1
|
Hashemi M, Mirmohamadsadeghi S, Khoshnevisan B, Galán-Martín Á, Denayer JFM, Karimi K. Life cycle assessment of bioenergy and value-added biochemical production from Nizimudinia zanardini brown macroalgae. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 976:179225. [PMID: 40199198 DOI: 10.1016/j.scitotenv.2025.179225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 03/05/2025] [Accepted: 03/22/2025] [Indexed: 04/10/2025]
Abstract
This study aimed to contribute to the sustainable development of the Blue Bioeconomy via cascade biorefineries of macroalgae by investigating the environmental sustainability of two algae-biorefinery systems that utilize endemic brown macroalgae Nizimuddinia zanardini. The first scenario involved the production of fuel ethanol, and electricity, while the second scenario included the co-production of fuel ethanol, electricity, and high-value bio-based chemicals, i.e., protein, mannitol, and alginate. Combining process simulation tools with consequential life cycle assessment, the study provides a comprehensive evaluation of the environmental impacts associated with the valorization of 1 metric ton of dry algae considering three areas of environmental protection namely human health, ecosystem quality, and resource depletion. The results demonstrated that the biorefinery approach led to net savings of -2.61 × 10-3 DALYs, -1.18 × 10-5 species.yr, and - 76.8 USD2013 per ton of macroalgae on human health, ecosystem quality, and resource depletion, respectively. Conversely, the only-fuel approach resulted in a net savings of -74.6 USD2013 per ton of macroalgae on resource depletion, and the net impact of 2.14 × 10-4 DALYs, 5.33 × 10-7 species.yr per ton of macroalgae on human health, and ecosystem quality, respectively. In general, the biorefinery approach compared to the only-fuel approach led to significant savings in all damage categories owing to the generation of high-value products. These findings highlight the significant potential of biorefineries for the sustainable valorization of macroalgae.
Collapse
Affiliation(s)
- Maryam Hashemi
- Chemical Engineering Deaprtment, Isahan University of Technology, Isfahan, Iran
| | - Safoora Mirmohamadsadeghi
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan 81746-73441, Iran
| | - Benyamin Khoshnevisan
- SDU Life Cycle Engineering, Department of Green Technology, University of Southern Denmark, Denmark
| | - Ángel Galán-Martín
- Department of Chemical, Environmental and Materials Engineering, Institute of Biorefineries Research (I3B), University of Jaén, Campus Las Lagunillas s/n, Jaén 23071, Spain
| | - Joeri F M Denayer
- Department of Chemical Engineering, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Keikhosro Karimi
- Department of Chemical Engineering, Vrije Universiteit Brussel, 1050 Brussels, Belgium.
| |
Collapse
|
2
|
Müller C, Scapini T, Rempel A, Abaide ER, Camargo AF, Nazari MT, Tadioto V, Bonatto C, Tres MV, Zabot GL, Colla LM, Treichel H, Alves SL. Challenges and opportunities for third-generation ethanol production: A critical review. ENGINEERING MICROBIOLOGY 2023; 3:100056. [PMID: 39628516 PMCID: PMC11610999 DOI: 10.1016/j.engmic.2022.100056] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 10/24/2022] [Accepted: 10/27/2022] [Indexed: 12/06/2024]
Abstract
In recent decades, third-generation (3G) biofuels have become a more attractive method of fuel production, as algae cultivation does not infringe on resources needed for food production. Additionally, algae can adapt to different environments, has high photosynthetic efficiency (CO2 fixation), and has a high potential for carbohydrate accumulation. The prevalence of algae worldwide demonstrates its ability to adapt to different environments and climates, proving its biodiversity and versatility. Algae can be grown in wastewater, seawater, and even sewage, thus ensuring a lower water footprint and greater energy efficiency during algal biomass production. Because of this, the optimization of 3G ethanol production appears to be an excellent alternative to mitigate environmental impacts and increase energy and food security. This critical review presents (i) the stages of cultivation and processing of micro and macroalgae; (ii) the selection of yeasts (through engineering and/or bioprospecting) to produce ethanol from these biomasses; (iii) the potential of seawater-based facilities to reduce water footprint; and (iv) the mass and energy balances of 3G ethanol production in the world energy matrix. This article is, above all, a brainstorm on the environmental viability of algae bioethanol.
