1
|
Landeta-Salgado C, Salas-Wallach N, Munizaga J, González-Troncoso MP, Burgos-Díaz C, Araújo-Caldas L, Sartorelli P, Martínez I, Lienqueo ME. Comprehensive Nutritional and Functional Characterization of Novel Mycoprotein Derived from the Bioconversion of Durvillaea spp. Foods 2024; 13:2376. [PMID: 39123566 PMCID: PMC11312218 DOI: 10.3390/foods13152376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024] Open
Abstract
This study aimed, for the first time, to determine the nutritional composition, beta-glucan and ergosterol contents, phenolic compound composition, and biological and functional activities of a novel mycoprotein produced through a bioconversion process of Durvillaea spp., a brown seaweed. An untargeted metabolomics approach was employed to screen metabolites and annotate molecules with nutraceutical properties. Two products, each representing a distinct consortia of co-cultured fungi, named Myco 1 and Myco 2, were analysed in this study. These consortia demonstrated superior properties compared to those of Durvillaea spp., showing significant increases in total protein (~238%), amino acids (~219%), and β-D-glucans (~112%). The protein contains all essential amino acids, a low fatty acid content, and exhibits high antioxidant activity (21.5-25.5 µmol TE/g). Additionally, Myco 2 exhibited the highest anti-alpha-glucosidase activity (IC50 = 16.5 mg/mL), and Myco 1 exhibited notable anti-lipase activity (IC50 = 10.5 mg/mL). Among the 69 top differentially abundant metabolites screened, 8 nutraceutical compounds were present in relatively high concentrations among the identified mycoproteins. The proteins and polysaccharides in the mycoprotein may play a crucial role in the formation and stabilization of emulsions, identifying it as a potent bioemulsifier. In conclusion, the bioconversion of Durvillaea spp. results in a mycoprotein with high-quality protein, significant nutritional and functional value, and prebiotic and nutraceutical potential due to the production of unique bioactive compounds.
Collapse
Affiliation(s)
- Catalina Landeta-Salgado
- Department of Chemical Engineering, Biotechnology, and Materials, Center for Biotechnology and Bioengineering (CeBiB), University of Chile, Beauchef 851, Santiago 8370456, Chile; (N.S.-W.); (J.M.); (I.M.); (M.E.L.)
| | - Nicolás Salas-Wallach
- Department of Chemical Engineering, Biotechnology, and Materials, Center for Biotechnology and Bioengineering (CeBiB), University of Chile, Beauchef 851, Santiago 8370456, Chile; (N.S.-W.); (J.M.); (I.M.); (M.E.L.)
| | - Javiera Munizaga
- Department of Chemical Engineering, Biotechnology, and Materials, Center for Biotechnology and Bioengineering (CeBiB), University of Chile, Beauchef 851, Santiago 8370456, Chile; (N.S.-W.); (J.M.); (I.M.); (M.E.L.)
| | - María Paz González-Troncoso
- Department of Chemical Engineering, Biotechnology, and Materials, Center for Biotechnology and Bioengineering (CeBiB), University of Chile, Beauchef 851, Santiago 8370456, Chile; (N.S.-W.); (J.M.); (I.M.); (M.E.L.)
| | - César Burgos-Díaz
- Agriaquaculture Nutritional Genomic Center, CGNA, Temuco 4780000, Chile;
| | - Lhaís Araújo-Caldas
- Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, Diadema Campus, Sao Paulo 09913-030, SP, Brazil; (L.A.-C.); (P.S.)
| | - Patricia Sartorelli
- Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, Diadema Campus, Sao Paulo 09913-030, SP, Brazil; (L.A.-C.); (P.S.)
| | - Irene Martínez
- Department of Chemical Engineering, Biotechnology, and Materials, Center for Biotechnology and Bioengineering (CeBiB), University of Chile, Beauchef 851, Santiago 8370456, Chile; (N.S.-W.); (J.M.); (I.M.); (M.E.L.)
| | - María Elena Lienqueo
- Department of Chemical Engineering, Biotechnology, and Materials, Center for Biotechnology and Bioengineering (CeBiB), University of Chile, Beauchef 851, Santiago 8370456, Chile; (N.S.-W.); (J.M.); (I.M.); (M.E.L.)
