1
|
Zhou Y, Li J, Pei Y, Xu R, Zi J, Harshaw K, Chang X. Cadmium spurred Microcystis aeruginosa to unleash more toxic metabolites. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 292:117915. [PMID: 39986053 DOI: 10.1016/j.ecoenv.2025.117915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 02/15/2025] [Accepted: 02/15/2025] [Indexed: 02/24/2025]
Abstract
Cyanobacterial harmful algal blooms (cHABs), normally dominated by Microcystis aeruginosa, pose a threat to aquatic ecosystems due to the release of various harmful metabolites. Cadmium (Cd), a heavy metal commonly found in surface water and sediments, often coincides with cHABs in eutrophic lakes. However, the ecotoxicological effects of Cd on M. aeruginosa and the potential for combined toxicity are not yet fully understood. In this study, we determined the effective concentrations of cadmium from 10 % (EC10) to 50 % (EC50) for M. aeruginosa based on cell density inhibition. We then conducted a combined analysis focusing on the impact of a low dose Cd (EC10, 139 μg/L) on the physiological factors, transcriptome and both intracellular and extracellular metabolites of M. aeruginosa. We found that Cd treatment decreased M. aeruginosa chlorophyll a content by 24.5 %, which coincided with the suppression of genes linked to ribosomal and photosynthesis pathways. However, Cd exposure stimulated the synthesis and extracellular release of cellular compounds by enhancing amino acid and carbohydrate metabolism. This led to elevated extracellular levels of amino acids, organic acids, and secondary metabolites - including peptides, lipids, benzenoids, terpenes, sterols, and glycosides - which could serve as potential toxic metabolites of cyanobacteria. These changes were driven by the activation of osmoregulatory mechanisms, antioxidant-related amino acids, and ATP-binding cassette transport and secretion systems. Our research indicated that low Cd concentrations could stimulate the synthesis and release of toxic metabolites and exacerbate cHAB threats in eutrophic lakes, underscoring the importance of addressing multiple stressors in freshwater environments.
Collapse
Affiliation(s)
- Yuan Zhou
- Yunnan Collaborative Innovation Center for Plateau Lake Ecology and Environmental Health, College of Agronomy and Life Sciences, Kunming University, Kunming 650214, China; The Ecological and Environmental Monitoring Station of DEEY in Kunming, Kunming 650228, China
| | - Jingjing Li
- Yunnan Collaborative Innovation Center for Plateau Lake Ecology and Environmental Health, College of Agronomy and Life Sciences, Kunming University, Kunming 650214, China
| | - Ying Pei
- Yunnan Collaborative Innovation Center for Plateau Lake Ecology and Environmental Health, College of Agronomy and Life Sciences, Kunming University, Kunming 650214, China
| | - Runbing Xu
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China
| | - Jinmei Zi
- Yunnan Collaborative Innovation Center for Plateau Lake Ecology and Environmental Health, College of Agronomy and Life Sciences, Kunming University, Kunming 650214, China
| | - Keira Harshaw
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, ON N9B 3P4, Canada
| | - Xuexiu Chang
- Yunnan Collaborative Innovation Center for Plateau Lake Ecology and Environmental Health, College of Agronomy and Life Sciences, Kunming University, Kunming 650214, China; Great Lakes Institute for Environmental Research, University of Windsor, Windsor, ON N9B 3P4, Canada.