Collapse
Affiliation(s)
- Caroline Müller
- Laboratory of Yeast Biochemistry, Federal University of Fronteira Sul, Campus Chapecó, SC 484, Km 2, Chapecó, SC, Brazil
| | - Thamarys Scapini
- Laboratory of Microbiology and Bioprocess, Environmental Science and Technology, Federal University of Fronteira Sul, Campus Erechim, RS 135, 200, Erechim, RS, Brazil
| | - Alan Rempel
- Graduate Program in Civil and Environmental Engineering, University of Passo Fundo, BR 285, Passo Fundo, RS, Brazil
| | - Ederson Rossi Abaide
- Department of Chemical Engineering, Federal University of Santa Maria, 1000, Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Aline Frumi Camargo
- Laboratory of Microbiology and Bioprocess, Environmental Science and Technology, Federal University of Fronteira Sul, Campus Erechim, RS 135, 200, Erechim, RS, Brazil
| | - Mateus Torres Nazari
- Graduate Program in Civil and Environmental Engineering, University of Passo Fundo, BR 285, Passo Fundo, RS, Brazil
| | - Viviani Tadioto
- Laboratory of Yeast Biochemistry, Federal University of Fronteira Sul, Campus Chapecó, SC 484, Km 2, Chapecó, SC, Brazil
| | - Charline Bonatto
- Laboratory of Microbiology and Bioprocess, Environmental Science and Technology, Federal University of Fronteira Sul, Campus Erechim, RS 135, 200, Erechim, RS, Brazil
| | - Marcus Vinícius Tres
- Laboratory of Agroindustrial Processes Engineering, Federal University of Santa Maria, 1040, Sete de Setembro st., Cachoeira do Sul, RS, Brazil
| | - Giovani Leone Zabot
- Laboratory of Agroindustrial Processes Engineering, Federal University of Santa Maria, 1040, Sete de Setembro st., Cachoeira do Sul, RS, Brazil
| | - Luciane Maria Colla
- Graduate Program in Civil and Environmental Engineering, University of Passo Fundo, BR 285, Passo Fundo, RS, Brazil
| | - Helen Treichel
- Laboratory of Microbiology and Bioprocess, Environmental Science and Technology, Federal University of Fronteira Sul, Campus Erechim, RS 135, 200, Erechim, RS, Brazil
| | - Sérgio Luiz Alves
- Laboratory of Yeast Biochemistry, Federal University of Fronteira Sul, Campus Chapecó, SC 484, Km 2, Chapecó, SC, Brazil
| |
Collapse
|
3
|
Reppke MJ, Gerstner R, Windeisen-Holzhauser E, Richter K, Benz JP. Press water from the mechanical drying of Douglas-fir wood chips has multiple beneficial effects on lignocellulolytic fungi. Fungal Biol Biotechnol 2022; 9:10. [PMID: 35606847 PMCID: PMC9128199 DOI: 10.1186/s40694-022-00141-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 05/10/2022] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND The mechanical drying of wood chips is an innovative method that improves the heating value of sawmill by-products in an energy-efficient continuous process. The liquid that comes out of the wood chips as press water (PW), however, contains a variety of undissolved as well as dissolved organic substances. The disposal of the PW as wastewater would generate additional costs due to its high organic load, offsetting the benefits in energy costs associated with the enhanced heating value of the wood chips. Our research explored if the organic load in PW could be utilized as a substrate by cellulolytic filamentous fungi. Hence, using the industrially relevant Ascomycete Trichoderma reesei RUT-C30 as well as several Basidiomycete wood-rotting fungi, we examined the potential of press water obtained from Douglas-fir wood chips to be used in the growth and enzyme production media. RESULTS The addition of PW supernatant to liquid cultures of T. reesei RUT-C30 resulted in a significant enhancement of the endoglucanase and endoxylanase activities with a substantially shortened lag-phase. A partial replacement of Ca2+, Mg2+, K+, as well as a complete replacement of Fe2+, Mn2+, Zn2+ by supplementing PW of the liquid media was achieved without negative effects on enzyme production. Concentrations of PW above 50% showed no adverse effects regarding the achievable endoglucanase activity but affected the endoxylanase activity to some extent. Exploring the enhancing potential of several individual PW components after chemical analysis revealed that the observed lag-phase reduction of T. reesei RUT-C30 was not caused by the dissolved sugars and ions, nor the wood particles in the PW sediment, suggesting that other, so far non-identified, compounds are responsible. However, also the growth rate of several basidiomycetes was significantly enhanced by the supplementation of raw PW to the agar medium. Moreover, their cultivation in liquid cultures reduced the turbidity of the PW substantially. CONCLUSIONS PW was identified as a suitable media supplement for lignocellulolytic fungi, including the cellulase and xylanase producer T. reesei RUT-C30 and several wood-degrading basidiomycetes. The possibility to replace several minerals, trace elements and an equal volume of fresh water in liquid media with PW and the ability of fungal mycelia to filter out the suspended solids is a promising way to combine biological wastewater treatment with value-adding biotechnological applications.
