1
|
Zare-Mehrjardi MJ, Hatami-Araghi M, Jafari-Khorchani M, Oushyani Roudsari Z, Taheri-Anganeh M, Abdolrahmat M, Ghasemi H, Aiiashi S. RNA biosensors for detection of pancreatic cancer. Clin Chim Acta 2025; 571:120237. [PMID: 40081786 DOI: 10.1016/j.cca.2025.120237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 03/06/2025] [Accepted: 03/06/2025] [Indexed: 03/16/2025]
Abstract
Pancreatic cancer is recognized as one of the most lethal types of cancer globally, characterized by a high mortality rate and a bleak prognosis, which greatly contributes to cancer-related deaths. Forecasts suggest that by 2030, pancreatic cancer will exceed other cancer types in prevalence. The disease presents considerable difficulties owing to the lack of prominent symptoms in its early stages, restricted options for early detection, rapid progression, and unfavorable outcomes. Presently, traditional methods for diagnosing pancreatic cancer primarily rely on imaging techniques. However, these methods often entail significant costs, require considerable time, and necessitate specialized skills for both operating the equipment and interpreting the resulting images. To overcome these obstacles, the use of biosensors has been proposed as a potentially valuable tool for the early detection of pancreatic cancer. MicroRNAs (miRs), a type of small non-coding RNA molecules, have emerged as highly sensitive molecular diagnostic tools that have the potential to function as precise indicators for a range of diseases, including cancer. Biosensors have been suggested as a potential solution for tackling these challenges, offering a promising approach for the early detection of pancreatic cancer. Small non-coding RNA molecules known as MicroRNAs (miRs) have become recognized as extremely sensitive molecular diagnostic tools and can act as precise biomarkers for different diseases, such as cancer. Moreover, this manuscript presents a thorough summary of the latest innovations in nano-biosensors that have been specifically developed for the identification of non-coding RNAs related to pancreatic cancer.
Collapse
Affiliation(s)
| | - Mahtab Hatami-Araghi
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Majid Jafari-Khorchani
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Zahra Oushyani Roudsari
- Department of Medical Biotechnology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Mortaza Taheri-Anganeh
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Mona Abdolrahmat
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Hassan Ghasemi
- Research Center for Environmental Contaminants (RCEC), Abadan University of Medical Sciences, Abadan, Iran.
| | - Saleh Aiiashi
- Abadan University of Medical Sciences, Abadan, Iran.
| |
Collapse
|
2
|
Saripilli R, Sharma DK. Nanotechnology-based drug delivery system for the diagnosis and treatment of ovarian cancer. Discov Oncol 2025; 16:422. [PMID: 40155504 PMCID: PMC11953507 DOI: 10.1007/s12672-025-02062-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 03/05/2025] [Indexed: 04/01/2025] Open
Abstract
Current research in nanotechnology is improving or developing novel applications that could improve disease diagnosis or treatment. This study highlights several nanoscale drug delivery technologies, such as nano micelles, nanocapsules, nanoparticles, liposomes, branching dendrimers, and nanostructured lipid formulations for the targeted therapy of ovarian cancer (OC), to overcome the limitations of traditional delivery. Because traditional drug delivery to malignant cells has intrinsic flaws, new nanotechnological-based treatments have been developed to address these conditions. Ovarian cancer is the most common gynecological cancer and has a higher death rate because of its late diagnosis and recurrence. This review emphasizes the discipline of medical nanotechnology, which has made great strides in recent years to solve current issues and enhance the detection and treatment of many diseases, including cancer. This system has the potential to provide real-time monitoring and diagnostics for ovarian cancer treatment, as well as simultaneous delivery of therapeutic agents.
Collapse
Affiliation(s)
- Rajeswari Saripilli
- School of Pharmacy, Centurion University of Technology and Management, Gajapati, Odisha, India
| | - Dinesh Kumar Sharma
- School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha, 751003, India.
| |
Collapse
|
3
|
Weerarathna IN, Kumar P, Dzoagbe HY, Kiwanuka L. Advancements in Micro/Nanorobots in Medicine: Design, Actuation, and Transformative Application. ACS OMEGA 2025; 10:5214-5250. [PMID: 39989765 PMCID: PMC11840590 DOI: 10.1021/acsomega.4c09806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 01/23/2025] [Accepted: 01/29/2025] [Indexed: 02/25/2025]
Abstract
In light of the ongoing technological transformation, embracing advancements that foster shared benefits is essential. Nanorobots, a breakthrough within nanotechnology, have demonstrated significant potential in fields such as medicine, where diagnostic and therapeutic applications are the primary focus areas. This review provides a comprehensive overview of nanotechnology, robots, and their evolving role in medical applications, particularly highlighting the use of nanorobots. Various design strategies and operational principles, including sensors, actuators, and nanocontrollers, are discussed based on prior research. Key nanorobot medical applications include biomedical imaging, biosensing, minimally invasive surgery, and targeted drug delivery, each utilizing advanced actuation technologies to enhance precision. The paper further examines recent progress in micro/nanorobot actuation and addresses important considerations for the future, including biocompatibility, control, navigation, delivery, targeting, safety, and ethical implications. This review offers a holistic perspective on how nanorobots can reshape medical practices, paving the way for precision medicine and improved patient outcomes.
Collapse
Affiliation(s)
- Induni Nayodhara Weerarathna
- Department
of Biomedical Sciences, Datta Meghe Institute
of Higher Education and Research (Deemed to be University), Wardha, Maharashtra-442001, India
| | - Praveen Kumar
- Department
of Computer Science and Medical Engineering, Datta Meghe Institute of Higher Education and Research (Deemed to
be University), Wardha, Maharashtra-442001, India
| | - Hellen Yayra Dzoagbe
- Datta
Meghe College of Pharmacy, Datta Meghe Institute of Higher Education
and Research, (Deemed to be University), Wardha, Maharashtra-442001, India
| | - Lydia Kiwanuka
- Department
of Medical Radiology and Imaging Technology, Datta Meghe Institute of Higher Education and Research (Deemed to
be University), Wardha, Maharashtra-442001, India
| |
Collapse
|
4
|
Rafati N, Zarepour A, Bigham A, Khosravi A, Naderi-Manesh H, Iravani S, Zarrabi A. Nanosystems for targeted drug Delivery: Innovations and challenges in overcoming the Blood-Brain barrier for neurodegenerative disease and cancer therapy. Int J Pharm 2024; 666:124800. [PMID: 39374818 DOI: 10.1016/j.ijpharm.2024.124800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/30/2024] [Accepted: 10/02/2024] [Indexed: 10/09/2024]
Abstract
The evolution of sophisticated nanosystems has revolutionized biomedicine, notably in treating neurodegenerative diseases and cancer. These systems show potential in delivering medication precisely to affected tissues, improving treatment effectiveness while minimizing side effects. Nevertheless, a major hurdle in targeted drug delivery is breaching the blood-brain barrier (BBB), a selective shield separating the bloodstream from the brain and spinal cord. The tight junctions between endothelial cells in brain capillaries create a formidable physical barrier, alongside efflux transporters that expel harmful molecules. This presents a notable challenge for brain drug delivery. Nanosystems present distinct advantages in overcoming BBB challenges, offering enhanced drug efficacy, reduced side effects, improved stability, and controlled release. Despite their promise, challenges persist, such as the BBB's regional variability hindering uniform drug distribution. Efflux transporters can also limit therapeutic agent efficacy, while nanosystem toxicity necessitates rigorous safety evaluations. Understanding the long-term impact of nanomaterials on the brain remains crucial. Additionally, addressing nanosystem scalability, cost-effectiveness, and safety profiles is vital for widespread clinical implementation. This review delves into the advancements and obstacles of advanced nanosystems in targeted drug delivery for neurodegenerative diseases and cancer therapy, with a focus on overcoming the BBB.
Collapse
Affiliation(s)
- Nesa Rafati
- Department of Nanobiotechnology, Faculty of Biological Science, Tarbiat Modares University, 14115-154, Tehran, Iran
| | - Atefeh Zarepour
- Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600 077, India
| | - Ashkan Bigham
- Institute of Polymers, Composites, and Biomaterials, National Research Council (IPCB-CNR), Naples 80125, Italy; Department of Chemical, Materials and Production Engineering, University of Naples Federico II, Piazzale V. Tecchio 80, 80125 Naples, Italy
| | - Arezoo Khosravi
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, Istanbul Okan University, Istanbul 34959, Turkiye
| | - Hossein Naderi-Manesh
- Department of Nanobiotechnology, Faculty of Biological Science, Tarbiat Modares University, 14115-154, Tehran, Iran; Departments of Biophysics, Faculty of Biological Science, Tarbiat Modares University, 14115-154, Tehran, Iran.
| | - Siavash Iravani
- Independent Researcher, W Nazar ST, Boostan Ave, Isfahan, Iran.
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul 34396, Turkiye; Graduate School of Biotechnology and Bioengineering, Yuan Ze University, Taoyuan 320315, Taiwan.
| |
Collapse
|
5
|
Mao Y, Xie J, Yang F, Luo Y, Du J, Xiang H. Advances and prospects of precision nanomedicine in personalized tumor theranostics. Front Cell Dev Biol 2024; 12:1514399. [PMID: 39712574 PMCID: PMC11659764 DOI: 10.3389/fcell.2024.1514399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Accepted: 11/18/2024] [Indexed: 12/24/2024] Open
Abstract
Tumor, as the second leading cause of death globally, following closely behind cardiovascular diseases, remains a significant health challenge worldwide. Despite the existence of various cancer treatment methods, their efficacy is still suboptimal, necessitating the development of safer and more efficient treatment strategies. Additionally, the advancement of personalized therapy offers further possibilities in cancer treatment. Nanomedicine, as a promising interdisciplinary field, has shown tremendous potential and prospects in the diagnosis and treatment of cancer. As an emerging approach in oncology, the application of nanomedicine in personalized cancer therapy primarily focuses on targeted drug delivery systems such as passive targeting drug delivery, active targeting drug delivery, and environmentally responsive targeting drug delivery, as well as imaging diagnostics such as tumor biomarker detection, tumor cell detection, and in vivo imaging. However, it still faces challenges regarding safety, biocompatibility, and other issues. This review aims to explore the advances in the use of nanomaterials in the field of personalized cancer diagnosis and treatment and to investigate the prospects and challenges of developing personalized therapies in cancer care, providing direction for the clinical translation and application.
Collapse
Affiliation(s)
- Yuhang Mao
- School of Medicine, Ankang University, Ankang, China
- Ultrasound Medicine Department, Ankang Traditional Chinese Medicine Hospital, Ankang, China
- Shanxi Province Engineering and Technology Research Center for Development and Utilization of Qinba Traditional Chinese Medicine Resources, Ankang University, Ankang, China
| | - Juanping Xie
- School of Medicine, Ankang University, Ankang, China
- Shanxi Province Engineering and Technology Research Center for Development and Utilization of Qinba Traditional Chinese Medicine Resources, Ankang University, Ankang, China
| | - Fang Yang
- School of Modern Agriculture and Biotechnology, Ankang University, Ankang, China
| | - Yan Luo
- School of Medicine, Ankang University, Ankang, China
| | - Juan Du
- Department of Stomatology, Hengqin Hospital, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Hong Xiang
- Ultrasound Medicine Department, Ankang Traditional Chinese Medicine Hospital, Ankang, China
| |
Collapse
|
6
|
Alqabandi JA, David R, Abdel-Motal UM, ElAbd RO, Youcef-Toumi K. An innovative cellular medicine approach via the utilization of novel nanotechnology-based biomechatronic platforms as a label-free biomarker for early melanoma diagnosis. Sci Rep 2024; 14:30107. [PMID: 39627312 PMCID: PMC11615046 DOI: 10.1038/s41598-024-79154-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 11/06/2024] [Indexed: 12/06/2024] Open
Abstract
Innovative cellular medicine (ICM) is an exponentially emerging field with a promising approach to combating complex and ubiquitous life-threatening diseases such as multiple sclerosis (MS), arthritis, Parkinson's disease, Alzheimer's, heart disease, and cancer. Together with the advancement of nanotechnology and bio-mechatronics, ICM revolutionizes cellular therapy in understanding the essence and nature of the disease initiated at a single-cell level. This paper focuses on the intricate nature of cancer that requires multi-disciplinary efforts to characterize it well in order to achieve the objectives of modern world contemporary medicine in the early detection of the disease at a cellular level and potentially arrest its proliferation mechanism. This justifies the multidisciplinary research backgrounds of the authors of this paper in advancing cellular medicine by bridging the gap between experimental biology and the engineering field. Thus, in pursuing this approach, two novel miniaturized and highly versatile biomechatronic platforms with dedicated operating software and microelectronics are designed, modeled, nanofabricated, and tested in numerous in vitro experiments to investigate a hypothesis and arrive at a proven theorem in carcinogenesis by interrelating cellular contractile force, membrane potential, and cellular morphology for early detection and characterization of melanoma cancer cells. The novelties that flourished within this work are manifested in sixfold: (1) developing a mathematical model that utilizes a Heaviside step function, as well as a pin-force model to compute the contractile force of a living cell, (2) deriving an expression of cell-membrane potential based on Laplace and Fourier Transform and their Inverse Transform functions by encountering Warburg diffusion impedance factor, (3) nano-fabricating novel biomechatronic platforms with associated microelectronics and customized software that extract cellular physics and mechanics, (4) developing a label-free biomarker, (5) arrive at a proved theorem in developing a mathematical expression in relating cancer cell mechanobiology to its biophysics in connection to the stage of the disease, and (6) to the first time in literature, and to the best of the authors' knowledge, discriminating different stages and morphology of cancer cell melanoma based on their cell-membrane potentials, and associated contractile forces that could introduce a new venue of cellular therapeutic modalities, preclinical early cancer diagnosis, and a novel approach in immunotherapy drug development. The proposed innovative technology-based versatile bio-mechatronic platforms shall be extended for future studies, investigating the role of electrochemical signaling of the nervous system in cancer formation that will significantly impact modern oncology by pursuing a targeted immunotherapy approach. This work also provides a robust platform for immunotherapy practitioners in extending the study of cellular biophysics in stalling neural-cancer interactions, of which the FDA-approved chimeric antigen receptor (CAR)-T cell therapies can be enhanced (genetically engineered) in a lab by improving its receptors to capture cancer antigens. This work amplifies the importance of studying neurotransmitters and electrochemical signaling molecules in shaping the immune T-cell function and its effectiveness in arresting cancer proliferation rate (mechanobiology mechanism).