| |
Collapse
|
2
|
Chou MH, Chen YH, Cheng MT, Chiang HC, Chen HW, Wang CW. Potential of methacrylated acemannan for exerting antioxidant-, cell proliferation-, and cell migration-inducing activities in vitro. BMC Complement Med Ther 2023; 23:204. [PMID: 37340378 DOI: 10.1186/s12906-023-04022-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 06/02/2023] [Indexed: 06/22/2023] Open
Abstract
BACKGROUND Acemannan is an acetylated polysaccharide of Aloe vera extract with antimicrobial, antitumor, antiviral, and antioxidant activities. This study aims to optimize the synthesis of acemannan from methacrylate powder using a simple method and characterize it for potential use as a wound-healing agent. METHODS Acemannan was purified from methacrylated acemannan and characterized using high-performance liquid chromatography (HPLC), Fourier-transform infrared spectroscopy (FTIR), and 1H-nuclear magnetic resonance (NMR). 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assays were performed to investigate the antioxidant activity of acemannan and its effects on cell proliferation and oxidative stress damage, respectively. Further, a migration assay was conducted to determine the wound healing properties of acemannan. RESULTS We successfully optimized the synthesis of acemannan from methacrylate powder using a simple method. Our results demonstrated that methacrylated acemannan was identified as a polysaccharide with an acetylation degree similar to that in A. vera, with the FTIR revealing peaks at 1739.94 cm-1 (C = O stretching vibration), 1370 cm-1 (deformation of the H-C-OH bonds), and 1370 cm-1 (C-O-C asymmetric stretching vibration); 1H NMR showed an acetylation degree of 1.202. The DPPH results showed the highest antioxidant activity of acemannan with a 45% radical clearance rate, compared to malvidin, CoQ10, and water. Moreover, 2000 µg/mL acemannan showed the most optimal concentration for inducing cell proliferation, while 5 µg/mL acemannan induced the highest cell migration after 3 h. In addition, MTT assay findings showed that after 24 h, acemannan treatment successfully recovered cell damage due to H2O2 pre-treatment. CONCLUSION Our study provides a suitable technique for effective acemannan production and presents acemannan as a potential agent for use in accelerating wound healing through its antioxidant properties, as well as cell proliferation- and migration-inducing activities.
Collapse
Affiliation(s)
- Meng-Han Chou
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei, Taiwan (ROC)
| | - Yu-Hsu Chen
- Department of Orthopedic Surgery, Taoyuan General Hospital, Ministry of Health and Welfare, Taoyuan, Taiwan (ROC)
- Department of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan (ROC)
| | - Ming-Te Cheng
- Department of Orthopedic Surgery, Taoyuan General Hospital, Ministry of Health and Welfare, Taoyuan, Taiwan (ROC)
- School of Medicine, National Yang-Ming University, Taipei, Taiwan (ROC)
- Department of Biomedical Engineering, Chung Yuan Christian University, Taoyuan, Taiwan (ROC)
- Xinwu Branch, Taoyuan General Hospital, Ministry of Health and Welfare, Taoyuan, Taiwan (ROC)
| | - Hung-Chi Chiang
- Department of Internal Medicine, Taoyuan General Hospital, Ministry of Health and Welfare, Taoyuan, Taiwan (ROC)
| | - Hou-Wen Chen
- Department of Emergency Medicine, Taoyuan General Hospital, Ministry of Health and Welfare, Taoyuan, Taiwan (ROC).
| | - Ching-Wei Wang
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei, Taiwan (ROC).