Collapse
Affiliation(s)
- Manfred J Reppke
- Professorship of Fungal Biotechnology in Wood Science, Holzforschung München (HFM), TUM School of Life Sciences, Technical University of Munich, Hans-Carl-von-Carlowitz-Platz 2, 85354, Freising, Germany
| | - Rebecca Gerstner
- Professorship of Fungal Biotechnology in Wood Science, Holzforschung München (HFM), TUM School of Life Sciences, Technical University of Munich, Hans-Carl-von-Carlowitz-Platz 2, 85354, Freising, Germany
| | - Elisabeth Windeisen-Holzhauser
- Chair of Wood Science, Holzforschung München (HFM), TUM School of Life Sciences, Technical University of Munich, Winzererstr. 45, 80797, Munich, Germany
| | - Klaus Richter
- Chair of Wood Science, Holzforschung München (HFM), TUM School of Life Sciences, Technical University of Munich, Winzererstr. 45, 80797, Munich, Germany
| | - J Philipp Benz
- Professorship of Fungal Biotechnology in Wood Science, Holzforschung München (HFM), TUM School of Life Sciences, Technical University of Munich, Hans-Carl-von-Carlowitz-Platz 2, 85354, Freising, Germany.
- Institute for Advanced Study, Technical University of Munich, Lichtenbergstraße 2a, 85748, Garching, Germany.
| |
Collapse
|
4
|
Dev B, Bakshi A, Paramasivan B. Prospects of utilizing seawater as a reaction medium for pretreatment and saccharification of rice straw. CHEMOSPHERE 2022; 293:133528. [PMID: 34995624 DOI: 10.1016/j.chemosphere.2022.133528] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 12/30/2021] [Accepted: 01/02/2022] [Indexed: 06/14/2023]
Abstract
The transition towards a bio-based economy has led to an unprecedented surge in fresh water consumption that renders biofuel a high water footprint product. The depleting fresh water resources have exacerbated the situation which necessitates the exploration of non-potable water for biorefinery purposes. In the current study, seawater is used as a plausible alternative reaction medium for pretreatment and saccharification of rice straw. Response Surface Methodology (RSM) based on Box-Behnken Design (BBD) was employed to model, predict and validate cellulose release and reducing sugar yield from rice straw subjected to microwave-NaOH pretreatment. The optimized pretreatment conditions were determined to be 8.54% substrate loading, 1.94% NaOH and 4.09 min which resulted in the maximum cellulose release of 65.43% and reducing sugar yield of 0.554 g/g. Several physico-chemical studies of the raw and pretreated biomass were carried out using bomb calorimetry, scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy, Brunauer-Emmett-Teller (BET) analysis and thermal gravimetric analysis (TGA) to examine the efficacy of pretreatment. Evidences of an apparent delignification was substantiated by the increase in surface area from 7.719 to 44.188 m2 g-1and pore volume from 0.039 to 0.071 mlg-1 which was consistent with the decrease in energy density and distorted surface morphology of the pretreated biomass. Further, the FTIR revealed a reduced peak in the absorption spectral bands at 1636 cm-1 which confirmed the pretreatment mediated degradation of lignin and hemicellulose. This finding provides evidence on the prospects of utilizing abundantly available seawater resource as a reaction medium for sustainable biofuel production.