Collapse
Affiliation(s)
- Jassim A Alqabandi
- Mechatronics Research Laboratory, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA.
- Mechatronics in Medicine Laboratory, Imperial College London, London, UK.
- Department of Manufacturing Engineering Technology (Bio-Mechatronics) Department, PAAET, Kuwait, State of Kuwait.
| | - Rhiannon David
- Division of Computational and Systems Medicine (CSM), Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Sir Alexander Fleming Building, London, UK
| | - Ussama M Abdel-Motal
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Rawan O ElAbd
- McGill University Health Center, Montreal, QC, Canada
| | - Kamal Youcef-Toumi
- Mechatronics Research Laboratory, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| |
Collapse
|
7
|
Moorthy DN, Dhinasekaran D, Rebecca PNB, Rajendran AR. Optical Biosensors for Detection of Cancer Biomarkers: Current and Future Perspectives. JOURNAL OF BIOPHOTONICS 2024; 17:e202400243. [PMID: 39442779 DOI: 10.1002/jbio.202400243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/22/2024] [Accepted: 08/19/2024] [Indexed: 10/25/2024]
Abstract
Optical biosensors are emerging as a promising technique for the sensitive and accurate detection of cancer biomarkers, enabling significant advancements in the field of early diagnosis. This study elaborates on the latest developments in optical biosensors designed for detecting cancer biomarkers, highlighting their vital significance in early cancer diagnosis. When combined with targeted nanoparticles, the bio-fluids can help in the molecular stage diagnosis of cancer. This enhances the discrimination of disease from the normal subjects drastically. The optical sensor methods that are involved in the disease diagnosis and imaging of cancer taken for the present review are surface plasmon resonance, localized surface plasmon resonance, fluorescence resonance energy transfer, surface-enhanced Raman spectroscopy and colorimetric sensing. The article meticulously describes the specific biomarkers and analytes that optical biosensors target. Beyond elucidating the underlying principles and applications, this article furnishes an overview of recent breakthroughs and emerging trends in the field. This encompasses the evolution of innovative nanomaterials and nanostructures designed to augment sensitivity and the incorporation of microfluidics for facilitating point-of-care testing, thereby charting a course towards prospective advancements.
Collapse
Affiliation(s)
| | | | - P N Blessy Rebecca
- Functional Nano-Materials (FuN) Laboratory, Department of Physics and Nanotechnology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - Ajay Rakkesh Rajendran
- Functional Nano-Materials (FuN) Laboratory, Department of Physics and Nanotechnology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| |
Collapse
|
8
|
Shahzad A, Teng Z, Yameen M, Liu W, Cui K, Liu X, Sun Y, Duan Q, Xia J, Dong Y, Bai Z, Peng D, Zhang J, Xu Z, Pi J, Yang Z, Zhang Q. Innovative lipid nanoparticles: A cutting-edge approach for potential renal cell carcinoma therapeutics. Biomed Pharmacother 2024; 180:117465. [PMID: 39321512 DOI: 10.1016/j.biopha.2024.117465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/09/2024] [Accepted: 09/19/2024] [Indexed: 09/27/2024] Open
Abstract
The kidney plays a crucial role in regulating homeostasis within the human body. Renal cell carcinoma (RCC) is the most common form of kidney cancer, accounting for nearly 90 % of all renal malignancies. Despite the availability of various therapeutic strategies, RCC remains a challenging disease due to its resistance to conventional treatments. Nanotechnology has emerged as a promising field, offering new opportunities in cancer therapeutics. It presents several advantages over traditional methods, enabling diverse biomedical applications, including drug delivery, prevention, diagnosis, and treatment. Lipid nanoparticles (LNPs), approximately 100 nm in size, are derived from a range of lipids and other biochemical compounds. these particulates are designed to overcome biological barriers, allowing them to selectively accumulate at diseased target sites for effective therapeutic action. Many pharmaceutically important compounds face challenges such as poor solubility in aqueous solutions, chemical and physiological instability, or toxicity. LNP technology stands out as a promising drug delivery system for bioactive organic compounds. This article reviews the applications of LNPs in RCC treatment and explores their potential clinical translation, identifying the most viable LNPs for medical use. With ongoing advancement in LNP-based anticancer strategies, there is a growing potential to improve the management and treatment of renal cancer.
Collapse
Affiliation(s)
- Asif Shahzad
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Zhuoran Teng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Muhammad Yameen
- Department of Biochemistry, Government College University Faisalabad, Punjab 38000, Pakistan
| | - Wenjing Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Kun Cui
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Xiangjie Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Yijian Sun
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Qiuxin Duan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, China
| | - JiaoJiao Xia
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Yurong Dong
- Department of Pathology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China
| | - Ziyuan Bai
- Department of Pathology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China
| | - Dongmei Peng
- Department of Pathology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China
| | - Jinshan Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Zhe Xu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Jiang Pi
- Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, The First Dongguan Affiliated Hospital, School of Medical Technology, Guangdong Medical University, Dongguan, Guangdong, China.
| | - Zhe Yang
- Department of Pathology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China.
| | - Qiao Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, China.
| |
Collapse
|
9
|
Ashkarran AA, Lin Z, Rana J, Bumpers H, Sempere L, Mahmoudi M. Impact of Nanomedicine in Women's Metastatic Breast Cancer. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2301385. [PMID: 37269217 PMCID: PMC10693652 DOI: 10.1002/smll.202301385] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/16/2023] [Indexed: 06/04/2023]
Abstract
Metastatic breast cancer is responsible for 90% of mortalities among women suffering from various types of breast cancers. Traditional cancer treatments such as chemotherapy and radiation therapy can cause significant side effects and may not be effective in many cases. However, recent advances in nanomedicine have shown great promise in the treatment of metastatic breast cancer. For example, nanomedicine demonstrated robust capacity in detection of metastatic cancers at early stages (i.e., before the metastatic cells leave the initial tumor site), which gives clinicians a timely option to change their treatment process (for example, instead of endocrine therapy they may use chemotherapy). Here recent advances in nanomedicine technology in the identification and treatment of metastatic breast cancers are reviewed.
Collapse
Affiliation(s)
- Ali Akbar Ashkarran
- Department of Radiology and Precision Health Program, Michigan State University, East Lansing, MI, 48824, USA
| | - Zijin Lin
- Department of Radiology and Precision Health Program, Michigan State University, East Lansing, MI, 48824, USA
| | - Jatin Rana
- Division of Hematology and Oncology, Michigan State University, East Lansing, MI, 48824, USA
| | - Harvey Bumpers
- Department of Surgery, Michigan State University, East Lansing, MI, 48824, USA
| | - Lorenzo Sempere
- Department of Radiology and Precision Health Program, Michigan State University, East Lansing, MI, 48824, USA
| | - Morteza Mahmoudi
- Department of Radiology and Precision Health Program, Michigan State University, East Lansing, MI, 48824, USA
- Connors Center for Women's Health & Gender Biology, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| |
Collapse
|
10
|
Xie W, Xu Z. (Nano)biotechnological approaches in the treatment of cervical cancer: integration of engineering and biology. Front Immunol 2024; 15:1461894. [PMID: 39346915 PMCID: PMC11427397 DOI: 10.3389/fimmu.2024.1461894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 08/08/2024] [Indexed: 10/01/2024] Open
Abstract
Cervical cancer is one of the most malignant gynaecological tumors characterised with the aggressive behaviour of the tumor cells. In spite of the development of different strategies for the treatment of cervical cancer, the tumor cells have developed resistance to conventional therapeutics. On the other hand, nanoparticles have been recently applied for the treatment of human cancers through delivery of drugs and facilitate tumor suppression. The stimuli-sensitive nanostructures can improve the release of therapeutics at the tumor site. In the present review, the nanostructures for the treatment of cervical cancer are discussed. Nanostructures can deliver both chemotherapy drugs and natural compounds to increase anti-cancer activity and prevent drug resistance in cervical tumor. Moreover, the genetic tools such as siRNA can be delivered by nanoparticles to enhance their accumulation at tumor site. In order to enhance selectivity, the stimuli-responsive nanoparticles such as pH- and redox-responsive nanocarriers have been developed to suppress cervical tumor. Moreover, nanoparticles can induce photo-thermal and photodynamic therapy to accelerate cell death in cervical tumor. In addition, nanobiotechnology demonstrates tremendous potential in the treatment of cervical cancer, especially in the context of tumor immunotherapy. Overall, metal-, carbon-, lipid- and polymer-based nanostructures have been utilized in cervical cancer therapy. Finally, hydrogels have been developed as novel kinds of carriers to encapsulate therapeutics and improve anti-cancer activity.
Collapse
Affiliation(s)
| | - Zhengmei Xu
- Department of Gynecology, Affiliated Hengyang Hospital of Hunan Normal University &
Hengyang Central Hospital, Hengyang, China
| |
Collapse
|
11
|
Xu H, Yu P, Bandari RP, Smith CJ, Aro MR, Singh A, Ma L. Bimodal MRI/Fluorescence Nanoparticle Imaging Contrast Agent Targeting Prostate Cancer. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1177. [PMID: 39057854 PMCID: PMC11279443 DOI: 10.3390/nano14141177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 06/29/2024] [Accepted: 07/06/2024] [Indexed: 07/28/2024]
Abstract
We developed a novel site-specific bimodal MRI/fluorescence nanoparticle contrast agent targeting gastrin-releasing peptide receptors (GRPrs), which are overexpressed in aggressive prostate cancers. Biocompatible ultra-small superparamagnetic iron oxide (USPIO) nanoparticles were synthesized using glucose and casein coatings, followed by conjugation with a Cy7.5-K-8AOC-BBN [7-14] peptide conjugate. The resulting USPIO(Cy7.5)-BBN nanoparticles were purified by 100 kDa membrane dialysis and fully characterized using transmission electron microscopy (TEM), dynamic light scattering (DLS), Fourier transform infrared (FTIR) spectroscopy, and magnetic resonance imaging (MRI) relaxivity, as well as evaluated for in vitro and in vivo binding specificity and imaging efficacy in PC-3 prostate cancer cells and xenografted tumor-bearing mice. The USPIO(Cy7.5)-BBN nanoparticles had a core diameter of 4.93 ± 0.31 nm and a hydrodynamic diameter of 35.56 ± 0.58 nm. The r2 relaxivity was measured to be 70.2 ± 2.5 s-1 mM-1 at 7T MRI. The Cy7.5-K-8AOC-BBN [7-14] peptide-to-nanoparticle ratio was determined to be 21:1. The in vitro GRPr inhibitory binding (IC50) value was 2.5 ± 0.7 nM, indicating a very high binding affinity of USPIO(Cy7.5)-BBN to the GRPr on PC-3 cells. In vivo MRI showed significant tumor-to-muscle contrast enhancement in the uptake group at 4 h (31.1 ± 3.4%) and 24 h (25.7 ± 2.1%) post-injection compared to the blocking group (4 h: 15.3 ± 2.0% and 24 h: -2.8 ± 6.8%; p < 0.005). In vivo and ex vivo near-infrared fluorescence (NIRF) imaging revealed significantly increased fluorescence in tumors in the uptake group compared to the blocking group. These findings demonstrate the high specificity of bimodal USPIO(Cy7.5)-BBN nanoparticles towards GRPr-expressing PC-3 cells, suggesting their potential for targeted imaging in aggressive prostate cancer.