| |
Collapse
|
2
|
Karcheva Z, Georgieva Z, Anev S, Petrova D, Paunov M, Zhiponova M, Chaneva G. Modulation of Zn Ion Toxicity in Pisum sativum L. by Phycoremediation. PLANTS (BASEL, SWITZERLAND) 2025; 14:215. [PMID: 39861569 PMCID: PMC11769046 DOI: 10.3390/plants14020215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/10/2025] [Accepted: 01/12/2025] [Indexed: 01/27/2025]
Abstract
Microalgae offer a promising alternative for heavy metal removal, and the search for highly efficient strains is ongoing. This study investigated the potential of two microalgae, Coelastrella sp. BGV (Chlorophyta) and Arthronema africanum Schwabe & Simonsen (Cyanoprokaryota), to bind zinc ions (Zn2⁺) and protect higher plants. Hydroponically grown pea (Pisum sativum L.) seedlings were subjected to ZnSO4 treatment for 7 days in either a nutrient medium (Knop) or a microalgal suspension. The effects of increasing Zn2⁺ concentrations were evaluated through solution parameters, microalgal dry weight, pea growth (height, biomass), and physiological parameters, including leaf gas exchange, chlorophyll content, and normalized difference vegetation index (NDVI). Zinc accumulation in microalgal and plant biomass was also analyzed. The results revealed that microalgae increased pH and oxygen levels in the hydroponic medium while enhancing Zn accumulation in pea roots. At low ZnSO4 concentrations (2-5 mM), microalgal suspensions stimulated pea growth and photosynthetic performance. However, higher ZnSO4 levels (10-15 mM) caused Zn accumulation, leading to nutrient deficiencies and growth suppression in microalgae, which ultimately led to physiological disturbances in peas. Coelastrella sp. BGV exhibited greater tolerance to Zn stress and provided a stronger protective effect when co-cultivated with peas, highlighting its potential for phycoremediation applications.
Collapse
Affiliation(s)
- Zornitsa Karcheva
- Department of Plant Physiology, Faculty of Biology, Sofia University, 8 Dragan Tsankov Bul., 1164 Sofia, Bulgaria; (Z.G.); (D.P.)
| | - Zhaneta Georgieva
- Department of Plant Physiology, Faculty of Biology, Sofia University, 8 Dragan Tsankov Bul., 1164 Sofia, Bulgaria; (Z.G.); (D.P.)
| | - Svetoslav Anev
- Department Dendrology, Faculty of Forestry, University of Forestry, 10 Sveti Kliment Ohridski Blvd., 1756 Sofia, Bulgaria;
| | - Detelina Petrova
- Department of Plant Physiology, Faculty of Biology, Sofia University, 8 Dragan Tsankov Bul., 1164 Sofia, Bulgaria; (Z.G.); (D.P.)
| | - Momchil Paunov
- Department of Biophysics and Radiobiology, Faculty of Biology, Sofia University, 1164 Sofia, Bulgaria;
| | - Miroslava Zhiponova
- Department of Plant Physiology, Faculty of Biology, Sofia University, 8 Dragan Tsankov Bul., 1164 Sofia, Bulgaria; (Z.G.); (D.P.)
| | - Ganka Chaneva
- Department of Plant Physiology, Faculty of Biology, Sofia University, 8 Dragan Tsankov Bul., 1164 Sofia, Bulgaria; (Z.G.); (D.P.)
| |
Collapse
|
3
|
Koga T, Hirakawa S, Nakagawa S, Ishibashi Y, Kashiwabara M, Miyawaki T. Systematization of a toxicity screening method based on a combination of chemical analysis and the delayed fluorescence algal growth inhibition test for use in emergency environmental surveys. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:55447-55461. [PMID: 39230813 DOI: 10.1007/s11356-024-34821-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 08/23/2024] [Indexed: 09/05/2024]
Abstract
In recent years, heavy rainfall disasters linked to climate change have become more frequent, raising concerns about the release of chemicals stored in factories. Assessing chemical contamination during such emergencies therefore necessitates the development of a quick and easy method for evaluating hazardous contaminants in combination with toxicity testing. This study proposes a "toxicity screening" method that combines biological response testing and chemical analysis to systematically evaluate hazardous contaminants in emergency situations. The toxicity screening method evaluates the water quality in three steps, including water quality measurements and a delayed fluorescence (DF) assay, metal content measurements and a DF assay, and targeted screening analysis and a DF assay. The efficacy of this method was tested using industrial wastewater from 14 locations. Seven of the samples were non-toxic, while the other seven samples were toxic, displaying no observed effect concentration (NOEC) values ranging from 0.625 to 20%. Two toxic samples in the first phase possessed high total chlorine concentrations (0.4 mg L-1) and conductivities (2200 mS m-1), indicating that the main sources of toxicity were residual chlorine and a high salt concentration. In the second phase, metal content analysis identified metals as the toxicity cause in four samples. In the third phase, the organic contaminants were analyzed, and tri-n-octyl phosphate (TNOP) was detected at a concentration of 0.00027 mg L-1. The results of solid-phase extraction experiments and exposure tests with TNOP alone indicated that the contribution of TNOP to the toxicity was negligible and that chemicals not adsorbed on the solid-phase extraction cartridges were the cause of toxicity. The proposed method can therefore be considered effective for disaster-related water quality assessment, delivering results within 12 days.
