized Ca-rich zeolites varies from 200 to 700 nm and they are aggregated and cuboidal in shape. Additionally, structural, electronic, and density of states’ characteristics of gismondine (Ca2Al4Si4O16·9H2O) structures were evaluated by computational simulations (first principle, density functional theorem). The structural optimization of structures was carried out in the first stage under the lowest condition of total energy and forces acting on atoms for the lattice constant, as well as the available experimental and theoretical findings. The present research approach predicted the transformation of ISA waste into a value-added mineral, i.e., zeolite, which was further used for the removal of both heavy metals and alkali metals from fly ash-based wastewater using inductively coupled plasma-optical emission spectroscopy (ICP-OES).
Collapse
|
27
|
Immobilization of Potentially Toxic Elements in Contaminated Soils Using Thermally Treated Natural Zeolite. MATERIALS 2021; 14:ma14143777. [PMID: 34300696 PMCID: PMC8306760 DOI: 10.3390/ma14143777] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/25/2021] [Accepted: 07/03/2021] [Indexed: 11/17/2022]
Abstract
Rehabilitation of contaminated soils is a complex and time-consuming procedure. One of the most cost-effective and easy-to-use soil remediation approaches is the use of amendments that stabilize the potential toxic elements (PTE) in soil by reducing their mobility and bioavailability. The stabilization of Cu, Pb, Zn, Cd, Co, Cr, Ni in a contaminated soil using 5% and 10% amendment with thermally treated natural zeolite was investigated using a sequential extraction procedure, contamination and environmental risk factors. The results showed that after amendment, the PTE concentration decreased in the exchangeable and reducible fractions and increased in the oxidizable and residual fractions. The highest immobilization effect, consisting in the decrease of exchangeable fractions with 69% was obtained in case of 10% zeolite amendment and 90 days of equilibration time for Pb; also, more than half of the mobile fraction was immobilized in case of Zn, Cu, and Co and about one third in case of Ni, Cr, and Cd. Generally, the immobilization effect of the 5% and 10% amendment is comparable, but a higher equilibration time enhanced the immobilization effect, especially in the case of Cd, Co, Cu, Pb, and Zn.
Collapse
|