1
|
Chatzilakou E, Hu Y, Jiang N, Yetisen AK. Biosensors for melanoma skin cancer diagnostics. Biosens Bioelectron 2024; 250:116045. [PMID: 38301546 DOI: 10.1016/j.bios.2024.116045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/10/2024] [Accepted: 01/15/2024] [Indexed: 02/03/2024]
Abstract
Skin cancer is a critical global public health concern, with melanoma being the deadliest variant, correlated to 80% of skin cancer-related deaths and a remarkable propensity to metastasize. Despite notable progress in skin cancer prevention and diagnosis, the limitations of existing methods accentuate the demand for precise diagnostic tools. Biosensors have emerged as valuable clinical tools, enabling rapid and reliable point-of-care (POC) testing of skin cancer. This review offers insights into skin cancer development, highlights essential cutaneous melanoma biomarkers, and assesses the current landscape of biosensing technologies for diagnosis. The comprehensive analysis in this review underscores the transformative potential of biosensors in revolutionizing melanoma skin cancer diagnosis, emphasizing their critical role in advancing patient outcomes and healthcare efficiency. The increasing availability of these approaches supports direct diagnosis and aims to reduce the reliance on biopsies, enhancing POC diagnosis. Recent advancements in biosensors for skin cancer diagnosis hold great promise, with their integration into healthcare expected to enhance early detection accuracy and reliability, thereby mitigating socioeconomic disparities.
Collapse
Affiliation(s)
- Eleni Chatzilakou
- Department of Chemical Engineering, Imperial College London, South Kensington, London, SW7 2BU, UK
| | - Yubing Hu
- Department of Chemical Engineering, Imperial College London, South Kensington, London, SW7 2BU, UK.
| | - Nan Jiang
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China; JinFeng Laboratory, Chongqing, 401329, China.
| | - Ali K Yetisen
- Department of Chemical Engineering, Imperial College London, South Kensington, London, SW7 2BU, UK.
| |
Collapse
|
2
|
Fundamentals of Biosensors and Detection Methods. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1379:3-29. [PMID: 35760986 DOI: 10.1007/978-3-031-04039-9_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Biosensors have a great impact on our society to enhance the life quality, playing an important role in the development of Point-of-Care (POC) technologies for rapid diagnostics, and monitoring of disease progression. COVID-19 rapid antigen tests, home pregnancy tests, and glucose monitoring sensors represent three examples of successful biosensor POC devices. Biosensors have extensively been used in applications related to the control of diseases, food quality and safety, and environment quality. They can provide great specificity and portability at significantly reduced costs. In this chapter are described the fundamentals of biosensors including the working principles, general configurations, performance factors, and their classifications according to the type of bioreceptors and transducers. It is also briefly illustrated the general strategies applied to immobilize biorecognition elements on the transducer surface for the construction of biosensors. Moreover, the principal detection methods used in biosensors are described, giving special emphasis on optical, electrochemical, and mass-based methods. Finally, the challenges for biosensing in real applications are addressed at the end of this chapter.