- Graduate Institute of Biomedical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan (ROC).
| |
Collapse
|
3
|
Pascual G, Silva D, Vargas M, Aranda M, Cañumir JA, López MD. Dietary Supplement of Grape Wastes Enhances Honeybee Immune System and Reduces Deformed Wing Virus (DWV) Load. Antioxidants (Basel) 2022; 12:antiox12010054. [PMID: 36670916 PMCID: PMC9855144 DOI: 10.3390/antiox12010054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 12/20/2022] [Accepted: 12/23/2022] [Indexed: 12/29/2022] Open
Abstract
Ingredients rich in phenolic compounds and antioxidants of winemaking wastes, which play an important role in the prevention of various diseases and the control of viruses, are being explored. Currently, there is a concern about honeybee population loss, with deformed wing virus (DWV) being the most common virus infecting apiaries and one of the main causes of honeybee decline. Hence, the effect of grape pomace powder (GPP) as a dietary supplement to enhance the immune system of honeybees affected by DWV was evaluated. The characteristics of the ingredient GPP, obtained by spray-drying, revealed a high anthocyanin content (1102.45 mg 100 g-1), and it was applied at doses of 0.5, 1, 2.5 and 5% as a dietary supplement for bees infected by DWV. The results showed that the GPP treatments strengthened the immune response of honeybees against DWV. Moreover, the expression of the Relish gene was significantly higher in bees fed with GPP compared to the infected control. This study, which is framed in the search of food waste valorization for environmental sustainability, proves the feasibility of using grape wastes as dietary supplements for pollinators, and provides knowledge of the influence of polyphenols on the expression profiles of immune-related genes in honeybees.
Collapse
Affiliation(s)
- Guillermo Pascual
- Departamento de Producción Vegetal, Facultad de Agronomía, Universidad de Concepción, Vicente Méndez #595, Chillán 3780000, Chile
| | - Diego Silva
- Departamento de Producción Vegetal, Facultad de Agronomía, Universidad de Concepción, Vicente Méndez #595, Chillán 3780000, Chile
| | - Marisol Vargas
- Departamento de Producción Vegetal, Facultad de Agronomía, Universidad de Concepción, Vicente Méndez #595, Chillán 3780000, Chile
| | - Mario Aranda
- Laboratorio de Investigación en Fármacos y Alimentos, Departamento de Farmacia, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Macul, Santiago 7810000, Chile
| | - Juan Antonio Cañumir
- Laboratorio de Bioprocesos, Departamento de Agroindustría, Facultad de Ingenería Agrícola, Universidad de Concepción, Vicente Méndez #595, Chillán 3780000, Chile
| | - María Dolores López
- Departamento de Producción Vegetal, Facultad de Agronomía, Universidad de Concepción, Vicente Méndez #595, Chillán 3780000, Chile
- Correspondence:
| |
Collapse
|
4
|
Xiao Z, Xia J, Zhao Q, Niu Y, Zhao D. Maltodextrin as wall material for microcapsules: A review. Carbohydr Polym 2022; 298:120113. [DOI: 10.1016/j.carbpol.2022.120113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 08/22/2022] [Accepted: 09/11/2022] [Indexed: 11/02/2022]
|
5
|
Phenolic Compounds in Calafate Berries Encapsulated by Spray Drying: Neuroprotection Potential into the Ingredient. Antioxidants (Basel) 2021; 10:antiox10111830. [PMID: 34829700 PMCID: PMC8614940 DOI: 10.3390/antiox10111830] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/03/2021] [Accepted: 11/12/2021] [Indexed: 11/24/2022] Open
Abstract
Calafate is a berry rich in anthocyanins that presents higher content of polyphenols than other fruits. Its compounds have been described previously, however, the potential thereof in preventing and treating degenerative disorders has not yet been studied. Due to its astringency, the consumption of this berry in its natural state is limited. To profit from the aforementioned properties and reduce palatability issues, calafate berry extracts were microencapsulated by spray drying, a rapid, cost-effective and scalable process, and were then compared with freeze drying as a control. The stability of its contents and its in-vitro potential, with respect to AChE activity and neuroprotection, were measured from the obtained microcapsules, resulting from temperature treatments and different encapsulant contents. The results indicated that the spray-dried powders were stable, despite high temperatures, and their encapsulation exhibited nearly 50% efficiency. The highest quantity of polyphenols and 3-O-glycosylated anthocyanins was obtained from encapsulation with 20% maltodextrin, at 120 °C. Temperature did not affect the microcapsules’ biological action, as demonstrated by their antioxidant activities. The prevention of Aβ peptide cytotoxicity in PC12 cells (20%) revealed that encapsulated calafate can confer neuroprotection. We conclude that spray-drying is an appropriate technique for scaling-up and producing new value-added calafate formulations with anti-neurodegenerative effects and vivid colors.