Collapse
Affiliation(s)
- Hang Xu
- Department of Radiology, University of Missouri, Columbia, MO 65212, USA
- Department of Chemical Engineering Graduate Program, University of Missouri, Columbia, MO 65211, USA
- Harry S. Truman Veterans’ Memorial Hospital, Columbia, MO 65201, USA
| | - Ping Yu
- Department of Physics and Astronomy, University of Missouri, Columbia, MO 65211, USA
| | - Rajendra P. Bandari
- Department of Radiology, University of Missouri, Columbia, MO 65212, USA
- Harry S. Truman Veterans’ Memorial Hospital, Columbia, MO 65201, USA
| | - Charles J. Smith
- Department of Radiology, University of Missouri, Columbia, MO 65212, USA
- Harry S. Truman Veterans’ Memorial Hospital, Columbia, MO 65201, USA
- University of Missouri Research Reactor (MURR), University of Missouri, Columbia, MO 65211, USA
| | - Michael R. Aro
- Department of Radiology, University of Missouri, Columbia, MO 65212, USA
- Harry S. Truman Veterans’ Memorial Hospital, Columbia, MO 65201, USA
| | - Amolak Singh
- Department of Radiology, University of Missouri, Columbia, MO 65212, USA
| | - Lixin Ma
- Department of Radiology, University of Missouri, Columbia, MO 65212, USA
- Harry S. Truman Veterans’ Memorial Hospital, Columbia, MO 65201, USA
| |
Collapse
|
12
|
Ram TB, Krishnan S, Jeevanandam J, Danquah MK, Thomas S. Emerging Biohybrids of Aptamer-Based Nano-Biosensing Technologies for Effective Early Cancer Detection. Mol Diagn Ther 2024; 28:425-453. [PMID: 38775897 DOI: 10.1007/s40291-024-00717-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/01/2024] [Indexed: 06/28/2024]
Abstract
Cancer is a leading global cause of mortality, which underscores the imperative of early detection for improved patient outcomes. Biorecognition molecules, especially aptamers, have emerged as highly effective tools for early and accurate cancer cell identification. Aptamers, with superior versatility in synthesis and modification, offer enhanced binding specificity and stability compared with conventional antibodies. Hence, this article reviews diagnostic strategies employing aptamer-based biohybrid nano-biosensing technologies, focusing on their utility in detecting cancer biomarkers and abnormal cells. Recent developments include the synthesis of nano-aptamers using diverse nanomaterials, such as metallic nanoparticles, metal oxide nanoparticles, carbon-derived substances, and biohybrid nanostructures. The integration of these nanomaterials with aptamers significantly enhances sensitivity and specificity, promising innovative and efficient approaches for cancer diagnosis. This convergence of nanotechnology with aptamer research holds the potential to revolutionize cancer treatment through rapid, accurate, and non-invasive diagnostic methods.
Collapse
Affiliation(s)
| | | | - Jaison Jeevanandam
- CQM-Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105, Funchal, Madeira, Portugal.
| | - Michael K Danquah
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN, USA
| | - Sabu Thomas
- School of Polymer Science and Technology and School of Chemical Sciences, Mahatma Gandhi University, Kottayam, Kerala, India
| |
Collapse
|
13
|
Bag SK, Pal A, Jana S, Thakur A. Recent Advances on Diarylethene-Based Photoswitching Materials: Applications in Bioimaging, Controlled Singlet Oxygen Generation for Photodynamic Therapy and Catalysis. Chem Asian J 2024; 19:e202400238. [PMID: 38578057 DOI: 10.1002/asia.202400238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/05/2024] [Accepted: 04/05/2024] [Indexed: 04/06/2024]
Abstract
Photoswitching materials have emerged as a promising class of compounds that possess manifold interesting properties rendering their widespread use from photoswitches, regulators to optoelectronic devices, security technologies and biochemical assays. Diarylethenes (DAE) constitute one such category of photoswitchable compounds, where the key features of stability, photoisomerization wavelengths, quantum yield and variability in the photoisomers significantly depend on their derivatization. The last decade has witnessed a surge in the engagement of DAEs in different areas of chemical and biological sciences, like biomarkers, controlled generation of singlet oxygen, photo-dynamic therapy, chemosensing, catalysis, etc. In all the cases, the photoswitchability of DAE is the principal regulating factor along with its emission properties according to the appended groups. Previous reviews on applications of DAE-based systems did not predominantly cover all the aspects of biological and industrial implementations. They have covered only one field of application either in the biological science or in the synthetic aspect or photochromic aspects only. This review is a coalition of all those aspects in last six years. Here the variation of properties of the DAE systems with respect to structural diversifications have been discussed in detail along with their potential applications in bioimaging of cells, regulating singlet oxygen generation for photodynamic therapy and catalysis of organic reactions, and their future prospects. A tabular presentation of the photophysical properties of DAE derivatives adds to the basic understanding of this subject at a glance. We hope that this cumulative collection of contemporary research on DAE, as presented in this review, will enhance the knowledge of the readers about synthetic design anticipating their properties well in advance, and will certainly motivate researchers to generate new DAE architectures with superior chemical and biological properties in future.
Collapse
Affiliation(s)
- Sayan Kumar Bag
- Department of Chemistry, Jadavpur University, Kolkata, 700032, West Bengal, India
| | - Adwitiya Pal
- Department of Chemistry, Jadavpur University, Kolkata, 700032, West Bengal, India
| | - Subhendu Jana
- Department of Chemistry, Jadavpur University, Kolkata, 700032, West Bengal, India
| | - Arunabha Thakur
- Department of Chemistry, Jadavpur University, Kolkata, 700032, West Bengal, India
| |
Collapse
|
14
|
Bounoua N, Cetinkaya A, Piskin E, Kaya SI, Ozkan SA. The sensor applications for prostate and lung cancer biomarkers in terms of electrochemical analysis. Anal Bioanal Chem 2024; 416:2277-2300. [PMID: 38279011 DOI: 10.1007/s00216-024-05134-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 12/24/2023] [Accepted: 01/09/2024] [Indexed: 01/28/2024]
Abstract
Prostate and lung cancers are the most common types of cancer and affect a large part of the population around the world, causing deaths. Therefore, the rapid identification of cancer can profoundly impact reducing cancer-related death rates and protecting human lives. Significant resources have been dedicated to investigating new methods for early disease detection. Cancer biomarkers encompass various biochemical entities, including nucleic acids, proteins, sugars, small metabolites, cytogenetic and cytokinetic parameters, and whole tumor cells in bodily fluids. These tools can be utilized for various purposes, such as risk assessment, diagnosis, prognosis, treatment efficacy, toxicity evaluation, and predicting a return. Due to these versatile and critical purposes, there are widespread studies on the development of new, sensitive, and selective approaches for the determination of cancer biomarkers. This review illustrates the significant lung and prostate cancer biomarkers and their determination utilizing electrochemical sensors, which have the advantage of improved sensitivity, low cost, and simple analysis. Additionally, approaches such as improving sensitivity with nanomaterials and ensuring selectivity with MIPs are used to increase the performance of the sensor. This review aims to overview the most recent electrochemical biosensor applications for determining vital biomarkers of prostate and lung cancers in terms of nanobiosensors and molecularly imprinted polymer (MIP)-based biosensors.
Collapse
Affiliation(s)
- Nadia Bounoua
- Department of Exact Sciences, Laboratory of the Innovation Sponsorship and the Emerging Institution for Graduates of Higher Education of Sustainable Development and Dealing with Emerging Conditions, Normal Higher School of Bechar, Bechar, Algeria
- Laboratory of Chemical and Environmental Science (LCSE), 8000, Bechar, Algeria
| | - Ahmet Cetinkaya
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
- Graduate School of Health Sciences, Ankara University, Ankara, Turkey
| | - Ensar Piskin
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
- Graduate School of Health Sciences, Ankara University, Ankara, Turkey
| | - S Irem Kaya
- Department of Analytical Chemistry, Gulhane Faculty of Pharmacy, University of Health Sciences, Ankara, Turkey.
| | - Sibel A Ozkan
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey.
| |
Collapse
|
15
|
Ben Moussa F, Kutner W, Beduk T, Sena-Torralba A, Mostafavi E. Electrochemical bio- and chemosensors for cancer biomarkers: Natural (with antibodies) versus biomimicking artificial (with aptamers and molecularly imprinted polymers) recognition. Talanta 2024; 267:125259. [PMID: 37806110 DOI: 10.1016/j.talanta.2023.125259] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/29/2023] [Accepted: 09/30/2023] [Indexed: 10/10/2023]
Abstract
Electrochemical (EC) bio- and chemosensors are highly promising for on-chip and point-of-care testing (POST) devices. They can make a breakthrough in early cancer diagnosis. Most current EC sensors for cancer biomarkers' detection and determination use natural antibodies as recognition units. However, those quickly lose their biorecognition ability upon exposure to harsh environments, comprising extreme pH, humidity, temperature, etc. So-called "plastic antibodies," including aptamers and molecularly imprinted polymers (MIPs), are hypothesized to be a smart alternative to antibodies. They have attracted the interest of the sensor research community, offering a low cost-to-performance ratio with high stability, an essential advantage toward their commercialization. Herein, we critically review recent technological advances in devising and fabricating EC bio- and chemosensors for cancer biomarkers, classifying them according to the type of recognition unit used into three categories, i.e., antibody-, aptamer-, and MIP-based EC sensors for cancer biomarkers. Each sensor fabrication strategy has been discussed, from the devising concept to cancer sensing applications, including using different innovative nanomaterials and signal transduction strategies. Moreover, employing each recognition unit in the EC sensing of cancer biomarkers has been critically compared in detail to enlighten each recognition unit's advantages, effectiveness, and limitations.
Collapse
Affiliation(s)
- Fatah Ben Moussa
- Process Engineering Laboratory, Applied Sciences Faculty, Kasdi Merbah University, Ouargla, 30000, Algeria.
| | - Wlodzimierz Kutner
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland; Faculty of Mathematics and Natural Sciences. School of Sciences, Cardinal Stefan Wyszynski University in Warsaw, Wo ycickiego 1/3, 01-815, Warsaw, Poland
| | - Tutku Beduk
- Silicon Austria Labs GmbH: Sensor Systems, Europastrasse 12, 9524, Villach, Austria
| | - Amadeo Sena-Torralba
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Camino de Vera s/n, 46022, Valencia, Spain
| | - Ebrahim Mostafavi
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA; Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, 94305, USA
| |
Collapse
|
16
|
Liu S, Xu M, Zhong L, Tong X, Qian S. Recent Advances in Nanobiotechnology for the Treatment of Non-Hodgkin's Lymphoma. Mini Rev Med Chem 2024; 24:895-907. [PMID: 37724679 DOI: 10.2174/1389557523666230915103121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 06/20/2023] [Accepted: 07/25/2023] [Indexed: 09/21/2023]
Abstract
Lymphoma is the eighth most common type of cancer worldwide. Currently, lymphoma is mainly classified into two main groups: Hodgkin's lymphoma (HL) and non-Hodgkin's lymphoma (NHL), with NHL accounting for 80% to 90% of the cases. NHL is primarily divided into B, T, and natural killer (NK) cell lymphoma. Nanotechnology is developing rapidly and has made significant contributions to the field of medicine. This review summarizes the advancements of nanobiotechnology in recent years and its applications in the treatment of NHL, especially in diffuse large B cell lymphoma (DLBCL), primary central nervous system lymphoma (PCNSL), and follicular lymphoma (FL). The technologies discussed include clinical imaging, targeted drug delivery, photodynamic therapy (PDT), and thermodynamic therapy (TDT) for lymphoma. This review aims to provide a better understanding of the use of nanotechnology in the treatment of non-Hodgkin's lymphoma.
Collapse
Affiliation(s)
- Shuxian Liu
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Minghao Xu
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Lei Zhong
- Tongxiang Hospital of Traditional Chinese Medicine, Zhejiang, China
| | - Xiangmin Tong
- Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, China
| | - Suying Qian
- Department of Hematology and Oncology, Ningbo No. 2 Hospital, China
| |
Collapse
|
17
|
Șoldănescu I, Lobiuc A, Covașă M, Dimian M. Detection of Biological Molecules Using Nanopore Sensing Techniques. Biomedicines 2023; 11:1625. [PMID: 37371721 PMCID: PMC10295350 DOI: 10.3390/biomedicines11061625] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 05/28/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
Modern biomedical sensing techniques have significantly increased in precision and accuracy due to new technologies that enable speed and that can be tailored to be highly specific for markers of a particular disease. Diagnosing early-stage conditions is paramount to treating serious diseases. Usually, in the early stages of the disease, the number of specific biomarkers is very low and sometimes difficult to detect using classical diagnostic methods. Among detection methods, biosensors are currently attracting significant interest in medicine, for advantages such as easy operation, speed, and portability, with additional benefits of low costs and repeated reliable results. Single-molecule sensors such as nanopores that can detect biomolecules at low concentrations have the potential to become clinically relevant. As such, several applications have been introduced in this field for the detection of blood markers, nucleic acids, or proteins. The use of nanopores has yet to reach maturity for standardization as diagnostic techniques, however, they promise enormous potential, as progress is made into stabilizing nanopore structures, enhancing chemistries, and improving data collection and bioinformatic analysis. This review offers a new perspective on current biomolecule sensing techniques, based on various types of nanopores, challenges, and approaches toward implementation in clinical settings.