Collapse
|
3
|
Tajima S, Nakata E, Sakaguchi R, Saimura M, Mori Y, Morii T. A two-step screening to optimize the signal response of an auto-fluorescent protein-based biosensor. RSC Adv 2022; 12:15407-15419. [PMID: 35693243 PMCID: PMC9121230 DOI: 10.1039/d2ra02226e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 05/15/2022] [Indexed: 11/21/2022] Open
Abstract
Auto-fluorescent protein (AFP)-based biosensors transduce the structural change in their embedded recognition modules induced by recognition/reaction events to fluorescence signal changes of AFP. The lack of detailed structural information on the recognition module often makes it difficult to optimize AFP-based biosensors. To enhance the signal response derived from detecting the putative structural change in the nitric oxide (NO)-sensing segment of transient receptor potential canonical 5 (TRPC5) fused to enhanced green fluorescent protein (EGFP), EGFP-TRPC5, a facile two-step screening strategy, in silico first and in vitro second, was applied to variants of EGFP-TRPC5 deletion-mutated within the recognition module. In in silico screening, the structural changes of the recognition modules were evaluated as root-mean-square-deviation (RMSD) values, and 10 candidates were efficiently selected from 47 derivatives. Through in vitro screening, four mutants were identified that showed a larger change in signal response than the parent EGFP-TRPC5. One mutant in particular, 551-575, showed four times larger change upon reaction with NO and H2O2. Furthermore, mutant 551-575 also showed a signal response upon reaction with H2O2 in mammalian HEK293 cells, indicating that the mutant has the potential to be applied as a biosensor for cell measurement. Therefore, this two-step screening method effectively allows the selection of AFP-based biosensors with sufficiently enhanced signal responses for application in mammalian cells. A two-step screening procedure allows optimization of the optical response of an auto-fluorescent protein-based biosensor for nitric oxide without structural information.![]()
Collapse
Affiliation(s)
- Shunsuke Tajima
- Institute of Advanced Energy, Kyoto University Uji Kyoto 611-0011 Japan
| | - Eiji Nakata
- Institute of Advanced Energy, Kyoto University Uji Kyoto 611-0011 Japan
| | - Reiko Sakaguchi
- School of Medicine, University of Occupational and Environmental Health 1-1 Iseigaoka, Yahatanishi-ku Kitakyushu Fukuoka 807-8555 Japan
| | - Masayuki Saimura
- Institute of Advanced Energy, Kyoto University Uji Kyoto 611-0011 Japan
| | - Yasuo Mori
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University Kyotodaigakukatsura, Nishikyo-ku Kyoto 615-8510 Japan
| | - Takashi Morii
- Institute of Advanced Energy, Kyoto University Uji Kyoto 611-0011 Japan
| |
Collapse
|
4
|
John AM, Sekhon H, Ha JH, Loh SN. Engineering a Fluorescent Protein Color Switch Using Entropy-Driven β-Strand Exchange. ACS Sens 2022; 7:263-271. [PMID: 35006676 DOI: 10.1021/acssensors.1c02239] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Protein conformational switches are widely used in biosensing. They are often composed of an input domain (which binds a target ligand) fused to an output domain (which generates an optical readout). A central challenge in designing such switches is to develop mechanisms for coupling the input and output signals via conformational changes. Here, we create a biosensor in which binding-induced folding of the input domain drives a conformational shift in the output domain that results in a sixfold green-to-yellow ratiometric fluorescence change in vitro and a 35-fold intensiometric fluorescence increase in cultured cells. The input domain consists of circularly permuted FK506 binding protein (cpFKBP) that folds upon binding its target ligand (FK506 or rapamycin). cpFKBP folding induces the output domain, an engineered green fluorescent protein (GFP) variant, to replace one of its β-strands (containing T203 and specifying green fluorescence) with a duplicate β-strand (containing Y203 and specifying yellow fluorescence) in an intramolecular exchange reaction. This mechanism employs the loop-closure entropy principle, embodied by the folding of the partially disordered cpFKBP domain, to couple ligand binding to the GFP color shift. This study highlights the high-energy barriers present in GFP folding which cause β-strand exchange to be slow and are also likely responsible for the shift from the β-strand exchange mechanism in vitro to ligand-induced chromophore maturation in cells. The proof-of-concept design has the advantages of full genetic encodability and potential for modularity. The latter attribute is enabled by the natural coupling of binding and folding and circular permutation of the input domain, which theoretically allows different binding domains to be compatible for insertion into the GFP surface loop.