Collapse
Affiliation(s)
- Toyokazu Koga
- Fukuoka Prefectural Institute of Health and Environmental Sciences, 39 Mukaisano, Dazaifu, Fukuoka, 818-0135, Japan.
| | - Shusaku Hirakawa
- Fukuoka Prefectural Institute of Health and Environmental Sciences, 39 Mukaisano, Dazaifu, Fukuoka, 818-0135, Japan
| | - Shuhei Nakagawa
- Fukuoka Prefectural Institute of Health and Environmental Sciences, 39 Mukaisano, Dazaifu, Fukuoka, 818-0135, Japan
| | - Yuko Ishibashi
- Fukuoka Prefectural Institute of Health and Environmental Sciences, 39 Mukaisano, Dazaifu, Fukuoka, 818-0135, Japan
| | - Manabu Kashiwabara
- Fukuoka Research Commercialization Center for Recycling Systems, 2-1 Hibikino, Wakamatsu-ku, Kitakyushu, Fukuoka, 808-0135, Japan
| | - Takashi Miyawaki
- The University of Kitakyushu, 1-1 Hibikino, Wakamatsu-ku, Kitakyushu, Fukuoka, 808-0135, Japan
| |
Collapse
|
4
|
Strotmann U, Durand MJ, Thouand G, Eberlein C, Heipieper HJ, Gartiser S, Pagga U. Microbiological toxicity tests using standardized ISO/OECD methods-current state and outlook. Appl Microbiol Biotechnol 2024; 108:454. [PMID: 39215841 PMCID: PMC11365844 DOI: 10.1007/s00253-024-13286-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/19/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
Microbial toxicity tests play an important role in various scientific and technical fields including the risk assessment of chemical compounds in the environment. There is a large battery of normalized tests available that have been standardized by ISO (International Organization for Standardization) and OECD (Organization for Economic Co-operation and Development) and which are worldwide accepted and applied. The focus of this review is to provide information on microbial toxicity tests, which are used to elucidate effects in other laboratory tests such as biodegradation tests, and for the prediction of effects in natural and technical aqueous compartments in the environment. The various standardized tests as well as not normalized methods are described and their advantages and disadvantages are discussed. In addition, the sensitivity and usefulness of such tests including a short comparison with other ecotoxicological tests is presented. Moreover, the far-reaching influence of microbial toxicity tests on biodegradation tests is also demonstrated. A new concept of the physiological potential of an inoculum (PPI) consisting of microbial toxicity tests whose results are expressed as a chemical resistance potential (CRP) and the biodegradation adaptation potential (BAP) of an inoculum is described that may be helpful to characterize inocula used for biodegradation tests. KEY POINTS: • Microbial toxicity tests standardized by ISO and OECD have large differences in sensitivity and applicability. • Standardized microbial toxicity tests in combination with biodegradability tests open a new way to characterize inocula for biodegradation tests. • Standardized microbial toxicity tests together with ecotoxicity tests can form a very effective toolbox for the characterization of toxic effects of chemicals.