Collapse
Affiliation(s)
- Iuliana Șoldănescu
- Integrated Center for Research, Development and Innovation for Advanced Materials, Nanotechnologies, Manufacturing and Control Distributed Systems (MANSiD), Stefan cel Mare University of Suceava, 720229 Suceava, Romania; (I.Ș.); (M.D.)
| | - Andrei Lobiuc
- Department of Biomedical Sciences, Stefan cel Mare University of Suceava, 720229 Suceava, Romania
| | - Mihai Covașă
- Department of Biomedical Sciences, Stefan cel Mare University of Suceava, 720229 Suceava, Romania
| | - Mihai Dimian
- Integrated Center for Research, Development and Innovation for Advanced Materials, Nanotechnologies, Manufacturing and Control Distributed Systems (MANSiD), Stefan cel Mare University of Suceava, 720229 Suceava, Romania; (I.Ș.); (M.D.)
- Department of Computer, Electronics and Automation, Stefan cel Mare University of Suceava, 720229 Suceava, Romania
| |
Collapse
|
18
|
YÜKSEL A, DAĞLIOĞLU Y. Kanser Tedavisi İçin MikroRNA’ların Çok İşlevli Nano-taşıyıcılar İle Dağıtımı. ARŞIV KAYNAK TARAMA DERGISI 2023. [DOI: 10.17827/aktd.1181394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Abstract
Hücre proliferasyonu ve apoptozis gibi kanserden sorumlu biyolojik süreçlerde etkili olan miRNA’lar, farklı kanser türleri ve evrelerinin teşhis ve tedavisinde yeni biyobelirteçler olarak işlev görür. Bunun yanı sıra bazı miRNA’ların onkogen ve tümör baskılayıcı özelliği nanoteknoloji ile entegre edilmesiyle kanser oluşumunu engeller. Son yıllarda miRNA’ların kanser tedavisinde kullanılmasını sağlayan diğer bir yaklaşım ise nano-taşıyıcılardır. İlaçlar, peptitler veya genler gibi aktif bileşikleri taşımak için geliştirilen bu nano-taşıyıcıların kanser tedavisinde kullanımları umut vadetmektedir. Bu derleme, miRNA dağıtımında kullanılan nano-taşıyıcı türleri hakkında kısa bir bilgi sunmaktadır. Ayrıca nanoteknolojideki gelişmelerle birlikte miRNA’ların kanser teşhis ve tedavisinde kullanımın yanısıra gen susturma mekanizması olan RNA interferansından kısaca bahsedilmektedir.
Collapse
|
19
|
Bordeianu G, Filip N, Cernomaz A, Veliceasa B, Hurjui LL, Pinzariu AC, Pertea M, Clim A, Marinca MV, Serban IL. The Usefulness of Nanotechnology in Improving the Prognosis of Lung Cancer. Biomedicines 2023; 11:biomedicines11030705. [PMID: 36979684 PMCID: PMC10045176 DOI: 10.3390/biomedicines11030705] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/20/2023] [Accepted: 02/22/2023] [Indexed: 03/02/2023] Open
Abstract
Lung cancer remains a major public health problem both in terms of incidence and specific mortality despite recent developments in terms of prevention, such as smoking reduction policies and clinical management advances. Better lung cancer prognosis could be achieved by early and accurate diagnosis and improved therapeutic interventions. Nanotechnology is a dynamic and fast-developing field; various medical applications have been developed and deployed, and more exist as proofs of concepts or experimental models. We aim to summarize current knowledge relevant to the use of nanotechnology in lung cancer management. Starting from the chemical structure-based classification of nanoparticles, we identify and review various practical implementations roughly organized as diagnostic or therapeutic in scope, ranging from innovative contrast agents to targeted drug carriers. Available data are presented starting with standards of practice and moving to highly experimental methods and proofs of concept; particularities, advantages, limits and future directions are explored, focusing on the potential impact on lung cancer clinical prognosis.
Collapse
Affiliation(s)
- Gabriela Bordeianu
- Department of Morpho-Functional Sciences (II), Discipline of Biochemistry, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Nina Filip
- Department of Morpho-Functional Sciences (II), Discipline of Biochemistry, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
- Correspondence: (N.F.); (A.C.)
| | - Andrei Cernomaz
- III-rd Medical Department, Discipline of Pneumology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
- Correspondence: (N.F.); (A.C.)
| | - Bogdan Veliceasa
- Department of Orthopedics and Traumatology, Surgical Science (II), Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Loredana Liliana Hurjui
- Department of Morpho-Functional Sciences (II), Discipline of Physiology, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Alin Constantin Pinzariu
- Department of Morpho-Functional Sciences (II), Discipline of Physiology, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Mihaela Pertea
- Department of Plastic Surgery and Reconstructive Microsurgery, “Sf. Spiridon” Emergency County Hospital, 700111 Iasi, Romania
| | - Andreea Clim
- Department of Morpho-Functional Sciences (II), Discipline of Physiology, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Mihai Vasile Marinca
- III-rd Medical Department, Discipline of Oncology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Ionela Lacramioara Serban
- Department of Morpho-Functional Sciences (II), Discipline of Physiology, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| |
Collapse
|
20
|
Tian Y, Liu Z, Wang J, Li L, Wang F, Zhu Z, Wang X. Nanomedicine for Combination Urologic Cancer Immunotherapy. Pharmaceutics 2023; 15:546. [PMID: 36839868 PMCID: PMC9960671 DOI: 10.3390/pharmaceutics15020546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/31/2023] [Accepted: 02/02/2023] [Indexed: 02/10/2023] Open
Abstract
Urologic cancers, particularly kidney, bladder, and prostate cancer, have a growing incidence and account for about a million annual deaths worldwide. Treatments, including surgery, chemotherapy, radiotherapy, hormone therapy, and immunotherapy are the main therapeutic options in urologic cancers. Immunotherapy is now a clinical reality with marked success in solid tumors. Immunological checkpoint blockade, non-specific activation of the immune system, adoptive cell therapy, and tumor vaccine are the main modalities of immunotherapy. Immunotherapy has long been used to treat urologic cancers; however, dose-limiting toxicities and low response rates remain major challenges in the clinic. Herein, nanomaterial-based platforms are utilized as the "savior". The combination of nanotechnology with immunotherapy can achieve precision medicine, enhance efficacy, and reduce toxicities. In this review, we highlight the principles of cancer immunotherapy in urology. Meanwhile, we summarize the nano-immune technology and platforms currently used for urologic cancer treatment. The ultimate goal is to help in the rational design of strategies for nanomedicine-based immunotherapy in urologic cancer.
Collapse
Affiliation(s)
- Yun Tian
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian 116021, China
| | - Zhenzhu Liu
- Department of Cardiovascular, The Second Affiliated Hospital of Dalian Medical University, Dalian 116023, China
| | - Jianbo Wang
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian 116021, China
| | - Linan Li
- Department of Orthopedics, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Fuli Wang
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China
| | - Zheng Zhu
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Xuejian Wang
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian 116021, China
| |
Collapse
|
21
|
Novel thermal synthesis of ternary Cu-CuO-Cu2O nanospheres supported on reduced graphene oxide for the sensitive non-enzymatic electrochemical detection of pyruvic acid as a cancer biomarker. J Organomet Chem 2023. [DOI: 10.1016/j.jorganchem.2023.122638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
|
22
|
Das U, Banik S, Nadumane SS, Chakrabarti S, Gopal D, Kabekkodu SP, Srisungsitthisunti P, Mazumder N, Biswas R. Isolation, Detection and Analysis of Circulating Tumour Cells: A Nanotechnological Bioscope. Pharmaceutics 2023; 15:280. [PMID: 36678908 PMCID: PMC9864919 DOI: 10.3390/pharmaceutics15010280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/17/2022] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
Cancer is one of the dreaded diseases to which a sizeable proportion of the population succumbs every year. Despite the tremendous growth of the health sector, spanning diagnostics to treatment, early diagnosis is still in its infancy. In this regard, circulating tumour cells (CTCs) have of late grabbed the attention of researchers in the detection of metastasis and there has been a huge surge in the surrounding research activities. Acting as a biomarker, CTCs prove beneficial in a variety of aspects. Nanomaterial-based strategies have been devised to have a tremendous impact on the early and rapid examination of tumor cells. This review provides a panoramic overview of the different nanotechnological methodologies employed along with the pharmaceutical purview of cancer. Initiating from fundamentals, the recent nanotechnological developments toward the detection, isolation, and analysis of CTCs are comprehensively delineated. The review also includes state-of-the-art implementations of nanotechnological advances in the enumeration of CTCs, along with future challenges and recommendations thereof.
Collapse
Affiliation(s)
- Upama Das
- Applied Optics and Photonics Laboratory, Department of Physics, Tezpur University, Tezpur 784028, Assam, India
| | - Soumyabrata Banik
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Sharmila Sajankila Nadumane
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Shweta Chakrabarti
- Department of Bioinformatics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Dharshini Gopal
- Department of Bioinformatics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Shama Prasada Kabekkodu
- Department of Cell and Molecular Biotechnology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Pornsak Srisungsitthisunti
- Department of Production and Robotics Engineering, Faculty of Engineering, King Mongkut’s University of Technology North Bangkok, Bangkok 10800, Thailand
| | - Nirmal Mazumder
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Rajib Biswas
- Applied Optics and Photonics Laboratory, Department of Physics, Tezpur University, Tezpur 784028, Assam, India
| |
Collapse
|
23
|
Kadhim MM, Rheima AM, Abbas ZS, Jlood HH, Hachim SK, Kadhum WR, Kianfar E. Evaluation of a biosensor-based graphene oxide-DNA nanohybrid for lung cancer. RSC Adv 2023; 13:2487-2500. [PMID: 36741187 PMCID: PMC9843741 DOI: 10.1039/d2ra05808a] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 01/05/2023] [Indexed: 01/18/2023] Open
Abstract
Lung cancer is nowadays among the most prevalent diseases worldwide and features the highest mortality rate among various cancers, indicating that early diagnosis of the disease is of paramount importance. Given that the conventional methods of cancer detection are expensive and time-consuming, special attention has been paid to the provision of less expensive and faster techniques. In recent years, the dramatic advances in nanotechnology and the development of various nanomaterials have led to activities in this context. Recent studies indicate that the graphene oxide (GO) nanomaterial has high potential in the design of nano biosensors for lung cancer detection owing to its unique properties. In the current article, a nano biosensor based on a DNA-GO nanohybrid is introduced to detect deletion mutations causing lung cancer. In this method, mutations were detected using a FAM-labeled DNA probe with fluorescence spectrometry. GO was synthesized according to Hummers' method and examined and confirmed using Fourier Transform Infrared (FT-IR) Spectrometry and UV-vis spectrometry methods and Transmission Electron Microscopy (TEM) images.