Collapse
Affiliation(s)
- Anna Miriam John
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, New York 13210, United States
| | - Harsimranjit Sekhon
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, New York 13210, United States
| | - Jeung-Hoi Ha
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, New York 13210, United States
| | - Stewart N Loh
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, New York 13210, United States
| |
Collapse
|
5
|
Murti BT, Putri AD, Huang YJ, Wei SM, Peng CW, Yang PK. Clinically oriented Alzheimer's biosensors: expanding the horizons towards point-of-care diagnostics and beyond. RSC Adv 2021; 11:20403-20422. [PMID: 35479927 PMCID: PMC9033966 DOI: 10.1039/d1ra01553b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 05/28/2021] [Indexed: 12/30/2022] Open
Abstract
The development of minimally invasive and easy-to-use sensor devices is of current interest for ultrasensitive detection and signal recognition of Alzheimer's disease (AD) biomarkers. Over the years, tremendous effort has been made on diagnostic platforms specifically targeting neurological markers for AD in order to replace the conventional, laborious, and invasive sampling-based approaches. However, the sophistication of analytical outcomes, marker inaccessibility, and material validity strongly limit the current strategies towards effectively predicting AD. Recently, with the promising progress in biosensor technology, the realization of a clinically applicable sensing platform has become a potential option to enable early diagnosis of AD and other neurodegenerative diseases. In this review, various types of biosensors, which include electrochemical, fluorescent, plasmonic, photoelectrochemical, and field-effect transistor (FET)-based sensor configurations, with better clinical applicability and analytical performance towards AD are highlighted. Moreover, the feasibility of these sensors to achieve point-of-care (POC) diagnosis is also discussed. Furthermore, by grafting nanoscale materials into biosensor architecture, the remarkable enhancement in durability, functionality, and analytical outcome of sensor devices is presented. Finally, future perspectives on further translational and commercialization pathways of clinically driven biosensor devices for AD are discussed and summarized.
Collapse
Affiliation(s)
- Bayu Tri Murti
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University Taipei Taiwan
- Semarang College of Pharmaceutical Sciences (STIFAR) Semarang City Indonesia
| | - Athika Darumas Putri
- Semarang College of Pharmaceutical Sciences (STIFAR) Semarang City Indonesia
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Pharmacy, Taipei Medical University Taipei Taiwan
| | - Yi-June Huang
- Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University Taipei Taiwan
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University Taipei Taiwan
| | - Shih-Min Wei
- Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University Taipei Taiwan
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University Taipei Taiwan
| | - Chih-Wei Peng
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University Taipei Taiwan
- School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University Taipei Taiwan
| | - Po-Kang Yang
- Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University Taipei Taiwan
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University Taipei Taiwan
- Department of Biomedical Sciences and Engineering, National Central University Chung-li Taiwan
| |
Collapse
|
6
|
Cabral AD, Radu TB, de Araujo ED, Gunning PT. Optical chemosensors for the detection of proximally phosphorylated peptides and proteins. RSC Chem Biol 2021; 2:815-829. [PMID: 34458812 PMCID: PMC8341930 DOI: 10.1039/d1cb00055a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 04/19/2021] [Indexed: 12/31/2022] Open
Abstract
Proximal multi-site phosphorylation is a critical post-translational modification in protein biology. The additive effects of multiple phosphosite clusters in close spatial proximity triggers integrative and cooperative effects on protein conformation and activity. Proximal phosphorylation has been shown to modulate signal transduction pathways and gene expression, and as a result, is implicated in a broad range of disease states through altered protein function and/or localization including enzyme overactivation or protein aggregation. The role of proximal multi-phosphorylation events is becoming increasingly recognized as mechanistically important, although breakthroughs are limited due to a lack of detection technologies. To date, there is a limited selection of facile and robust sensing tools for proximal phosphorylation. Nonetheless, there have been considerable efforts in developing optical chemosensors for the detection of proximal phosphorylation motifs on peptides and proteins in recent years. This review provides a comprehensive overview of optical chemosensors for proximal phosphorylation, with the majority of work being reported in the past two decades. Optical sensors, in the form of fluorescent and luminescent chemosensors, hybrid biosensors, and inorganic nanoparticles, are described. Emphasis is placed on the rationale behind sensor scaffolds, relevant protein motifs, and applications in protein biology.