Collapse
Affiliation(s)
- Uwe Strotmann
- Dept. of Chemistry, Westfälische Hochschule, Recklinghausen, Germany
| | - Marie-José Durand
- UMR 6144, Nantes Université, ONIRIS, CNRS, GEPEA, 85000, La Roche Sur Yon, France
| | - Gerald Thouand
- UMR 6144, Nantes Université, ONIRIS, CNRS, GEPEA, 85000, La Roche Sur Yon, France
| | - Christian Eberlein
- Department of Molecular Environmental Biotechnology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Hermann J Heipieper
- Department of Molecular Environmental Biotechnology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany.
| | | | - Udo Pagga
- , Rüdigerstr. 49, 67069, Ludwigshafen, Germany
| |
Collapse
|
5
|
Pavlovsky J, Seidlerova J, Pegrimocova Z, Vontorova J, Motyka O, Michalska M, Smutna K, Roupcová P, Novak V, Matejka V, Vlcek J. Influence of the chemical composition of leachates on the results of ecotoxicity tests for different slag types. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 366:121731. [PMID: 38981260 DOI: 10.1016/j.jenvman.2024.121731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/02/2024] [Accepted: 07/02/2024] [Indexed: 07/11/2024]
Abstract
In this study, four ecotoxicological tests on Vibrio fischeri bacteria, Sinapis alba L. (white mustard), Daphnia magna S. (daphnia's) and earthworms were performed for three types of aqueous slag (ladle, blast furnace and converter) leachates with two-grain sizes (<4 mm, <10 mm). Concentrations of toxic elements and concentrations of Cr(VI), Ca, Na, Al, and other ions were determined. The raw slags were analyzed using X-ray fluorescence spectroscopy (XRFS), and major substances were determined by X-ray powder diffraction (XRD). The aqueous slag leachates passed ecotoxicological tests and met the required criteria, showing no toxicity to Vibrio fischeri and complying with white mustard test criteria. According to the results of the ecotoxicity tests with daphnia, the blast furnace slag samples were not ecotoxic, while two other slag samples were found to be entirely compliant. Characterization of the slags showed that the effect of element/ion leachability and slag grain size is essential. Biplot principal component analysis (PCA) showed that grain size does not significantly affect the separation of individuals on the plane. A positive correlation on toxicity was found with pH, conductivity, calcium content, dissolved content, salinity and fluoride concentration, whereas a negative correlation was found with magnesium concentration, dissolved organic carbon and potassium concentration. The effective concentration at 50% inhibition (EC50) value for Vibrio fischeri correlated with the first dimension of bivariate assessment. In summary, it was found that the investigated slags can be effectively reused as they comply with regulations and do not endanger the environment.
Collapse
Affiliation(s)
- Jiri Pavlovsky
- Department of Chemistry and Physico-Chemical Processes, Faculty of Materials Science and Technology, VSB - Technical University of Ostrava, 17. listopadu 2172/15, 708 00 Ostrava-Poruba, Czech Republic.
| | - Jana Seidlerova
- Department of Chemistry and Physico-Chemical Processes, Faculty of Materials Science and Technology, VSB - Technical University of Ostrava, 17. listopadu 2172/15, 708 00 Ostrava-Poruba, Czech Republic; Nanotechnology Centre, CEET, VSB - Technical University of Ostrava, 17. listopadu 2172/15, 708 00 Ostrava-Poruba, Czech Republic
| | - Zuzana Pegrimocova
- Department of Chemistry and Physico-Chemical Processes, Faculty of Materials Science and Technology, VSB - Technical University of Ostrava, 17. listopadu 2172/15, 708 00 Ostrava-Poruba, Czech Republic
| | - Jirina Vontorova