Collapse
Affiliation(s)
- Mustafa M Kadhim
- Medical Laboratory Techniques Department, Al-Farahidi University Baghdad 10022 Iraq
| | - Ahmed Mahdi Rheima
- Department of Chemistry, College of Science, Mustansiriyah University Baghdad Iraq
| | - Zainab S Abbas
- Research Center, The University of Mashreq 10021 Baghdad Iraq
| | | | - Safa K Hachim
- College of Technical Engineering, The Islamic University Najaf Iraq
- Medical Laboratory Techniques Department, Al-Turath University College Iraq Baghdad
| | - Wesam R Kadhum
- Department of Pharmacy, Kut University College Kut 52001 Wasit Iraq
| | - Ehsan Kianfar
- Istanbul Medeniyet University Istanbul Turkey +90 917-744-1049
- Department of Chemical Engineering, Islamic Azad University Arak Branch Arak Iran
- Young Researchers and Elite Club, Islamic Azad University Gachsaran Branch Gachsaran Iran
- Department of Chemistry, Islamic Azad University Sousangerd Branch Sousangerd Iran
| |
Collapse
|
24
|
Song FX, Xu X, Ding H, Yu L, Huang H, Hao J, Wu C, Liang R, Zhang S. Recent Progress in Nanomaterial-Based Biosensors and Theranostic Nanomedicine for Bladder Cancer. BIOSENSORS 2023; 13:106. [PMID: 36671940 PMCID: PMC9855444 DOI: 10.3390/bios13010106] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/29/2022] [Accepted: 01/03/2023] [Indexed: 06/17/2023]
Abstract
Bladder cancer (BCa) is one of the most expensive and common malignancies in the urinary system due to its high progression and recurrence rate. Although there are various methods, including cystoscopy, biopsy, and cytology, that have become the standard diagnosis methods for BCa, their intrinsic invasive and inaccurate properties need to be overcome. The novel urine cancer biomarkers are assisted by nanomaterials-based biosensors, such as field-effect transistors (FETs) with high sensitivity and specificity, which may provide solutions to these problems. In addition, nanomaterials can be applied for the advancement of next-generation optical imaging techniques and the contrast agents of conventional techniques; for example, magnetic resonance imaging (MRI) for the diagnosis of BCa. Regarding BCa therapy, nanocarriers, including mucoadhesive nanoparticles and other polymeric nanoparticles, successfully overcome the disadvantages of conventional intravesical instillation and improve the efficacy and safety of intravesical chemotherapy for BCa. Aside from chemotherapy, nanomedicine-based novel therapies, including photodynamic therapy (PDT), photothermal therapy (PTT), chemodynamic therapy (CDT), sonodynamic therapy (SDT), and combination therapy, have afforded us new ways to provide BC therapy and hope, which can be translated into the clinic. In addition, nanomotors and the nanomaterials-based solid tumor disassociation strategy provide new ideas for future research. Here, the advances in BCa diagnosis and therapy mentioned above are reviewed in this paper.
Collapse
Affiliation(s)
- Fan-Xin Song
- Department of Urology, The Third Affiliated Hospital of Shenzhen University, Shenzhen University, Shenzhen 518000, China
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China
- College of Nano Science & Technology (CNST), Soochow University, Suzhou 215123, China
| | - Xiaojian Xu
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Hengze Ding
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China
- College of Nano Science & Technology (CNST), Soochow University, Suzhou 215123, China
| | - Le Yu
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China
- College of Nano Science & Technology (CNST), Soochow University, Suzhou 215123, China
| | - Haochen Huang
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China
- College of Nano Science & Technology (CNST), Soochow University, Suzhou 215123, China
| | - Jinting Hao
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China
- College of Nano Science & Technology (CNST), Soochow University, Suzhou 215123, China
| | - Chenghao Wu
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China
- College of Nano Science & Technology (CNST), Soochow University, Suzhou 215123, China
| | - Rui Liang
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Shaohua Zhang
- Department of Urology, The Third Affiliated Hospital of Shenzhen University, Shenzhen University, Shenzhen 518000, China
- Department of Urology, The Affiliated South China Hospital of Shenzhen University, Shenzhen University, Shenzhen 518000, China
| |
Collapse
|
25
|
Awan UA, Naeem M, Saeed RF, Mumtaz S, Akhtar N. Smart Nanocarrier-Based Cancer Therapeutics. Cancer Treat Res 2023; 185:207-235. [PMID: 37306911 DOI: 10.1007/978-3-031-27156-4_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Considerable advances in the field of cancer have been made; however, these have not been translated into similar clinical progress which results in the high prevalence and increased cancer-related mortality rate worldwide. Available treatments have several challenges such as off-target side effects, non-specific long-term potential biodisruption, drug resistance, and overall inadequate response rates and high probability of recurrence. The limitations associated with independent cancer diagnosis and therapy can be minimized by an emerging interdisciplinary research field of nanotheranostics which include successful integration of diagnosis and therapy on a single agent using nanoparticles. This may offer a powerful tool in developing innovative strategies to enable "personalized medicine" for diagnosis and treatment of cancer. Nanoparticles have been proven to be powerful imaging tools or potent agents for cancer diagnosis, treatment, and prevention. The nanotheranostic provides minimally invasive in vivo visualization of drug biodistribution and accumulation at the target site with real-time monitoring of therapeutic outcome. This chapter intends to cover several important aspects and the advances in the field of nanoparticles-mediated cancer therapeutics including nanocarrier development, drug/gene delivery, intrinsically active nanoparticles, tumor microenvironment, and nanotoxicity. The chapter represents an overview of challenges associated with cancer treatment, rational for nanotechnology in cancer therapeutics, novel concepts of multifunctional nanomaterials for cancer therapy along with their classification and their clinical prospective in different cancers. A special focus is on the nanotechnology: regulatory perspective for drug development in cancer therapeutics. Obstacles hindering further development of nanomaterials-mediated cancer therapy are also discussed. In general, the objective of this chapter is to improve our perceptive in the design and development of nanotechnology for cancer therapeutics.
Collapse
Affiliation(s)
- Uzma Azeem Awan
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi, Pakistan.
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, USA.
| | - Muhammad Naeem
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi, Pakistan
| | - Rida Fatima Saeed
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi, Pakistan
| | - Sara Mumtaz
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi, Pakistan
| | - Nosheen Akhtar
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi, Pakistan
| |
Collapse
|
26
|
Bhattacharya K, Kundu M, Das S, Samanta S, Roy SS, Mandal M, Singha NK. Glycopolymer Decorated pH-Dependent Ratiometric Fluorescent Probe Based on Förster Resonance Energy Transfer for the Detection of Cancer Cells. Macromol Rapid Commun 2023; 44:e2200594. [PMID: 36302094 DOI: 10.1002/marc.202200594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 10/17/2022] [Indexed: 01/26/2023]
Abstract
Development of fluorescent imaging probes is an important topic of research for the early diagnosis of cancer. Based on the difference between the cellular environment of tumor cells and normal cells, several "smart" fluorescent probes have been developed. In this work, a glycopolymer functionalized Förster resonance energy transfer (FRET) based fluorescent sensor is developed, which can monitor the pH change in cellular system. One-pot sequential reversible addition-fragmentation chain transfer (RAFT)polymerization technique is employed to synthesize fluorescent active triblock glycopolymer that can undergo FRET change on the variation of pH. A FRET pair, fluorescein o-acrylate (FA) and 7-amino-4-methylcoumarin (AMC) is linked via a pH-responsive polymer poly [2-(diisopropylamino)ethyl methacrylate] (PDPAEMA), which can undergo reversible swelling/deswelling under acidic/neutral condition. The presence of glycopolymer segment provides stability, water solubility, and specificity toward cancer cells. The cellular FRET experiments on cancer cells (MDA MB 231) and normal cells (3T3 fibroblast cells) demonstrate that the material is capable of distinguishing cells as a function of pH change.
Collapse
Affiliation(s)
- Koushik Bhattacharya
- Rubber Technology Centre, Indian Institute of Technology, Kharagpur, West Bengal, 721302, India
| | - Moumita Kundu
- School of Medical Science and Technology, Indian Institute of Technology, Kharagpur, West Bengal, 721302, India
| | - Subhayan Das
- School of Medical Science and Technology, Indian Institute of Technology, Kharagpur, West Bengal, 721302, India
| | - Sarthik Samanta
- Rubber Technology Centre, Indian Institute of Technology, Kharagpur, West Bengal, 721302, India
| | - Sib Sankar Roy
- Indian Institute of Chemical Biology, 4, Raja Subodh Chandra Mallick Rd, Jadavpur, Kolkata, West Bengal, 700032, India
| | - Mahitosh Mandal
- School of Nano Science and Technology, Indian Institute of Technology, Kharagpur, West Bengal, 721302, India
| | - Nikhil K Singha
- Rubber Technology Centre, Indian Institute of Technology, Kharagpur, West Bengal, 721302, India.,School of Nano Science and Technology, Indian Institute of Technology, Kharagpur, West Bengal, 721302, India
| |
Collapse
|
27
|
Mehta A. Tracking the Development of Cancer Care After 75 Years of Independence: India's Fight Against Cancer Since 1947. Indian J Surg Oncol 2022; 13:12-26. [PMID: 36691502 PMCID: PMC9859970 DOI: 10.1007/s13193-022-01689-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 12/12/2022] [Indexed: 01/13/2023] Open
Abstract
India is one of the fastest developing countries with tremendous growth in industrialization and healthcare facilities. Research and development in the field of healthcare improved the quality of life and well-being of our population. Despite the availability of healthcare facilities and infrastructure, we are still facing considerable challenges in the prevention, diagnosis, and treatment of cancer. The present review focuses on the history and development of cancer care facilities since independence. The advances in cancer diagnostics for early detection of cancer and developments in the field of conventional surgery, including laparoscopic and robotic surgeries, chemotherapy, and radiation therapy, are reviewed. Immunotherapy, vaccines, and selective targeting of tumor cells using nanotechnology are emerging areas in the field of cancer research.
Collapse
Affiliation(s)
- Ashok Mehta
- Nanavati Max Super Speciality Hospital, Mumbai, India
- L S Raheja Hospital, Mumbai, India
- HCG Cancer Centre Colaba, Mumbai, India
| |
Collapse
|
28
|
Yang Y, Li X, Pappas D. Isolation of leukemia and breast cancer cells from liquid biopsies and clinical samples at low concentration in a 3D printed cell separation device via transferrin-receptor affinity. Talanta 2022. [DOI: 10.1016/j.talanta.2022.124107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
29
|
Kamali H, Golmohammadzadeh S, Zare H, Nosrati R, Fereidouni M, Safarpour H. The recent advancements in the early detection of cancer biomarkers by DNAzyme-assisted aptasensors. J Nanobiotechnology 2022; 20:438. [PMID: 36195928 PMCID: PMC9531510 DOI: 10.1186/s12951-022-01640-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 09/20/2022] [Indexed: 11/10/2022] Open
Abstract
Clinical diagnostics rely heavily on the detection and quantification of cancer biomarkers. The rapid detection of cancer-specific biomarkers is of great importance in the early diagnosis of cancers and plays a crucial role in the subsequent treatments. There are several different detection techniques available today for detecting cancer biomarkers. Because of target-related conformational alterations, high stability, and target variety, aptamers have received considerable interest as a biosensing system component. To date, several sensitivity-enhancement strategies have been used with a broad spectrum of nanomaterials and nanoparticles (NPs) to improve the limit and sensitivity of analyte detection in the construction of innovative aptasensors. The present article aims to outline the research developments on the potential of DNAzymes-based aptasensors for cancer biomarker detection.
Collapse
Affiliation(s)
- Hossein Kamali
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shiva Golmohammadzadeh
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamed Zare
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Rahim Nosrati
- Cellular and Molecular Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Mohammad Fereidouni
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Hossein Safarpour
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran.
| |
Collapse
|
30
|
Fluorescence resonance energy transfer-based nanomaterials for the sensing in biological systems. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.12.061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
31
|
Kher C, Kumar S. The Application of Nanotechnology and Nanomaterials in Cancer Diagnosis and Treatment: A Review. Cureus 2022; 14:e29059. [PMID: 36259014 PMCID: PMC9564559 DOI: 10.7759/cureus.29059] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 09/11/2022] [Indexed: 11/05/2022] Open
Abstract
Cancer is one of the deadliest diseases worldwide in present times, with its incidence on a tremendous rise. It is caused by uncontrolled cell growth. Cancer therapies have advanced substantially, but there is a need for improvement in specificity and fear of systemic toxicity. Early detection is critical in improving patients' prognosis and quality of life, and recent advancements in technology, especially in dealing with biomaterials, have aided in that surge. Nanotechnology possesses the key to solving many of the downsides of traditional pharmaceutical formulations. Indeed, significant progress has been made in using customized nanomaterials for cancer diagnosis and treatment with high specificity, sensitivity, and efficacy. Nanotechnology is the integration of nanoscience into medicine by the use of nanoparticles. The advent of nanoscience in cancer diagnosis and treatment will help clinicians better assess and manage patients and improve the healthcare system and services. This review article gives an account of the clinical applications of nanoscience in the modern management of cancer, the different modalities of nanotechnology used, and the limitations and possible side effects of this new tool.
Collapse
|
32
|
Dessale M, Mengistu G, Mengist HM. Nanotechnology: A Promising Approach for Cancer Diagnosis, Therapeutics and Theragnosis. Int J Nanomedicine 2022; 17:3735-3749. [PMID: 36051353 PMCID: PMC9427008 DOI: 10.2147/ijn.s378074] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/22/2022] [Indexed: 01/10/2023] Open
Abstract
Cancer remains the most devastating disease and the major cause of mortality worldwide. Although early diagnosis and treatment are the key approach in fighting against cancer, the available conventional diagnostic and therapeutic methods are not efficient. Besides, ineffective cancer cell selectivity and toxicity of traditional chemotherapy remain the most significant challenge. These limitations entail the need for the development of both safe and effective cancer diagnosis and treatment options. Due to its robust application, nanotechnology could be a promising method for in-vivo imaging and detection of cancer cells and cancer biomarkers. Nanotechnology could provide a quick, safe, cost-effective, and efficient method for cancer management. It also provides simultaneous diagnosis and treatment of cancer using nano-theragnostic particles that facilitate early detection and selective destruction of cancer cells. Updated and recent discussions are important for selecting the best cancer diagnosis, treatment, and management options, and new insights on designing effective protocols are utmost important. This review discusses the application of nanotechnology in cancer diagnosis, therapeutics, and theragnosis and provides future perspectives in the field.