Collapse
Affiliation(s)
- Aaron D Cabral
- Department of Chemical and Physical Sciences, University of Toronto Mississauga 3359 Mississauga Road Mississauga Ontario L5L 1C6 Canada
- Department of Chemistry, University of Toronto 80 St George Street Toronto Ontario M5S 3H6 Canada
| | - Tudor B Radu
- Department of Chemical and Physical Sciences, University of Toronto Mississauga 3359 Mississauga Road Mississauga Ontario L5L 1C6 Canada
- Department of Chemistry, University of Toronto 80 St George Street Toronto Ontario M5S 3H6 Canada
| | - Elvin D de Araujo
- Department of Chemical and Physical Sciences, University of Toronto Mississauga 3359 Mississauga Road Mississauga Ontario L5L 1C6 Canada
| | - Patrick T Gunning
- Department of Chemical and Physical Sciences, University of Toronto Mississauga 3359 Mississauga Road Mississauga Ontario L5L 1C6 Canada
- Department of Chemistry, University of Toronto 80 St George Street Toronto Ontario M5S 3H6 Canada
| |
Collapse
|
7
|
Selection of fluorescent biosensors against galectin-3 from an NBD-modified phage library displaying designed α-helical peptides. Bioorg Med Chem Lett 2021; 37:127835. [PMID: 33556574 DOI: 10.1016/j.bmcl.2021.127835] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 01/22/2021] [Accepted: 01/25/2021] [Indexed: 10/22/2022]
Abstract
Fluorescent biosensors are indispensable tools for molecular imaging, detection, and drug screening. Conventionally, fluorescent biosensors were constructed by incorporating fluorophores into ligands. Here, to develop ligand-independent biosensors, we demonstrated biosensor selection from a fluorophore-modified peptide phage library. In this library, the peptides were designed to form α-helical structures, and one cysteine, the probe modification site, was located at the center of four randomized residues on the same face of the helix. By conjugation with 4-nitrobenzoxadiazole (NBD), we constructed an NBD-modified phage library. We conducted selection against galectin-3 (Gal-3), a galactose-specific lectin associated with various biological events such as tumor metastasis and insulin resistance. After biopanning, we obtained NBD-modified peptides that selectively bind to Gal-3 from the library. The fluorescence intensity of the hit biosensors increased with the concentration of Gal-3, and this fluorescent response was visually observed.
Collapse
|
8
|
Chen YT, Lee YC, Lai YH, Lim JC, Huang NT, Lin CT, Huang JJ. Review of Integrated Optical Biosensors for Point-Of-Care Applications. BIOSENSORS-BASEL 2020; 10:bios10120209. [PMID: 33353033 PMCID: PMC7766912 DOI: 10.3390/bios10120209] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/12/2020] [Accepted: 12/16/2020] [Indexed: 12/25/2022]
Abstract
This article reviews optical biosensors and their integration with microfluidic channels. The integrated biosensors have the advantages of higher accuracy and sensitivity because they can simultaneously monitor two or more parameters. They can further incorporate many functionalities such as electrical control and signal readout monolithically in a single semiconductor chip, making them ideal candidates for point-of-care testing. In this article, we discuss the applications by specifically looking into point-of-care testing (POCT) using integrated optical sensors. The requirement and future perspective of integrated optical biosensors for POC is addressed.
Collapse
Affiliation(s)
- Yung-Tsan Chen
- Graduate Institute of Photonics and Optoelectronics, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 106, Taiwan; (Y.-T.C.); (Y.-C.L.); (Y.-H.L.); (J.-C.L.)
| | - Ya-Chu Lee
- Graduate Institute of Photonics and Optoelectronics, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 106, Taiwan; (Y.-T.C.); (Y.-C.L.); (Y.-H.L.); (J.-C.L.)
| | - Yao-Hsuan Lai
- Graduate Institute of Photonics and Optoelectronics, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 106, Taiwan; (Y.-T.C.); (Y.-C.L.); (Y.-H.L.); (J.-C.L.)
| | - Jin-Chun Lim
- Graduate Institute of Photonics and Optoelectronics, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 106, Taiwan; (Y.-T.C.); (Y.-C.L.); (Y.-H.L.); (J.-C.L.)
| | - Nien-Tsu Huang
- Department of Electrical Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 106, Taiwan; (N.-T.H.); (C.-T.L.)