- Department of Chemistry and Physico-Chemical Processes, Faculty of Materials Science and Technology, VSB - Technical University of Ostrava, 17. listopadu 2172/15, 708 00 Ostrava-Poruba, Czech Republic
| | - Oldrich Motyka
- Nanotechnology Centre, CEET, VSB - Technical University of Ostrava, 17. listopadu 2172/15, 708 00 Ostrava-Poruba, Czech Republic; Department of Environmental Engineering, Faculty of Mining and Geology, VSB - Technical University of Ostrava, 17. listopadu 2172/15, 708 00 Ostrava-Poruba, Czech Republic
| | - Monika Michalska
- Department of Chemistry and Physico-Chemical Processes, Faculty of Materials Science and Technology, VSB - Technical University of Ostrava, 17. listopadu 2172/15, 708 00 Ostrava-Poruba, Czech Republic
| | - Katerina Smutna
- Institute of Environmental Technology, CEET, Research Group: Water Treatment and Analysis, VSB - Technical University of Ostrava, 17. listopadu 2172/15 708 00 Ostrava-Poruba, Czech Republic
| | - Petra Roupcová
- Department of Occupational and Process Safety, Faculty of Safety Engineering, VSB - Technical University of Ostrava, Lumírova 630/13, 700 30 Ostrava-Výškovice, Czech Republic
| | - Vlastimil Novak
- Department of Chemistry and Physico-Chemical Processes, Faculty of Materials Science and Technology, VSB - Technical University of Ostrava, 17. listopadu 2172/15, 708 00 Ostrava-Poruba, Czech Republic
| | - Vlastimil Matejka
- Department of Chemistry and Physico-Chemical Processes, Faculty of Materials Science and Technology, VSB - Technical University of Ostrava, 17. listopadu 2172/15, 708 00 Ostrava-Poruba, Czech Republic
| | - Jozef Vlcek
- Material and Metallurgical Research Ltd., Pohraniční 693/31, Vítkovice, 703 00 Ostrava, Czech Republic
| |
Collapse
|
6
|
Fagervold SK, Rohée C, Lebaron P. Microbial consortia degrade several widely used organic UV filters, but a number of hydrophobic filters remain recalcitrant to biodegradation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:125931-125946. [PMID: 38010544 PMCID: PMC10754744 DOI: 10.1007/s11356-023-31063-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 11/11/2023] [Indexed: 11/29/2023]
Abstract
Organic UV filters are important ingredients in many personal care products, including sunscreens. Evaluating the biodegradability of organic UV filters is key to estimate their recalcitrance and environmental fate and thus central to their overall environmental risk assessment. In order to further understand the degradation process, the aim was to investigate whether specific consortia could degrade certain UV filters. Several bacterial strains were isolated from enrichment cultures actively degrading octocrylene (OC), butyl methoxydibenzoylmethane (BM), homosalate (HS), and 2-ethylhexyl salicylate (ES) and were utilized to construct an in-house consortium. This synthetic consortium contained 27 bacterial strains and degraded OC, BM, HS, and ES 60-80% after 12 days, but not benzophenone-3 (BP3), methoxyphenyl triazine (BEMT), methylene bis-benzotriazolyl tetramethylbutylphenol (MBBT), diethylhexyl butamido triazone (DBT), ethylhexyl triazone (EHT), or diethylamino hydroxybenzoyl hexyl benzoate (DHHB). Furthermore, several commercial microbial mixtures from Greencell were tested to assess their degradation activity toward the same organic UV filters. ES and HS were degraded by some of the commercial consortia, but to a lesser extent. The rest of the tested UV filters were not degraded by any of the commercial bacterial mixes. These results confirm that some organic UV filters are recalcitrant to biodegradation, while others are degraded by a specific set of microorganisms.
Collapse
Affiliation(s)
- Sonja K Fagervold
- Sorbonne Université, CNRS, Laboratoire de Biodiversité et Biotechnologies Microbiennes, LBBM, Observatoire Océanologique, 66650, Banyuls-sur-mer, France.