Collapse
Affiliation(s)
- Mesfin Dessale
- Department of Medical Laboratory Sciences, Debre Markos University, Debre Markos, Amhara, Ethiopia
| | - Getachew Mengistu
- Department of Medical Laboratory Sciences, Debre Markos University, Debre Markos, Amhara, Ethiopia
| | | |
Collapse
|
33
|
Renal cell carcinoma management: A step to nano-chemoprevention. Life Sci 2022; 308:120922. [PMID: 36058262 DOI: 10.1016/j.lfs.2022.120922] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/12/2022] [Accepted: 08/26/2022] [Indexed: 11/21/2022]
Abstract
Renal cell carcinoma (RCC) is one of the most common kidney cancers, responsible for nearly 90 % of all renal malignancies. Despite the availability of many treatment strategies, RCC still remains to be an incurable disease due to its resistivity towards conventional therapies. Nanotechnology is an emerging field of science that offers newer possibilities in therapeutics including cancer medicine, specifically by targeted delivery of anticancer drugs. Several phytochemicals are known for their anti-cancer properties and have been regarded as chemopreventive agents. However, the hydrophobic nature of many phytochemicals decreases its bioavailability and distribution, thus showing limited therapeutic effect. Application of nanotechnology to enhance chemoprevention is an effective strategy to increase the bioavailability of phytochemicals and thereby its therapeutic efficacy. The present review focuses on the utility of nanotechnology in RCC treatment and chemopreventive agents of RCC. We have also visualized the future prospects of nanomolecules in the prevention and cure of RCC.
Collapse
|
34
|
Arshad R, Kiani MH, Rahdar A, Sargazi S, Barani M, Shojaei S, Bilal M, Kumar D, Pandey S. Nano-Based Theranostic Platforms for Breast Cancer: A Review of Latest Advancements. Bioengineering (Basel) 2022; 9:bioengineering9070320. [PMID: 35877371 PMCID: PMC9311542 DOI: 10.3390/bioengineering9070320] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/05/2022] [Accepted: 07/11/2022] [Indexed: 12/24/2022] Open
Abstract
Breast cancer (BC) is a highly metastatic multifactorial disease with various histological and molecular subtypes. Due to recent advancements, the mortality rate in BC has improved over the past five decades. Detection and treatment of many cancers are now possible due to the application of nanomedicine in clinical practice. Nanomedicine products such as Doxil® and Abraxane® have already been extensively used for BC adjuvant therapy with favorable clinical outcomes. However, these products were designed initially for generic anticancer purposes and not specifically for BC treatment. With a better understanding of the molecular biology of BC, several novel and promising nanotherapeutic strategies and devices have been developed in recent years. In this context, multi-functionalized nanostructures are becoming potential carriers for enhanced chemotherapy in BC patients. To design these nanostructures, a wide range of materials, such as proteins, lipids, polymers, and hybrid materials, can be used and tailored for specific purposes against BC. Selective targeting of BC cells results in the activation of programmed cell death in BC cells and can be considered a promising strategy for managing triple-negative BC. Currently, conventional BC screening methods such as mammography, digital breast tomosynthesis (DBT), ultrasonography, and magnetic resonance imaging (MRI) are either costly or expose the user to hazardous radiation that could harm them. Therefore, there is a need for such analytical techniques for detecting BC that are highly selective and sensitive, have a very low detection limit, are durable, biocompatible, and reproducible. In detecting BC biomarkers, nanostructures are used alone or in conjunction with numerous molecules. This review intends to highlight the recent advances in nanomedicine in BC treatment and diagnosis, emphasizing the targeting of BC cells that overexpress receptors of epidermal growth factors. Researchers may gain insight from these strategies to design and develop more tailored nanomedicine for BC to achieve further improvements in cancer specificity, antitumorigenic effects, anti-metastasis effects, and drug resistance reversal effects.
Collapse
Affiliation(s)
- Rabia Arshad
- Faculty of Pharmacy, University of Lahore, Lahore 54000, Pakistan;
| | | | - Abbas Rahdar
- Department of Physics, University of Zabol, Zabol 98613-35856, Iran
- Correspondence: (A.R.); or (S.P.)
| | - Saman Sargazi
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan 98167-43463, Iran;
| | - Mahmood Barani
- Medical Mycology and Bacteriology Research Center, Kerman University of Medical Sciences, Kerman 76169-13555, Iran;
| | - Shirin Shojaei
- Imam Ali Hospital, Kermanshah University of Medical Sciences, Kermanshah 67158-47141, Iran;
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China;
| | - Deepak Kumar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Shoolini University, Solan 173229, India;
| | - Sadanand Pandey
- Department of Chemistry, College of Natural Science, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Korea
- Correspondence: (A.R.); or (S.P.)
| |
Collapse
|
35
|
Design of a Sensitive Extracellular Vesicle Detection Method Utilizing a Surface-Functionalized Power-Free Microchip. MEMBRANES 2022; 12:membranes12070679. [PMID: 35877881 PMCID: PMC9323264 DOI: 10.3390/membranes12070679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/15/2022] [Accepted: 06/21/2022] [Indexed: 12/10/2022]
Abstract
Extracellular vesicles (EVs), which are small membrane vesicles secreted from cells into bodily fluids, are promising candidates as biomarkers for various diseases. We propose a simple, highly sensitive method for detecting EVs using a microchip. The limit of detection (LOD) for EVs was improved 29-fold by changing the microchannel structure of the microchip and by optimizing the EV detection protocols. The height of the microchannel was changed from 25 to 8 µm only at the detection region, and the time for EV capture was extended from 5 to 10 min. The LOD was 6.3 × 1010 particles/mL, which is lower than the concentration of EVs in the blood. The detection time was 19 min, and the volume of EV solution used was 2.0 µL. These results indicate that an efficient supply of EVs to the detection region is effective in improving the sensitivity of EV detection. The proposed EV detection method is expected to contribute to the establishment of EV-based cancer point-of-care testing.
Collapse
|
36
|
Hsiao YP, Mukundan A, Chen WC, Wu MT, Hsieh SC, Wang HC. Design of a Lab-On-Chip for Cancer Cell Detection through Impedance and Photoelectrochemical Response Analysis. BIOSENSORS 2022; 12:405. [PMID: 35735553 PMCID: PMC9221223 DOI: 10.3390/bios12060405] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/09/2022] [Accepted: 06/09/2022] [Indexed: 05/07/2023]
Abstract
In this study, a biochip was fabricated using a light-absorbing layer of a silicon solar element combined with serrated, interdigitated electrodes and used to identify four different types of cancer cells: CE81T esophageal cancer, OE21 esophageal cancer, A549 lung adenocarcinoma, and TSGH-8301 bladder cancer cells. A string of pearls was formed from dielectrophoretic aggregated cancer cells because of the serrated interdigitated electrodes. Thus, cancer cells were identified in different parts, and electron-hole pairs were separated by photo-excited carriers through the light-absorbing layer of the solar element. The concentration catalysis mechanism of GSH and GSSG was used to conduct photocurrent response and identification, which provides the fast, label-free measurement of cancer cells. The total time taken for this analysis was 13 min. Changes in the impedance value and photocurrent response of each cancer cell were linearly related to the number of cells, and the slope of the admittance value was used to distinguish the location of the cancerous lesion, the slope of the photocurrent response, and the severity of the cancerous lesion. The results show that the number of cancerous cells was directly proportional to the admittance value and the photocurrent response for all four different types of cancer cells. Additionally, different types of cancer cells could easily be differentiated using the slope value of the photocurrent response and the admittance value.
Collapse
Affiliation(s)
- Yu-Ping Hsiao
- Department of Dermatology, Chung Shan Medical University Hospital, No.110, Sec. 1, Jianguo N. Rd., South District, Taichung City 40201, Taiwan;
- Institute of Medicine, School of Medicine, Chung Shan Medical University, No.110, Sec. 1, Jianguo N. Rd., South District, Taichung City 40201, Taiwan
| | - Arvind Mukundan
- Department of Mechanical Engineering, Advanced Institute of Manufacturing with High Tech Innovations (AIM-HI), Center for Innovative Research on Aging Society (CIRAS), National Chung Cheng University, 168, University Rd., Min Hsiung, Chia Yi 62102, Taiwan;
| | - Wei-Chung Chen
- Ph.D. Program in Environmental and Occupational Medicine, Kaohsiung Medical University, Kaohsiung 807377, Taiwan; (W.-C.C.); (M.-T.W.)
| | - Ming-Tsang Wu
- Ph.D. Program in Environmental and Occupational Medicine, Kaohsiung Medical University, Kaohsiung 807377, Taiwan; (W.-C.C.); (M.-T.W.)
- Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung 807377, Taiwan
- Department of Public Health, Kaohsiung Medical University, Kaohsiung 807377, Taiwan
- Department of Family Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807377, Taiwan
| | - Shang-Chin Hsieh
- Department of Plastic Surgery, Kaohsiung Armed Forces General Hospital, 2, Zhongzheng 1st Rd., Lingya District, Kaohsiung 80284, Taiwan
| | - Hsiang-Chen Wang
- Department of Mechanical Engineering, Advanced Institute of Manufacturing with High Tech Innovations (AIM-HI), Center for Innovative Research on Aging Society (CIRAS), National Chung Cheng University, 168, University Rd., Min Hsiung, Chia Yi 62102, Taiwan;
| |
Collapse
|
37
|
Abstract
Quantum dots (QDs) possess exceptional optoelectronic properties that enable their use in the most diverse applications, namely, in the medical field. The prevalence of cancer has increased and has been considered the major cause of death worldwide. Thus, there has been a great demand for new methodologies for diagnosing and monitoring cancer in cells to provide an earlier prognosis of the disease and contribute to the effectiveness of treatment. Several molecules in the human body can be considered relevant as cancer markers. Studies published over recent years have revealed that micro ribonucleic acids (miRNAs) play a crucial role in this pathology, since they are responsible for some physiological processes of the cell cycle and, most important, they are overexpressed in cancer cells. Thus, the analytical sensing of miRNA has gained importance to provide monitoring during cancer treatment, allowing the evaluation of the disease's evolution. Recent methodologies based on nanochemistry use fluorescent quantum dots for sensing of the miRNA. Combining the unique characteristics of QDs, namely, their fluorescence capacity, and the fact that miRNA presents an aberrant expression in cancer cells, the researchers created diverse strategies for miRNA monitoring. This review aims to present an overview of the recent use of QDs as biosensors in miRNA detection, also highlighting some tutorial descriptions of the synthesis methods of QDs, possible surface modification, and functionalization approaches.
Collapse
Affiliation(s)
- Catarina
S. M. Martins
- International
Iberian Nanotechnology Laboratory, 4715-330 Braga, Portugal,LAQV,
REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical
Sciences, Faculty of Pharmacy, University
of Porto, Rua de Jorge Viterbo Ferreira, No. 228, 4050-313 Porto, Portugal
| | - Alec P. LaGrow
- International
Iberian Nanotechnology Laboratory, 4715-330 Braga, Portugal
| | - João A. V. Prior
- LAQV,
REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical
Sciences, Faculty of Pharmacy, University
of Porto, Rua de Jorge Viterbo Ferreira, No. 228, 4050-313 Porto, Portugal,
| |
Collapse
|
38
|
Peserico A, Di Berardino C, Russo V, Capacchietti G, Di Giacinto O, Canciello A, Camerano Spelta Rapini C, Barboni B. Nanotechnology-Assisted Cell Tracking. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:1414. [PMID: 35564123 PMCID: PMC9103829 DOI: 10.3390/nano12091414] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 04/13/2022] [Accepted: 04/14/2022] [Indexed: 02/06/2023]
Abstract
The usefulness of nanoparticles (NPs) in the diagnostic and/or therapeutic sector is derived from their aptitude for navigating intra- and extracellular barriers successfully and to be spatiotemporally targeted. In this context, the optimization of NP delivery platforms is technologically related to the exploitation of the mechanisms involved in the NP-cell interaction. This review provides a detailed overview of the available technologies focusing on cell-NP interaction/detection by describing their applications in the fields of cancer and regenerative medicine. Specifically, a literature survey has been performed to analyze the key nanocarrier-impacting elements, such as NP typology and functionalization, the ability to tune cell interaction mechanisms under in vitro and in vivo conditions by framing, and at the same time, the imaging devices supporting NP delivery assessment, and consideration of their specificity and sensitivity. Although the large amount of literature information on the designs and applications of cell membrane-coated NPs has reached the extent at which it could be considered a mature branch of nanomedicine ready to be translated to the clinic, the technology applied to the biomimetic functionalization strategy of the design of NPs for directing cell labelling and intracellular retention appears less advanced. These approaches, if properly scaled up, will present diverse biomedical applications and make a positive impact on human health.