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 106, Taiwan
| | - Chih-Ting Lin
- Department of Electrical Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 106, Taiwan; (N.-T.H.); (C.-T.L.)
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 106, Taiwan
- Graduate Institute of Electronics Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 106, Taiwan
| | - Jian-Jang Huang
- Graduate Institute of Photonics and Optoelectronics, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 106, Taiwan; (Y.-T.C.); (Y.-C.L.); (Y.-H.L.); (J.-C.L.)
- Department of Electrical Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 106, Taiwan; (N.-T.H.); (C.-T.L.)
- Correspondence:
| |
Collapse
|
9
|
Lee E, Jeon H, Ryu J, Kang C, Kim S, Park S, Kwon Y. Genetically encoded biosensors for the detection of rapamycin: toward the screening of agonists and antagonists. Analyst 2020; 145:5571-5577. [PMID: 32618311 DOI: 10.1039/d0an01116a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Biosensors are valuable tools for the rapid screening of biological targets with high sensitivity and specificity. It is important to screen biological events in their native context for pharmacological and toxicological applications. However, in vitro biosensors often require purified probes and targets for screening, thus providing limited information on the biological activities of targets in their native environment. To address this issue, we developed a cell-based sensing system that could detect a biologically active small molecule, rapamycin (Rapa). We designed a reporter system based on fluorescence translocation by signal peptide reconstitution. Herein, signal peptides are activated by conditional protein splicing without the need for refolding into a functional tertiary structure, thus eliminating false positives and negatives due to mere binding or misfolding. The developed biosensor demonstrated excellent sensitivity with a limit of detection of 0.1 nM, and it was able to screen the agonist and antagonist of Rapa. The developed cell-based sensing system could contribute to improving the screening system aimed to identify the natural mimetics of Rapa and potential drug candidates.
Collapse
Affiliation(s)
- Euiyeon Lee
- Department of Biomedical Engineering (BK21 plus), Dongguk University, Seoul 04620, Korea.
| | | | | | | | | | | | | |
Collapse
|
10
|
Nakano S, Konishi H, Morii T. Receptor-based fluorescent sensors constructed from ribonucleopeptide. Methods Enzymol 2020; 641:183-223. [PMID: 32713523 DOI: 10.1016/bs.mie.2020.04.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Receptor-based fluorescent sensors are the representative tool for quantitative detection of target ligands. The high substrate-selectivity originated from biomacromolecule receptor is one of the advantages of this tool, but a laborious trial and error is usually required to construct sensors showing satisfactory fluorescence intensity changes without diminishing the function of parent receptor. Ribonucleopeptide (RNP) provides a scaffold of fluorescent sensors to improve such issues. RNP receptors for the ligand of interest are constructed by applying in vitro selection for RNA-derived RNP library. Simple modification of the N-terminal of peptide in RNP by an appropriate fluorophore converts the RNP receptor into the fluorescent sensor with retaining the affinity and selectivity for the substrate. In this chapter, we introduce the protocols for construction of fluorescent RNP sensors through selection from a library of fluorophore-modified RNP complex or by a structure-based modular design. Furthermore, we describe the application of covalently linked RNP sensors for simultaneous detection of multiple ligands.