Collapse
|
6
|
Grape (Vitis vinifera L. cv. País) Juices Obtained by Steam Extraction. Processes (Basel) 2021. [DOI: 10.3390/pr9091670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Vitis vinifera L. cv. País is an ancestral Chilean grape undervalued due to its undesirable oenological characteristics. In this study, steam extraction for the production of grape juice, a new product, according to our knowledge, is proposed as an alternative for the valorization of this fruit. The effect of the extraction time on the composition and antioxidant capacity of País grape juice obtained was evaluated, as well as the change in the phenolic profile during storage. The soluble solid values and total polyphenol and total anthocyanin content increased with the extraction time. However, a residence time of the juice in the extraction device higher than 10 min led to thermal degradation of anthocyanins and flavonols. The most abundant phenolic compound identified and quantified by HPLC-DAD in the País grape juice was cinnamic acid. The storage of juices had a greater effect on anthocyanin and flavonol losses than the residence time of the juice in the extraction device. The antioxidant capacity of juice measured by ABTS and ferric reducing power assays ranged from 3 to 5 mmol trolox/L and from 10 to 18 mM Fe2+/L, respectively. In summary, steam extraction is a viable method to produce País grape juice with antioxidant capacity.
Collapse
|
7
|
Leyva-Porras C, Saavedra-Leos MZ, López-Martinez LA, Espinosa-Solis V, Terán-Figueroa Y, Toxqui-Terán A, Compeán-Martínez I. Strawberry Juice Powders: Effect of Spray-Drying Conditions on the Microencapsulation of Bioactive Components and Physicochemical Properties. Molecules 2021; 26:molecules26185466. [PMID: 34576935 PMCID: PMC8466992 DOI: 10.3390/molecules26185466] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 08/30/2021] [Accepted: 09/02/2021] [Indexed: 11/16/2022] Open
Abstract
The drying of fruit juices has advantages such as easy handling of powders, reduction in volume, and preservation of the characteristics of the fruit. Thus, in this work, the effect of the spray drying conditions of strawberry juice (SJ) with maltodextrin (MX) as a carrying agent on the microencapsulation of bioactive compounds and physicochemical properties was studied. The content of phenolic compounds and antioxidant activity showed higher values at low concentrations of MX, while the effect of drying temperature was negligible. The thermal characterization showed that the low molecular weight sugars in the juice decreased the glass transition temperature (Tg). The morphological analysis by scanning electron microscopy (SEM) indicated that at low concentrations of MX, the particles agglomerated, while at intermediate and high concentrations, the particles were observed as well separated. Through microstructural analysis by X-ray diffraction (XRD), the presence of amorphous state was confirmed in all the samples, which is beneficial for preventing chemical and biochemical reactions, and promoting the conservation of the microencapsulated bioactive compounds.