Collapse
Affiliation(s)
- Binita Dev
- Department of Life Science, National Institute of Technology Rourkela, Odisha, 769008, India
| | - Arindam Bakshi
- Department of Food Science and Human Nutrition, Iowa State University, Iowa, 50011, USA
| | - Balasubramanian Paramasivan
- Department of Biotechnology & Medical Engineering, National Institute of Technology Rourkela, 769008, Odisha, India.
| |
Collapse
|
5
|
Controlling the Formation of Foams in Broth to Promote the Co-Production of Microbial Oil and Exopolysaccharide in Fed-Batch Fermentation. FERMENTATION 2022. [DOI: 10.3390/fermentation8020068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
A large amount of foam is generated in the production of microbial oil and exopolysaccharide (EPS) by Sporidiobolus pararoseus JD-2, which causes low efficiency in fermentation. In this study, we aimed to reduce the negative effects of foams on the co-production of oil and EPS by controlling the formation of foams in broth. As we have found, the formation of foams is positively associated with cell growth state, air entrapment, and properties of broth. The efficient foam-control method of adding 0.03% (v/v) of the emulsified polyoxyethylene polyoxypropylene pentaerythritol ether (PPE) and feeding corn steep liquor (CSL) at 8–24 h with speed of 0.02 L/h considerably improved the fermentation performance of S. pararoseus JD-2, and significantly increased the oil and EPS concentrations by 8.7% and 12.9%, respectively. The biomass, oil, and EPS concentrations were further increased using a foam backflow device combined with adding 0.03% (v/v) of the emulsified PPE and feeding CSL at 8–24 h, which reached to 62.3 ± 1.8 g/L, 31.2 ± 0.8 g/L, and 10.9 ± 0.4 g/L, respectively. The effective strategy for controlling the formation of foams in fermentation broth reported here could be used as a technical reference for producing frothing products in fed-batch fermentation.
Collapse
|
6
|
Scapini T, Dalastra C, Camargo AF, Kubeneck S, Modkovski TA, Júnior SLA, Treichel H. Seawater-based biorefineries: A strategy to reduce the water footprint in the conversion of lignocellulosic biomass. BIORESOURCE TECHNOLOGY 2022; 344:126325. [PMID: 34785329 DOI: 10.1016/j.biortech.2021.126325] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/07/2021] [Accepted: 11/09/2021] [Indexed: 06/13/2023]
Abstract
Biorefineries are an essential step towards implementing a circular economy in the long term. They are based on renewable raw materials and must be designed holistically, recovering building blocks from being converted into several products. Lignocellulosic biomass is considered a critical pillar for a biologically based economy and a high value-added feedstock. The separation of the structural complexity that makes up the biomass allows the development of different product flows. Chemical, physical, and biological processes are evaluated for fractionation, hydrolysis, and fermentation processes in biorefineries; however, the volume of freshwater used affects water safety and increases the economic costs. Non-potable-resources-based technologies for biomass bioconversion are essential for biorefineries to become environmentally and economically sustainable systems. Studies are being carried out to substitute freshwater with seawater to reduce the water footprint. Accordingly, this review addresses a comprehensive discussion about seawater-based biorefineries focusing on lignocellulosic biomass conversion in biofuel and value-added products.
Collapse
Affiliation(s)
- Thamarys Scapini
- Laboratory of Microbiology and Bioprocess (LAMIBI), Federal University of Fronteira Sul, Erechim, RS, Brazil; Bioprocess Engineering and Biotechnology Department, Federal University of Paraná, Curitiba, PR, Brazil
| | - Caroline Dalastra
- Laboratory of Microbiology and Bioprocess (LAMIBI), Federal University of Fronteira Sul, Erechim, RS, Brazil
| | - Aline Frumi Camargo
- Laboratory of Microbiology and Bioprocess (LAMIBI), Federal University of Fronteira Sul, Erechim, RS, Brazil; Department of Biological Science, Graduate Program in Biotechnology and Bioscience, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Simone Kubeneck
- Laboratory of Microbiology and Bioprocess (LAMIBI), Federal University of Fronteira Sul, Erechim, RS, Brazil
| | | | - Sérgio Luiz Alves Júnior
- Laboratory of Biochemistry and Genetics, Federal University of Fronteira Sul, Chapecó, SC, Brazil
| | - Helen Treichel
- Laboratory of Microbiology and Bioprocess (LAMIBI), Federal University of Fronteira Sul, Erechim, RS, Brazil; Department of Biological Science, Graduate Program in Biotechnology and Bioscience, Federal University of Santa Catarina, Florianópolis, SC, Brazil.