Collapse
Affiliation(s)
- Shun Nakano
- Institute of Advanced Energy, Kyoto University, Uji, Kyoto, Japan
| | - Hiroaki Konishi
- Institute of Advanced Energy, Kyoto University, Uji, Kyoto, Japan
| | - Takashi Morii
- Institute of Advanced Energy, Kyoto University, Uji, Kyoto, Japan.
| |
Collapse
|
11
|
Rajabnejad SH, Badibostan H, Verdian A, Karimi GR, Fooladi E, Feizy J. Aptasensors as promising new tools in bisphenol A detection - An invisible pollution in food and environment. Microchem J 2020. [DOI: 10.1016/j.microc.2020.104722] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
12
|
Better together: building protein oligomers naturally and by design. Biochem Soc Trans 2020; 47:1773-1780. [PMID: 31803901 PMCID: PMC6925524 DOI: 10.1042/bst20190283] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 11/15/2019] [Accepted: 11/18/2019] [Indexed: 12/17/2022]
Abstract
Protein oligomers are more common in nature than monomers, with dimers being the most prevalent final structural state observed in known structures. From a biological perspective, this makes sense as it conserves vital molecular resources that may be wasted simply by generating larger single polypeptide units, and allows new features such as cooperativity to emerge. Taking inspiration from nature, protein designers and engineers are now building artificial oligomeric complexes using a variety of approaches to generate new and useful supramolecular protein structures. Oligomerisation is thus offering a new approach to sample structure and function space not accessible through simply tinkering with monomeric proteins.
Collapse
|
13
|
Walia S, Sharma C, Acharya A. Biocompatible Fluorescent Nanomaterials for Molecular Imaging Applications. NANOMATERIAL - BASED BIOMEDICAL APPLICATIONS IN MOLECULAR IMAGING, DIAGNOSTICS AND THERAPY 2020:27-53. [DOI: 10.1007/978-981-15-4280-0_3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
14
|
Özyurt C, Üstükarcı H, Evran S, Telefoncu A. MerR‐fluorescent protein chimera biosensor for fast and sensitive detection of Hg
2+
in drinking water. Biotechnol Appl Biochem 2019; 66:731-737. [DOI: 10.1002/bab.1805] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 08/12/2019] [Indexed: 12/27/2022]
Affiliation(s)
- Canan Özyurt
- Department of Biochemistry Faculty of Science Ege University Bornova‐Izmir 35100 Turkey
- Department of Chemistry and Chemical Processing Technologies Lapseki Vocational School Canakkale Onsekiz Mart University Canakkale Lapseki Turkey
| | - Handan Üstükarcı
- Department of Biochemistry Faculty of Science Ege University Bornova‐Izmir 35100 Turkey
| | - Serap Evran
- Department of Biochemistry Faculty of Science Ege University Bornova‐Izmir 35100 Turkey
| | - Azmi Telefoncu
- Department of Biochemistry Faculty of Science Ege University Bornova‐Izmir 35100 Turkey
- Bio‐sensing and Bioinformatics Nanotechnologies R & D Trade & Ind. Ltd Co TECHNOPARK EGE, Ege University 35100 Izmir Turkey
| |
Collapse
|
15
|
Morales J, Pawle RH, Akkilic N, Luo Y, Xavierselvan M, Albokhari R, Calderon IAC, Selfridge S, Minns R, Takiff L, Mallidi S, Clark HA. DNA-Based Photoacoustic Nanosensor for Interferon Gamma Detection. ACS Sens 2019; 4:1313-1322. [PMID: 30973005 DOI: 10.1021/acssensors.9b00209] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Tracking protein levels in the body is vital in both research and medicine, where understanding their physiological roles provides insight into their regulation in homeostasis and diseases. In medicine, protein levels are actively sampled since they continuously fluctuate, reflecting the status of biological systems and provide insight into patient health. One such protein is interferon gamma, a clinically relevant protein with immunoregulatory functions that play critical roles against infection. New tools for continuously monitoring protein levels in vivo are invaluable in monitoring real-time conditions of patients to allow better care. Here, we developed a DNA-based nanosensor for the photoacoustic detection of interferon gamma. This work demonstrates how we transformed a simple DNA motif, receptors, and a novel phthalocyanine dye into a proof-of-concept photoacoustic nanosensor for protein detection. Surface plasmon resonance kinetic analysis demonstrated that the nanosensor is responsive and reversible to interferon gamma with an affinity in the nanomolar range, KD1 = 167 nM and KD2 = 316 nM. As a reporter, our design includes a novel phthalocyanine-based photoacoustic dye that stacks in a J-aggregate, causing a 22.5% increase in signal. Upon receptor binding, the DNA structure bends to induce phthalocyanine dye stacking, resulting in a 55% increase in photoacoustic signal in the presence of 10 μM interferon gamma. This proof-of-concept nanosensor is a novel approach to the development of a photoacoustic sensor and may be adapted for other proteins of interest in the future for in vivo tracking.