| | - Clémence Rohée
- Pierre Fabre Dermo-Cosmétique et Personal Care, Centre de Recherche & Développement Pierre Fabre, 31000, Toulouse, France
| | - Philippe Lebaron
- Sorbonne Université, CNRS, Laboratoire de Biodiversité et Biotechnologies Microbiennes, LBBM, Observatoire Océanologique, 66650, Banyuls-sur-mer, France
| |
Collapse
|
7
|
Pino-Otín MR, Lorca G, Val J, Ferrando N, Ballestero D, Langa E. Ecotoxicological Study of Tannic Acid on Soil and Water Non-Target Indicators and Its Impact on Fluvial and Edaphic Communities. PLANTS (BASEL, SWITZERLAND) 2023; 12:4041. [PMID: 38068678 PMCID: PMC10708037 DOI: 10.3390/plants12234041] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/24/2023] [Accepted: 11/27/2023] [Indexed: 09/07/2024]
Abstract
Tannic acid (TA) is a key tannin extensively used in the leather industry, contributing to around 90% of global leather production. This practice leads to the generation of highly polluting effluents, causing environmental harm to aquatic ecosystems. Additionally, tannins like TA degrade slowly under natural conditions. Despite efforts to reduce pollutant effluents, limited attention has been devoted to the direct environmental impact of tannins. Moreover, TA has garnered increased attention mainly due to its applications as an antibacterial agent and anti-carcinogenic compound. However, our understanding of its ecotoxicological effects remains incomplete. This study addresses this knowledge gap by assessing the ecotoxicity of TA on non-target indicator organisms in both water (Vibrio fischeri, Daphnia magna) and soil environments (Eisenia foetida, Allium cepa), as well as natural fluvial and edaphic communities, including periphyton. Our findings offer valuable insights into TA's ecotoxicological impact across various trophic levels, underscoring the need for more comprehensive investigations in complex ecosystems. Our results demonstrate that TA exhibits ecotoxicity towards specific non-target aquatic organisms, particularly V. fischeri and D. magna, and phytotoxicity on A. cepa. The severity of these effects varies, with V. fischeri being the most sensitive, followed by D. magna and A. cepa. However, the soil-dwelling invertebrate E. foetida shows resistance to the tested TA concentrations. Furthermore, our research reveals that substantial TA concentrations are required to reduce the growth of river microbial communities. Metabolic changes, particularly in amino acid and amine metabolism, are observed at lower concentrations. Notably, the photosynthetic yield of river periphyton remains unaffected, even at higher concentrations. In contrast, soil microbial communities exhibit greater sensitivity, with significant alterations in population growth and metabolic profiles at a very low concentration of 0.2 mg/L for all metabolites. In summary, this study offers valuable insights into the ecotoxicological effects of TA on both aquatic and terrestrial environments. It underscores the importance of considering a variety of non-target organisms and complex communities when assessing the environmental implications of this compound.
Collapse
|
8
|
Xiang Q, Zhou Y, Tan C. Enantioselective Toxic Effects of Prothioconazole toward Scenedesmus obliquus. Molecules 2023; 28:4774. [PMID: 37375329 DOI: 10.3390/molecules28124774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 06/08/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
Prothioconazole (PTC) is a broad-spectrum triazole fungicide with one asymmetric center and consists of two enantiomers, R-(-)-PTC and S-(+)-PTC. To address the concern of its environmental safety, the enantioselective toxic effects of PTC on Scendesmus obliquus (S. obliquus) were investigated. PTC racemates (Rac-PTC) and enantiomers exhibited dose-dependent acute toxicity effects against S. obliquus at a concentration from 1 to 10 mg·L-1. The 72 h-EC50 value of Rac-, R-(-)-, and S-(+)-PTC is 8.15, 16.53, and 7.85 mg·L-1, respectively. The growth ratios and photosynthetic pigment contents of the R-(-)-PTC treatment groups were higher than the Rac- and S-(+)-PTC treatment groups. Both catalase (CAT) activities and esterase activities were inhibited in the Rac- and S-(+)-PTC treatment groups at high concentrations of 5 and 10 mg·L-1, and the levels of malondialdehyde (MDA) were elevated, which exceeded the levels in algal cells for the R-(-)-PTC treatment groups. PTC could disrupt the cell morphology of S. obliquus and induce cell membrane damage, following the order of S-(+)-PTC ≈ Rac-PTC > R-(-)-PTC. The enantioselective toxic effects of PTC on S. obliquus provide essential information for its ecological risk assessment.