Collapse
Affiliation(s)
- Alessia Peserico
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (C.D.B.); (V.R.); (G.C.); (O.D.G.); (A.C.); (C.C.S.R.); (B.B.)
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Tiwari A, Chaskar J, Ali A, Arivarasan VK, Chaskar AC. Role of Sensor Technology in Detection of the Breast Cancer. BIONANOSCIENCE 2022. [DOI: 10.1007/s12668-021-00921-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
40
|
Lodhi MS, Khalid F, Khan MT, Samra ZQ, Muhammad S, Zhang YJ, Mou K. A Novel Method of Magnetic Nanoparticles Functionalized with Anti-Folate Receptor Antibody and Methotrexate for Antibody Mediated Targeted Drug Delivery. Molecules 2022; 27:261. [PMID: 35011493 PMCID: PMC8747068 DOI: 10.3390/molecules27010261] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 12/28/2021] [Accepted: 12/29/2021] [Indexed: 12/12/2022] Open
Abstract
Therapeutic effects of anticancer medicines can be improved by targeting the specific receptors on cancer cells. Folate receptor (FR) targeting with antibody (Ab) is an effective tool to deliver anticancer drugs to the cancer cell. In this research project, a novel formulation of targeting drug delivery was designed, and its anticancer effects were analyzed. Folic acid-conjugated magnetic nanoparticles (MNPs) were used for the purification of folate receptors through a novel magnetic affinity purification method. Antibodies against the folate receptors and methotrexate (MTX) were developed and characterized with enzyme-linked immunosorbent assay and Western blot. Targeting nanomedicines (MNP-MTX-FR Ab) were synthesized by engineering the MNP with methotrexate and anti-folate receptor antibody (anti-FR Ab). The cytotoxicity of nanomedicines on HeLa cells was analyzed by calculating the % age cell viability. A fluorescent study was performed with HeLa cells and tumor tissue sections to analyze the binding efficacy and intracellular tracking of synthesized nanomedicines. MNP-MTX-FR Ab demonstrated good cytotoxicity along all the nanocomposites, which confirms that the antibody-coated medicine possesses the potential affinity to destroy cancer cells in the targeted drug delivery process. Immunohistochemical approaches and fluorescent study further confirmed their uptake by FRs on the tumor cells' surface in antibody-mediated endocytosis. The current approach is a useful addition to targeted drug delivery for better management of cancer therapy along with immunotherapy in the future.
Collapse
Affiliation(s)
- Madeeha Shahzad Lodhi
- School of Biochemistry and Biotechnology, University of the Punjab, Lahore 54890, Pakistan; (F.K.); (Z.Q.S.)
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore 58810, Pakistan;
| | - Fatima Khalid
- School of Biochemistry and Biotechnology, University of the Punjab, Lahore 54890, Pakistan; (F.K.); (Z.Q.S.)
| | - Muhammad Tahir Khan
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore 58810, Pakistan;
| | - Zahoor Qadir Samra
- School of Biochemistry and Biotechnology, University of the Punjab, Lahore 54890, Pakistan; (F.K.); (Z.Q.S.)
| | - Shabbir Muhammad
- Department of Physics, College of Science, King Khalid University, Abha 61413, Saudi Arabia;
| | - Yu-Juan Zhang
- College of Life Sciences, Chongqing Normal University, Shapingba, Chongqing 401331, China;
| | - Kejie Mou
- Department of Neurosurgery, Bishan Hospital of Chongqing, Chongqing 402760, China
| |
Collapse
|
41
|
Hashem A, Hossain MAM, Marlinda AR, Mamun MA, Sagadevan S, Shahnavaz Z, Simarani K, Johan MR. Nucleic acid-based electrochemical biosensors for rapid clinical diagnosis: Advances, challenges, and opportunities. Crit Rev Clin Lab Sci 2021; 59:156-177. [PMID: 34851806 DOI: 10.1080/10408363.2021.1997898] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Clinical diagnostic tests should be quick, reliable, simple to perform, and affordable for diagnosis and treatment of diseases. In this regard, owing to their novel properties, biosensors have attracted the attention of scientists as well as end-users. They are efficient, stable, and relatively cheap. Biosensors have broad applications in medical diagnosis, including point-of-care (POC) monitoring, forensics, and biomedical research. The electrochemical nucleic acid (NA) biosensor, the latest invention in this field, combines the sensitivity of electroanalytical methods with the inherent bioselectivity of deoxyribonucleic acid (DNA) and ribonucleic acid (RNA). The NA biosensor exploits the affinity of single-stranded DNA/RNA for its complementary strand and is used to detect complementary sequences of NA based on hybridization. After the NA component in the sensor detects the analyte, a catalytic reaction or binding event that generates an electrical signal in the transducer ensues. Since 2000, much progress has been made in this field, but there are still numerous challenges. This critical review describes the advances, challenges, and prospects of NA-based electrochemical biosensors for clinical diagnosis. It includes the basic principles, classification, sensing enhancement strategies, and applications of biosensors as well as their advantages, limitations, and future prospects, and thus it should be useful to academics as well as industry in the improvement and application of EC NA biosensors.
Collapse
Affiliation(s)
- Abu Hashem
- Nanotechnology and Catalysis Research Centre, Institute for Advanced Studies, University of Malaya, Kuala Lumpur, Malaysia.,Microbial Biotechnology Division, National Institute of Biotechnology, Dhaka, Bangladesh
| | - M A Motalib Hossain
- Nanotechnology and Catalysis Research Centre, Institute for Advanced Studies, University of Malaya, Kuala Lumpur, Malaysia
| | - Ab Rahman Marlinda
- Nanotechnology and Catalysis Research Centre, Institute for Advanced Studies, University of Malaya, Kuala Lumpur, Malaysia
| | - Mohammad Al Mamun
- Nanotechnology and Catalysis Research Centre, Institute for Advanced Studies, University of Malaya, Kuala Lumpur, Malaysia.,Department of Chemistry, Jagannath University, Dhaka, Bangladesh
| | - Suresh Sagadevan
- Nanotechnology and Catalysis Research Centre, Institute for Advanced Studies, University of Malaya, Kuala Lumpur, Malaysia
| | - Zohreh Shahnavaz
- Nanotechnology and Catalysis Research Centre, Institute for Advanced Studies, University of Malaya, Kuala Lumpur, Malaysia
| | - Khanom Simarani
- Department of Microbiology, Institute of Biological Sciences, Faculty of Sciences, University of Malaya, Kuala Lumpur, Malaysia
| | - Mohd Rafie Johan
- Nanotechnology and Catalysis Research Centre, Institute for Advanced Studies, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
42
|
Nasori N, Farahdina U, Zulfa VZ, Firdhaus M, Aziz I, Darsono D, Cao D, Wang Z, Endarko E, Rubiyanto A. A Comparison between Silver Nanosquare Arrays and Silver Thin-Films as a Blood Cancer Prognosis Monitoring Electrode Design Using Optical and Electrochemical Characterization. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:3108. [PMID: 34835873 PMCID: PMC8625830 DOI: 10.3390/nano11113108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/13/2021] [Accepted: 11/15/2021] [Indexed: 11/16/2022]
Abstract
The development of silver (Ag) thin films and the fabrication of Ag nanosquare arrays with the use of an anodic aluminum oxide (AAO) template and leaf extracts were successfully carried out using the DC sputtering and spin coating deposition methods. Ag thin films and Ag nanosquare arrays are developed to monitor cancer prognosis due to the correlation between serum albumin levels and prognostic factors, as well as the binding of serum albumin to the surface of these electrodes. Nanosquare structures were fabricated using AAO templates with varying diameters and a gap distance between adjacent unit cells of 100 nm. The nanosquare array with a diameter of 250 nm and irradiated with electromagnetic waves with a wavelength of around 800 nm possessed the greatest electric field distribution compared to the other variations of diameters and wavelengths. The results of the absorption measurement and simulation showed a greater shift in absorption peak wavelength when carried out using the Ag nanosquare array. The absorption peak wavelengths of the Ag nanosquare array in normal blood and blood with cancer lymphocytes were 700-774 nm and 800-850 nm, respectively. The electrochemical test showed that the sensitivity values of the Ag thin-film electrode deposited using DC sputtering, the Ag thin-film electrode deposited using spin coating, and the Ag nanosquare array in detecting PBS+BSA concentration in the cyclic voltammetry (CV) experiment were 1.308 µA mM-1cm-2, 0.022 µA mM-1cm-2, and 39.917 µA mM-1cm-2, respectively. Meanwhile, the sensitivity values of the Ag thin film and the Ag nanosquare array in detecting the PBS+BSA concentration in the electrochemical impedance spectroscopy (EIS) measurement were 6593.76 Ohm·cm2/mM and 69,000 Ohm·cm2/mM, respectively. Thus, our analysis of the optical and electrochemical characteristics of Ag thin films and Ag nanosquare arrays showed that both can be used as an alternative biomedical technology to monitor the prognosis of blood cancer based on the concentration of serum albumin in blood.
Collapse
Affiliation(s)
- Nasori Nasori
- Laboratory Medical Physics and Biophysics, Department of Physics, Faculty of Sciences and Data Analytic, Institut Teknologi Sepuluh Nopember, Surabaya 60111, Indonesia; (U.F.); (V.Z.Z.); (M.F.); (E.E.); (A.R.)
- Occupational and Safety Department, Nahdlatul Ulama University of Surabaya, Surabaya 60237, Indonesia
| | - Ulya Farahdina
- Laboratory Medical Physics and Biophysics, Department of Physics, Faculty of Sciences and Data Analytic, Institut Teknologi Sepuluh Nopember, Surabaya 60111, Indonesia; (U.F.); (V.Z.Z.); (M.F.); (E.E.); (A.R.)
| | - Vinda Zakiyatuz Zulfa
- Laboratory Medical Physics and Biophysics, Department of Physics, Faculty of Sciences and Data Analytic, Institut Teknologi Sepuluh Nopember, Surabaya 60111, Indonesia; (U.F.); (V.Z.Z.); (M.F.); (E.E.); (A.R.)
| | - Miftakhul Firdhaus
- Laboratory Medical Physics and Biophysics, Department of Physics, Faculty of Sciences and Data Analytic, Institut Teknologi Sepuluh Nopember, Surabaya 60111, Indonesia; (U.F.); (V.Z.Z.); (M.F.); (E.E.); (A.R.)
| | - Ihwanul Aziz
- Center for Accelerator Sciences and Technology, Yogykarta 60101, Indonesia; (I.A.); (D.D.)
| | - Darsono Darsono
- Center for Accelerator Sciences and Technology, Yogykarta 60101, Indonesia; (I.A.); (D.D.)
| | - Dawei Cao
- Department of Physics, Faculty of Sciences, University of Jiangsu, Zhenjiang 212013, China;
| | - Zhijie Wang
- Semiconductor Materials Science Key Laboratory, Semiconductors Institute, Chinese Sciences Academy, Beijing 100083, China;
| | - Endarko Endarko
- Laboratory Medical Physics and Biophysics, Department of Physics, Faculty of Sciences and Data Analytic, Institut Teknologi Sepuluh Nopember, Surabaya 60111, Indonesia; (U.F.); (V.Z.Z.); (M.F.); (E.E.); (A.R.)
| | - Agus Rubiyanto
- Laboratory Medical Physics and Biophysics, Department of Physics, Faculty of Sciences and Data Analytic, Institut Teknologi Sepuluh Nopember, Surabaya 60111, Indonesia; (U.F.); (V.Z.Z.); (M.F.); (E.E.); (A.R.)
| |
Collapse
|
43
|
Mehdipour G, Shabani Shayeh J, Omidi M, Pour Madadi M, Yazdian F, Tayebi L. An electrochemical aptasensor for detection of prostate-specific antigen using reduced graphene gold nanocomposite and Cu/carbon quantum dots. Biotechnol Appl Biochem 2021; 69:2102-2111. [PMID: 34632622 DOI: 10.1002/bab.2271] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 09/24/2021] [Indexed: 01/02/2023]
Abstract
We report a label-free electrochemical aptamer-based biosensor for the detection of human prostate-specific antigen (PSA). The thiolate DNA aptamer against PSA was conjugated to the reduced graphene oxide/Au (RGO-Au) nanocomposite through the self-assembly of Au-S groups. Owing to the large volume to surface ratio, the RGO-Au nanocomposite provides a large surface for aptamer loading. The RGO-Au/aptamer was combined with a Nafion polymer and immobilized on a glassy carbon electrode. The interaction of aptamer with PSA was studied by cyclic voltammetry, square wave voltammetry, and electrochemical impedance spectroscopy. The detection of limit for prepared electrode was obtained about 50 pg/mL at the potential of 0.4 V in potassium hexacyanoferrate [K4 Fe(CN)6 ] medium. To decrease the limit of detection (LOD) and applied potential of the prepared nanoprobe Cu/carbon quantum dots (CuCQD) is introduced as a new redox. The results show that this new electrochemical medium provides better conditions for the detection of PSA. LOD of a nanoprobe in CuCQD media was obtained as 40 pg/mL at the potential of -0.2 V. Under optimal conditions, the aptasensor exhibits a linear response to PSA with a LOD as small as 3 pg/mL. The present aptasensor is highly selective and sensitive and shows satisfactory stability and repeatability.