| |
Collapse
|
7
|
Approaching Sustainability Transition in Supply Chains as a Wicked Problem: Systematic Literature Review in Light of the Evolved Double Diamond Design Process Model. Processes (Basel) 2021. [DOI: 10.3390/pr9122135] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Transition from the status quo to more sustainable supply chain management (SSCM) practices is a highly complex and non-linear process with multiple drivers, but also obstacles, on the way. The impending strict regulatory framework, particularly in terms of the environmental dimensions of sustainability development (SD), is single-handedly opening the door to rapid and potentially disruptive change. The research literature on SSCM has increased exponentially over the last decade to meet the mounting demand for information on how to tackle often conflicting sustainability-related requirements while satisfying all internal and external stakeholders. Due to the continuously evolving and wicked nature of SSCM, a limited number of scholars have approached the issue with design thinking problem solving methodologies (DTPSMs). The results of a systematic literature review (SLR) were mirrored with the Evolved Double Diamond (EDD) design process model to formulate a design thinking overview and trace potential research gaps of selected frameworks and models regarding the sustainability transition (ST) of supply chains (SCs). The research results demonstrate that modelling the ST in SC as a wicked problem can contribute to the creation of more structured and novel SSCM models and frameworks, which take into deeper consideration the evolving nature of the issue and improve facilitation practices of stakeholder engagement.
Collapse
|
8
|
Abstract
Fungal delignification can be a feasible process to pretreat biomass for bioethanol production if its performance is improved in terms of efficiency through a few modifications. The aim of this study was to enhance the biodelignification pretreatment of rice straw using laccase in the presence of ionic liquid (1-Allyl-3-methylimidazolium chloride, [AMIM]Cl) or surfactant (TritonX-100). Addition of 750 mg/L [AMIM]Cl and 500 mg/L TritonX-100 increases the lignin removal to 18.49% and 31.79%, which is higher than that of laccase only (11.97%). The enzymatic saccharification process was carried out based on different strategies. The highest cellulose conversion, 40.96%, 38.24%, and 37.91%, was obtained after 72 h of enzymatic saccharification when the substrate was washed with distilled water after pretreatment of rice straw with laccase + TritonX-100, laccase + [AMIM]Cl, and laccase only, respectively. In addition, the morphology and structure changes of pretreated and untreated rice straw were studied. Both surface area and cellulose crystallinity are substantially altered after laccase + [AMIM]Cl and laccase + TritonX-100 pretreatment. Enhanced saccharification efficiency of rice straw was achieved by laccase pretreatment with ionic liquid or surfactant in a single system.
Collapse
|
9
|
Introducing a Marine Biorefinery System for the Integrated Production of Biofuels, High-Value-Chemicals, and Co-Products: A Path Forward to a Sustainable Future. Processes (Basel) 2021. [DOI: 10.3390/pr9101841] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Biofuels have many environmental and practical benefits as a transportation fuel. They are among the best alternatives to fossil fuels- thanks to their capacity for negative carbon emissions, which is vital for archiving the global ambition of a net-zero economy. However, conventional biofuel production takes place on inland sites and relies on freshwater and edible crops (or land suitable for edible crop production), which has led to the food versus fuel debate. It also suffers technical and economical barriers owing to the energy balance and the cost of production compared with fossil fuels. Establishing a coastal integrated marine biorefinery (CIMB) system for the simultaneous production of biofuels, high-value chemicals, and other co-products could be the ultimate solution. The proposed system is based on coastal sites and relies entirely on marine resources including seawater, marine biomass (seaweed), and marine microorganisms (marine yeasts and marine microalgae). The system does not require the use of arable land and freshwater in any part of the production chain and should be linked to offshore renewable energy sources to increase its economic feasibility and environmental value. This article aims to introduce the CIMB system as a potential vehicle for addressing the global warming issue and speeding the global effort on climate change mitigation as well as supporting the world’s water, food and energy security. I hope these perspectives serve to draw attention into research funding for this approach.
Collapse
|