Collapse
Affiliation(s)
- Qingqing Xiang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Ying Zhou
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
- Environmental Microplastic Pollution Research Center, Zhejiang University of Technology, Hangzhou 310014, China
| | - Chengxia Tan
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| |
Collapse
|
9
|
Bertanza G, Steimberg N, Pedrazzani R, Boniotti J, Ceretti E, Mazzoleni G, Menghini M, Urani C, Zerbini I, Feretti D. Wastewater toxicity removal: Integrated chemical and effect-based monitoring of full-scale conventional activated sludge and membrane bioreactor plants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:158071. [PMID: 35988629 DOI: 10.1016/j.scitotenv.2022.158071] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 08/12/2022] [Accepted: 08/12/2022] [Indexed: 06/15/2023]
Abstract
The literature is currently lacking effect-based monitoring studies targeted at evaluating the performance of full-scale membrane bioreactor plants. In this research, a monitoring campaign was performed at a full-scale wastewater treatment facility with two parallel lines (traditional activated sludge and membrane bioreactor). Beside the standard parameters (COD, nitrogen, phosphorus, and metals), 6 polynuclear aromatic hydrocarbons, 29 insecticides, 2 herbicides, and 3 endocrine disrupting compounds were measured. A multi-tiered battery of bioassays complemented the investigation, targeting different toxic modes of action and employing various biological systems (uni/multicellular, prokaryotes/eukaryotes, trophic level occupation). A traffic light scoring approach was proposed to quickly visualize the impact of treatment on overall toxicity that occurred after the exposure to raw and concentrated wastewater. Analysis of the effluents of the CAS and MBR lines show very good performance of the two systems for removal of organic micropollutants and metals. The most noticeable differences between CAS and MBR occurred in the concentration of suspended solids; chemical analyses did not show major differences. On the other hand, bioassays demonstrated better performance for the MBR. Both treatment lines complied with the Italian law's "ecotoxicity standard for effluent discharge in surface water". Yet, residual biological activity was still detected, demonstrating the adequacy and sensitivity of the toxicological tools, which, by their inherent nature, allow the overall effects of complex mixtures to be taken into account.
Collapse
Affiliation(s)
- Giorgio Bertanza
- DICATAM-Department of Civil, Environmental, Architectural Engineering and Mathematics, University of Brescia, Via Branze 43, I-25123 Brescia, Italy; MISTRAAL Interdepartmental Research Center - MISTRAL - Inter-University Research Center "Integrated Models for Prevention and Protection in Environmental and Occupational Health", DSCS, Department of Clinical and Experimental Sciences, University of Brescia, Viale Europa 11, I-25123 Brescia, Italy.
| | - Nathalie Steimberg
- MISTRAAL Interdepartmental Research Center - MISTRAL - Inter-University Research Center "Integrated Models for Prevention and Protection in Environmental and Occupational Health", DSCS, Department of Clinical and Experimental Sciences, University of Brescia, Viale Europa 11, I-25123 Brescia, Italy; DSCS-Department of Clinical and Experimental Sciences, University of Brescia, Viale Europa 11, I-25123 Brescia, Italy.
| | - Roberta Pedrazzani
- MISTRAAL Interdepartmental Research Center - MISTRAL - Inter-University Research Center "Integrated Models for Prevention and Protection in Environmental and Occupational Health", DSCS, Department of Clinical and Experimental Sciences, University of Brescia, Viale Europa 11, I-25123 Brescia, Italy; DIMI-Department of Mechanical and Industrial Engineering, University of Brescia, Via Branze 38, I-25123 Brescia, Italy.
| | - Jennifer Boniotti
- DSCS-Department of Clinical and Experimental Sciences, University of Brescia, Viale Europa 11, I-25123 Brescia, Italy
| | - Elisabetta Ceretti
- DSMC-Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Viale Europa 11, I-25123 Brescia, Italy.
| | - Giovanna Mazzoleni
- MISTRAAL Interdepartmental Research Center - MISTRAL - Inter-University Research Center "Integrated Models for Prevention and Protection in Environmental and Occupational Health", DSCS, Department of Clinical and Experimental Sciences, University of Brescia, Viale Europa 11, I-25123 Brescia, Italy; DSCS-Department of Clinical and Experimental Sciences, University of Brescia, Viale Europa 11, I-25123 Brescia, Italy.