Collapse
Affiliation(s)
- Golnaz Mehdipour
- Protein Research Center, Shahid Beheshti University, Tehran, Iran
| | | | - Meysam Omidi
- Protein Research Center, Shahid Beheshti University, Tehran, Iran
| | | | - Fatemeh Yazdian
- Department of Life Science Engineering, Faculty of New Science and Technologies, University of Tehran, Tehran, Iran
| | - Lobat Tayebi
- Marquette University School of Dentistry, Milwaukee, Wisconsin, USA
| |
Collapse
|
44
|
Kanu NJ, Bapat S, Deodhar H, Gupta E, Singh GK, Vates UK, Verma GC, Pandey V. An Insight into Processing and Properties of Smart Carbon Nanotubes Reinforced Nanocomposites. SMART SCIENCE 2021. [DOI: 10.1080/23080477.2021.1972913] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Nand Jee Kanu
- Mechanical Engineering, S. V. National Institute of Technology, Surat, India
- Mechanical Engineering, JSPM Narhe Technical Campus, Pune, India
| | - Saurabh Bapat
- Mechanical Engineering, JSPM Narhe Technical Campus, Pune, India
| | - Harshad Deodhar
- Mechanical Engineering, JSPM Narhe Technical Campus, Pune, India
| | - Eva Gupta
- Electrical Engineering, ASET, Amity University, Noida, India
- Electrical Engineering, TSSM’s Bhivrabai Sawant College of Engineering and Research, Pune, India
| | - Gyanendra Kumar Singh
- Mechanical Design and Manufacturing Engineering, Adama Science and Technology University, Adama, Ethiopia
| | | | - Girish C. Verma
- Mechanical Engineering, Indian Institute of Technology Indore, Indore, India
| | - Vivek Pandey
- Thermal and Aerospace Engineering, Adama Science and Technology University, Adama, Ethiopia
| |
Collapse
|
45
|
Combes GF, Vučković AM, Perić Bakulić M, Antoine R, Bonačić-Koutecky V, Trajković K. Nanotechnology in Tumor Biomarker Detection: The Potential of Liganded Nanoclusters as Nonlinear Optical Contrast Agents for Molecular Diagnostics of Cancer. Cancers (Basel) 2021; 13:4206. [PMID: 34439360 PMCID: PMC8393257 DOI: 10.3390/cancers13164206] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 12/24/2022] Open
Abstract
Cancer is one of the leading causes of premature death, and, as such, it can be prevented by developing strategies for early and accurate diagnosis. Cancer diagnostics has evolved from the macroscopic detection of malignant tissues to the fine analysis of tumor biomarkers using personalized medicine approaches. Recently, various nanomaterials have been introduced into the molecular diagnostics of cancer. This has resulted in a number of tumor biomarkers that have been detected in vitro and in vivo using nanodevices and corresponding imaging techniques. Atomically precise ligand-protected noble metal quantum nanoclusters represent an interesting class of nanomaterials with a great potential for the detection of tumor biomarkers. They are characterized by high biocompatibility, low toxicity, and suitability for controlled functionalization with moieties specifically recognizing tumor biomarkers. Their non-linear optical properties are of particular importance as they enable the visualization of nanocluster-labeled tumor biomarkers using non-linear optical techniques such as two-photon-excited fluorescence and second harmonic generation. This article reviews liganded nanoclusters among the different nanomaterials used for molecular cancer diagnosis and the relevance of this new class of nanomaterials as non-linear optical probe and contrast agents.
Collapse
Affiliation(s)
- Guillaume F. Combes
- Center of Excellence for Science and Technology-Integration of Mediterranean Region (STIM), Faculty of Science, University of Split, 21000 Split, Croatia; (G.F.C.); (A.-M.V.); (M.P.B.); (V.B.-K.)
- Mediterranean Institute for Life Sciences (MedILS), 21000 Split, Croatia
| | - Ana-Marija Vučković
- Center of Excellence for Science and Technology-Integration of Mediterranean Region (STIM), Faculty of Science, University of Split, 21000 Split, Croatia; (G.F.C.); (A.-M.V.); (M.P.B.); (V.B.-K.)
- Mediterranean Institute for Life Sciences (MedILS), 21000 Split, Croatia
| | - Martina Perić Bakulić
- Center of Excellence for Science and Technology-Integration of Mediterranean Region (STIM), Faculty of Science, University of Split, 21000 Split, Croatia; (G.F.C.); (A.-M.V.); (M.P.B.); (V.B.-K.)
| | - Rodolphe Antoine
- UMR 5306, Centre National de la Recherche Scientifique (CNRS), Institute Lumière Matière, Claude Bernard University Lyon 1, F-69622 Villeurbanne, France;
| | - Vlasta Bonačić-Koutecky
- Center of Excellence for Science and Technology-Integration of Mediterranean Region (STIM), Faculty of Science, University of Split, 21000 Split, Croatia; (G.F.C.); (A.-M.V.); (M.P.B.); (V.B.-K.)
- Interdisciplinary Center for Advanced Science and Technology (ICAST), University of Split, 21000 Split, Croatia
- Chemistry Department, Humboldt University of Berlin, 12489 Berlin, Germany
| | - Katarina Trajković
- Center of Excellence for Science and Technology-Integration of Mediterranean Region (STIM), Faculty of Science, University of Split, 21000 Split, Croatia; (G.F.C.); (A.-M.V.); (M.P.B.); (V.B.-K.)
- Mediterranean Institute for Life Sciences (MedILS), 21000 Split, Croatia
| |
Collapse
|
46
|
Karunakaran V, Saritha VN, Ramya AN, Murali VP, Raghu KG, Sujathan K, Maiti KK. Elucidating Raman Image-Guided Differential Recognition of Clinically Confirmed Grades of Cervical Exfoliated Cells by Dual Biomarker-Appended SERS-Tag. Anal Chem 2021; 93:11140-11150. [PMID: 34348462 DOI: 10.1021/acs.analchem.1c01607] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Ultrasensitive detection of cancer biomarkers via single-cell analysis through Raman imaging is an impending approach that modulates the possibility of early diagnosis. Cervical cancer is one such type that can be monitored for a sufficiently long period toward invasive cancer phenotype. Herein, we report a surface-enhanced Raman scattering (SERS) nanotag (SERS-tag) for the simultaneous detection of p16/K-i67, a dual biomarker persisting in the progression of squamous cell carcinoma of human cervix. A nanoflower-shaped SERS-tag, constituted of hybrid gold nanostar with silver tips to achieve maximum fingerprint enhancement from the incorporated reporter molecule, was further functionalized with the cocktail monoclonal antibodies against p16/K-i67. The recognition by the SERS-tag was first validated in cervical squamous cell carcinoma cell line SiHa as a foot-step study and subsequently implemented to different grades of clinically confirmed exfoliated cells including normal cell (NC), high-grade intra-epithelial lesion (HC), and squamous cell carcinoma (CC) samples of the cervix. Precise Raman mapped images were constituted based on the average intensity gradient of the signature Raman peaks arising from different grades of exfoliated cells. We observed a distinct intensity hike of around 10-fold in the single dysplastic HC and CC samples in comparison to NC specimen, which clearly justify the prevalence of p16/Ki-67. The synthesized probe is able to map the abnormal cells within 20 min with high reproducibility and stability for 1 mm × 1 mm mapping area with good contrast. Amidst the challenges in Raman image-guided modality, the technique was further complemented with the gold standard immunocytochemistry (ICC) dual staining analysis. Even though both are time-consuming techniques, tedious steps can be avoided and real-time readout can be achieved using the SERS mapping unlike immunocytochemistry technique. Therefore, the newly developed Raman image-guided SERS imaging emphasizes the approach of uplifting of SERS in practical utility with further improvement for clinical applications for cervical cancer detection in future.
Collapse
Affiliation(s)
- Varsha Karunakaran
- CSIR-National Institute for Interdisciplinary Science & Technology (NIIST), Chemical Sciences & Technology Division (CSTD), Organic Chemistry Section, Thiruvananthapuram 695019, Kerala, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Valliamma N Saritha
- Regional Cancer Centre (RCC), Division of Cancer Research, Thiruvananthapuram 695011, Kerala, India
| | - Adukkadan N Ramya
- CSIR-National Institute for Interdisciplinary Science & Technology (NIIST), Chemical Sciences & Technology Division (CSTD), Organic Chemistry Section, Thiruvananthapuram 695019, Kerala, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Vishnu Priya Murali
- CSIR-National Institute for Interdisciplinary Science & Technology (NIIST), Chemical Sciences & Technology Division (CSTD), Organic Chemistry Section, Thiruvananthapuram 695019, Kerala, India
| | - Kozhiparambil G Raghu
- CSIR-National Institute for Interdisciplinary Science & Technology (NIIST), Agro-Processing and Technology Division (APTD), Thiruvananthapuram 695019, Kerala, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Kunjuraman Sujathan
- Regional Cancer Centre (RCC), Division of Cancer Research, Thiruvananthapuram 695011, Kerala, India
| | - Kaustabh Kumar Maiti
- CSIR-National Institute for Interdisciplinary Science & Technology (NIIST), Chemical Sciences & Technology Division (CSTD), Organic Chemistry Section, Thiruvananthapuram 695019, Kerala, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
47
|
Chang Z, Xu Y, Shen Y. Ultrasensitive Electrochemical Immunoassay for Prostate Specific Antigen (PSA) Based Upon Silver-Functionalized Polyethyleneimine (PEI)–Silica Nanoparticles (NPs). ANAL LETT 2021. [DOI: 10.1080/00032719.2021.1916752] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Zheng Chang
- Department of Applied Chemistry of College of Science, Xi'an University of Technology, Xi'an, China
| | - Yimeng Xu
- Department of Applied Chemistry of College of Science, Xi'an University of Technology, Xi'an, China
| | - Yuting Shen
- Department of Applied Chemistry of College of Science, Xi'an University of Technology, Xi'an, China
| |
Collapse
|
48
|
Exploring the synthesis and characterization of fac-Re(CO)3L complexes using diethylenetriamine derivative functionalized at the central nitrogen. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2021.120291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
49
|
Shahbazi-Gahrouei D, Abdi N, Shahbazi-Gahrouei S, Hejazi SH, Salehnia Z. In vivo study of anti-epidermal growth factor receptor antibody-based iron oxide nanoparticles (anti-EGFR-SPIONs) as a novel MR imaging contrast agent for lung cancer (LLC1) cells detection. IET Nanobiotechnol 2021; 14:369-374. [PMID: 32691738 DOI: 10.1049/iet-nbt.2019.0385] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Superparamagnetic iron oxide nanoparticles (SPIONs) conjugated with anti-epidermal growth factor receptor monoclonal antibody (anti-EGFR-SPIONs) were characterised, and its cytotoxicity effects, ex vivo and in vivo studies on Lewis lung carcinoma (LLC1) cells in C57BL/6 mice were investigated. The broadband at 679.96 cm-1 relates to Fe-O, which verified the formation of the anti-EGFR-Mab with SPIONs was obtained by the FTIR. The TEM images showed spherical shape 20 and 80 nm-sized for nanoparticles and the anti-EGFR-SPIONs, respectively. Results of cell viability at 24 h after incubation with different concentrations of nanoprobe showed it has only a 20% reduction in cell viabilities. The synthesised nanoprobe administered by systemic injection into C57BL/6 mice showed good Fe tumour uptake and satisfied image signal intensity under ex vivo and in vivo conditions. A higher concentration of nanoprobe was achieved compared to non-specific and control, indicating selective delivery of nanoprobe to the tumour. It is concluded that the anti-EGFR-SPIONs was found to be as an MR imaging contrast nanoagent for lung cancer (LLC1) cells detection.
Collapse
Affiliation(s)
- Daryoush Shahbazi-Gahrouei
- Department of Medical Physics, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Negar Abdi
- Department of Medical Physics, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Seyed Hossein Hejazi
- Department of Parasitology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Zeinab Salehnia
- Immunology Research Centre, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
50
|
Development and characterisation of a confocal detection array for K-lines of heavy metals in big light matrix. Radiat Phys Chem Oxf Engl 1993 2021. [DOI: 10.1016/j.radphyschem.2020.109116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|