Collapse
Affiliation(s)
- César Leyva-Porras
- Centro de Investigación de Materiales Avanzados (CIMAV), Complejo Industrial Chihuahua, Chihuahua 31136, Mexico;
| | - María Zenaida Saavedra-Leos
- Coordinación Académica Región Altiplano, Universidad Autónoma de San Luis Potosí, Matehuala, San Luis Potosí 78700, Mexico;
| | - Laura Araceli López-Martinez
- Coordinación Académica Región Altiplano Oeste, Universidad Autónoma de San Luis Potosí, Carretera Salinas-Santo Domingo 200, Salinas de Hidalgo, San Luis Potosí 78600, Mexico;
| | - Vicente Espinosa-Solis
- Coordinación Académica Región Huasteca Sur, Universidad Autónoma de San Luis Potosí, Carretera Tamazunchale-San Martin Km. 5. Tamazunchale, San Luis Potosí 79960, Mexico;
| | - Yolanda Terán-Figueroa
- Facultad de Enfermería y Nutrición, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava 6, San Luis Potosí 78210, Mexico;
| | - Alberto Toxqui-Terán
- Centro de Investigación de Materiales Avanzados (CIMAV), Parque de Investigación e Innovación Tecnológica, Apodaca, Nuevo León 66600, Mexico;
| | - Isaac Compeán-Martínez
- Coordinación Académica Región Altiplano, Universidad Autónoma de San Luis Potosí, Matehuala, San Luis Potosí 78700, Mexico;
- Correspondence:
| |
Collapse
|
8
|
Milinčić DD, Kostić AŽ, Gašić UM, Lević S, Stanojević SP, Barać MB, Tešić ŽL, Nedović V, Pešić MB. Skimmed Goat's Milk Powder Enriched with Grape Pomace Seed Extract: Phenolics and Protein Characterization and Antioxidant Properties. Biomolecules 2021; 11:biom11070965. [PMID: 34208895 PMCID: PMC8301875 DOI: 10.3390/biom11070965] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 06/18/2021] [Accepted: 06/26/2021] [Indexed: 11/16/2022] Open
Abstract
The aim of this research was phenolics and protein characterization and antioxidant properties evaluation of skimmed thermally treated goat's milk powder enriched with different concentration of grape pomace seed extract (SE). The dominant phenolics in SE were phenolic acids, flavan-3-ols and procyanidins. Different electrophoretic techniques together with UHPLC-MS/MS analysis revealed the presence of phenolics-protein interactions in the samples, mainly procyanidins with whey protein/caseins complexes. Addition of SE into thermally treated goat's milk significantly improved antioxidant properties of goat's milk such as TAC, FRP, DPPH• and ABTS•+ scavenging activity. Gallic acid, catechin, and procyanidins mostly contributed to these activities. The schematic representation of phenolics-casein micelles interactions in thermally treated goat's milk enriched with SE was given. The addition of SE into thermally treated goat's milk can be a promising strategy in food waste recovery and to enhance the beneficial health effects of goat's milk-based functional foods.
Collapse
Affiliation(s)
- Danijel D. Milinčić
- Faculty of Agriculture, Institute of Food Technology and Biochemistry, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia; (D.D.M.); (A.Ž.K.); (S.L.); (S.P.S.); (M.B.B.); (V.N.)
| | - Aleksandar Ž. Kostić
- Faculty of Agriculture, Institute of Food Technology and Biochemistry, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia; (D.D.M.); (A.Ž.K.); (S.L.); (S.P.S.); (M.B.B.); (V.N.)
| | - Uroš M. Gašić
- Department of Plant Physiology, Institute for Biological Research “Siniša Stanković”, National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia;
| | - Steva Lević
- Faculty of Agriculture, Institute of Food Technology and Biochemistry, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia; (D.D.M.); (A.Ž.K.); (S.L.); (S.P.S.); (M.B.B.); (V.N.)
| | - Slađana P. Stanojević
- Faculty of Agriculture, Institute of Food Technology and Biochemistry, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia; (D.D.M.); (A.Ž.K.); (S.L.); (S.P.S.); (M.B.B.); (V.N.)
| | - Miroljub B. Barać
- Faculty of Agriculture, Institute of Food Technology and Biochemistry, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia; (D.D.M.); (A.Ž.K.); (S.L.); (S.P.S.); (M.B.B.); (V.N.)
| | - Živoslav Lj. Tešić
- Chair of Analytical Chemistry, Faculty of Chemistry, University of Belgrade, Studentski Trg 12–16, 11000 Belgrade, Serbia;
| | - Viktor Nedović
- Faculty of Agriculture, Institute of Food Technology and Biochemistry, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia; (D.D.M.); (A.Ž.K.); (S.L.); (S.P.S.); (M.B.B.); (V.N.)
| | - Mirjana B. Pešić
- Faculty of Agriculture, Institute of Food Technology and Biochemistry, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia; (D.D.M.); (A.Ž.K.); (S.L.); (S.P.S.); (M.B.B.); (V.N.)
- Correspondence:
| |
Collapse
|