| | - Michele Menghini
- DIMI-Department of Mechanical and Industrial Engineering, University of Brescia, Via Branze 38, I-25123 Brescia, Italy.
| | - Chiara Urani
- MISTRAAL Interdepartmental Research Center - MISTRAL - Inter-University Research Center "Integrated Models for Prevention and Protection in Environmental and Occupational Health", DSCS, Department of Clinical and Experimental Sciences, University of Brescia, Viale Europa 11, I-25123 Brescia, Italy; DISAT-Department of Earth and Environmental Sciences, University of Milan-Bicocca, Piazza della Scienza 1, I-20126 Milano, Italy.
| | - Ilaria Zerbini
- DSMC-Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Viale Europa 11, I-25123 Brescia, Italy.
| | - Donatella Feretti
- MISTRAAL Interdepartmental Research Center - MISTRAL - Inter-University Research Center "Integrated Models for Prevention and Protection in Environmental and Occupational Health", DSCS, Department of Clinical and Experimental Sciences, University of Brescia, Viale Europa 11, I-25123 Brescia, Italy; DSMC-Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Viale Europa 11, I-25123 Brescia, Italy.
| |
Collapse
|
10
|
Costa AM, Dos Santos Valentim MR, da Silva LF, de Almeida R, Daflon SDA, Quintaes BR, Campos JC. Comparison between Aliivibrio fischeri and activated sludge microorganisms in the evaluation of the toxic pollutants of leachates from Brazilian landfills. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:1546-1558. [PMID: 34351579 DOI: 10.1007/s11356-021-15771-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 07/28/2021] [Indexed: 06/13/2023]
Abstract
Ecotoxicological assessment of landfill leachate has become a priority to determine its impacts on the ecosystem. Toxicity assays with microorganisms stand out due to their quick response, low cost and ease of testing. In this context, the present study evaluated the acute toxic effects of leachates from two landfills of different ages and modes of operation to bacterium Aliivibrio fischeri and activated sludge microorganisms and the ammonia nitrogen and humic substances (HS) sensitivity to these organisms. Reductions greater than 30% in leachate toxicity were observed after ammonia removal for A. fischeri and activated sludge microorganisms. After 97% removal of HS, the greater reductions in toxicity (44.28 to 79.82%) were verified for microbial species studied, indicating that the organic compounds (measured as chemical oxygen demand, total organic carbon and humic substances) were the primary pollutants responsible for the toxicity of the leachates. Concerning the organisms studied, A. fischeri showed greater sensitivity to the leachates' pollutants compared to the activated sludge microorganisms. Nevertheless, a strong correlation was observed between A. fischeri and activated sludge microorganisms' toxicity responses, suggesting that respirometry assay can be used to determine leachate toxicity.
Collapse
Affiliation(s)
- Alyne Moraes Costa
- School of Chemistry, Federal University of Rio de Janeiro, Athos da Silveira Ramos Avenue 149, Rio de Janeiro, 21941-909, Brazil
| | | | - Livia Ferreira da Silva
- School of Chemistry, Federal University of Rio de Janeiro, Athos da Silveira Ramos Avenue 149, Rio de Janeiro, 21941-909, Brazil
| | - Ronei de Almeida
- School of Chemistry, Federal University of Rio de Janeiro, Athos da Silveira Ramos Avenue 149, Rio de Janeiro, 21941-909, Brazil
| | - Sarah Dario Alves Daflon
- School of Chemistry, Federal University of Rio de Janeiro, Athos da Silveira Ramos Avenue 149, Rio de Janeiro, 21941-909, Brazil
| | - Bianca Ramalho Quintaes
- Municipal Company of Urban Cleaning of Rio de Janeiro, Américo de Souza Braga street 647, Rio de Janeiro, 22783-385, Brazil
| | - Juacyara Carbonelli Campos
- School of Chemistry, Federal University of Rio de Janeiro, Athos da Silveira Ramos Avenue 149, Rio de Janeiro, 21941-909, Brazil.
| |
Collapse
|