1
|
Lu J, Qiu H, Zhang Q, Lan Y, Wang P, Wu Y, Mo J, Chen W, Niu H, Wu Z. Inversion of chlorophyll content under the stress of leaf mite for jujube based on model PSO-ELM method. FRONTIERS IN PLANT SCIENCE 2022; 13:1009630. [PMID: 36247579 PMCID: PMC9562855 DOI: 10.3389/fpls.2022.1009630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 08/29/2022] [Indexed: 06/16/2023]
Abstract
During the growth season, jujube trees are susceptible to infestation by the leaf mite, which reduces the fruit quality and productivity. Traditional monitoring techniques for mites are time-consuming, difficult, subjective, and result in a time lag. In this study, the method based on a particle swarm optimization (PSO) algorithm extreme learning machine for estimation of leaf chlorophyll content (SPAD) under leaf mite infestation in jujube was proposed. Initially, image data and SPAD values for jujube orchards under four severities of leaf mite infestation were collected for analysis. Six vegetation indices and SPAD value were chosen for correlation analysis to establish the estimation model for SPAD and the vegetation indices. To address the influence of colinearity between spectral bands, the feature band with the highest correlation coefficient was retrieved first using the successive projection algorithm. In the modeling process, the PSO correlation coefficient was initialized with the convergent optimal approximation of the fitness function value; the root mean square error (RMSE) of the predicted and measured values was derived as an indicator of PSO goodness-of-fit to solve the problems of ELM model weights, threshold randomness, and uncertainty of network parameters; and finally, an iterative update method was used to determine the particle fitness value to optimize the minimum error or iteration number. The results reflected that significant differences were observed in the spectral reflectance of the jujube canopy corresponding with the severity of leaf mite infestation, and the infestation severity was negatively correlated with the SPAD value of jujube leaves. The selected vegetation indices NDVI, RVI, PhRI, and MCARI were positively correlated with SPAD, whereas TCARI and GI were negatively correlated with SPAD. The accuracy of the optimized PSO-ELM model (R 2 = 0.856, RMSE = 0.796) was superior to that of the ELM model alone (R 2 = 0.748, RMSE = 1.689). The PSO-ELM model for remote sensing estimation of relative leaf chlorophyll content of jujube shows high fault tolerance and improved data-processing efficiency. The results provide a reference for the utility of UAV remote sensing for monitoring leaf mite infestation of jujube.
Collapse
Affiliation(s)
- Jianqiang Lu
- College of Electronic Engineering, College of Artificial Intelligence, South China Agricultural University, Guangzhou, China
- National Center for International Collaboration Research on Precision Agricultural Aviation Pesticide Spraying Technology (NPAAC), Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Hongbin Qiu
- College of Electronic Engineering, College of Artificial Intelligence, South China Agricultural University, Guangzhou, China
- National Center for International Collaboration Research on Precision Agricultural Aviation Pesticide Spraying Technology (NPAAC), Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
- Key Laboratory of Digital Earth Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China
| | - Qing Zhang
- Key Laboratory of Digital Earth Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China
| | - Yubin Lan
- College of Electronic Engineering, College of Artificial Intelligence, South China Agricultural University, Guangzhou, China
- National Center for International Collaboration Research on Precision Agricultural Aviation Pesticide Spraying Technology (NPAAC), Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Panpan Wang
- The 14th Division of Xinjiang Production and Construction Corps, Institute of Agricultural Sciences, Kunyu, China
| | - Yue Wu
- Key Laboratory of Digital Earth Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China
| | - Jiawei Mo
- College of Electronic Engineering, College of Artificial Intelligence, South China Agricultural University, Guangzhou, China
- National Center for International Collaboration Research on Precision Agricultural Aviation Pesticide Spraying Technology (NPAAC), Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Wadi Chen
- College of Electronic Engineering, College of Artificial Intelligence, South China Agricultural University, Guangzhou, China
- National Center for International Collaboration Research on Precision Agricultural Aviation Pesticide Spraying Technology (NPAAC), Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - HongYu Niu
- College of Electronic Engineering, College of Artificial Intelligence, South China Agricultural University, Guangzhou, China
- National Center for International Collaboration Research on Precision Agricultural Aviation Pesticide Spraying Technology (NPAAC), Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Zhiyun Wu
- College of Electronic Engineering, College of Artificial Intelligence, South China Agricultural University, Guangzhou, China
- National Center for International Collaboration Research on Precision Agricultural Aviation Pesticide Spraying Technology (NPAAC), Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| |
Collapse
|
2
|
Extrapolation Assessment for Forest Structural Parameters in Planted Forests of Southern China by UAV-LiDAR Samples and Multispectral Satellite Imagery. REMOTE SENSING 2022. [DOI: 10.3390/rs14112677] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Accurate estimation and extrapolation of forest structural parameters in planted forests are essential for monitoring forest resources, investigating their ecosystem services (e.g., forest structure and functions), as well as supporting decisions for precision silviculture. Advances in unmanned aerial vehicle (UAV)-borne Light Detection and Ranging (LiDAR) technology have enhanced our ability to precisely characterize the 3-D structure of the forest canopy with high flexibility, usually within forest plots and stands. For wall-to-wall forest structure mapping in broader landscapes, samples (transects) of UAV-LiDAR datasets are a cost-efficient solution as an intermediate layer for extrapolation from field plots to full-coverage multispectral satellite imageries. In this study, an advanced two-stage extrapolation approach was established to estimate and map large area forest structural parameters (i.e., mean DBH, dominant height, volume, and stem density), in synergy with field plots and UAV-LiDAR and GF-6 satellite imagery, in a typical planted forest of southern China. First, estimation models were built and used to extrapolate field plots to UAV-LiDAR transects; then, the maps of UAV-LiDAR transects were extrapolated to the whole study area using the wall-to-wall grid indices that were calculated from GF-6 satellite imagery. By comparing with direct prediction models that were fitted by field plots and GF-6-derived spectral indices, the results indicated that the two-stage extrapolation models (R2 = 0.64–0.85, rRMSE = 7.49–26.85%) obtained higher accuracy than direct prediction models (R2 = 0.58–0.75, rRMSE = 21.31–38.43%). In addition, the effect of UAV-LiDAR point density and sampling intensity for estimation accuracy was studied by sensitivity analysis as well. The results showed a stable level of accuracy for approximately 10% of point density (34 pts·m−2) and 20% of sampling intensity. To understand the error propagation through the extrapolation procedure, a modified U-statistics uncertainty analysis was proposed to characterize pixel-level estimates of uncertainty and the results demonstrated that the uncertainty was 0.75 cm for mean DBH, 1.23 m for dominant height, 14.77 m3·ha−1 for volume and 102.72 n·ha−1 for stem density, respectively.
Collapse
|