Collapse
Affiliation(s)
- Jennifer Morales
- Department of Bioengineering, Northeastern University, Boston, Massachusetts 02115, United States,
| | - Robert H. Pawle
- Akita Innovations LLC, Billerica, Massachusetts 01862, United States,
| | - Namik Akkilic
- Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts 02115, United States,
| | - Yi Luo
- Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts 02115, United States,
| | - Marvin Xavierselvan
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, United States,
| | - Rayan Albokhari
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, United States,
| | - Isen Andrew C. Calderon
- Department of Bioengineering, Northeastern University, Boston, Massachusetts 02115, United States,
| | - Scott Selfridge
- Akita Innovations LLC, Billerica, Massachusetts 01862, United States,
| | - Richard Minns
- Akita Innovations LLC, Billerica, Massachusetts 01862, United States,
| | - Larry Takiff
- Akita Innovations LLC, Billerica, Massachusetts 01862, United States,
| | - Srivalleesha Mallidi
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, United States,
| | - Heather A. Clark
- Department of Bioengineering, Northeastern University, Boston, Massachusetts 02115, United States,
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| |
Collapse
|
16
|
Abrao Nemeir I, Saab J, Hleihel W, Errachid A, Jafferzic-Renault N, Zine N. The Advent of Salivary Breast Cancer Biomarker Detection Using Affinity Sensors. SENSORS (BASEL, SWITZERLAND) 2019; 19:E2373. [PMID: 31126047 PMCID: PMC6566681 DOI: 10.3390/s19102373] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 05/09/2019] [Accepted: 05/20/2019] [Indexed: 12/14/2022]
Abstract
Breast Cancer is one of the world's most notorious diseases affecting two million women in 2018 worldwide. It is a highly heterogeneous disease, making it difficult to treat. However, its linear progression makes it a candidate for early screening programs, and the earlier its detection the higher the chance of recovery. However, one key hurdle for breast cancer screening is the fact that most screening techniques are expensive, time-consuming, and cumbersome, making them impractical for use in several parts of the world. One current trend in breast cancer detection has pointed to a possible solution, the use of salivary breast cancer biomarkers. Saliva is an attractive medium for diagnosis because it is readily available in large quantities, easy to obtain at low cost, and contains all the biomarkers present in blood, albeit in lower quantities. Affinity sensors are devices that detect molecules through their interactions with biological recognition molecules. Their low cost, high sensitivity, and selectivity, as well as rapid detection time make them an attractive alternative to traditional means of detection. In this review article, we discuss the current status of breast cancer diagnosis, its salivary biomarkers, as well as the current trends in the development of affinity sensors for their detection.
Collapse
Affiliation(s)
- Imad Abrao Nemeir
- Faculty of Sciences, Holy Spirit University of Kaslik, 446 Jounieh, Mount Lebanon, Lebanon.
- Institut des Sciences Analytiques, Université de Lyon, Claude Bernard Lyon 1, UMR 5280, CNRS - 5, rue de la Doua, 69100 Villeurbanne, France.
| | - Joseph Saab
- Faculty of Sciences, Holy Spirit University of Kaslik, 446 Jounieh, Mount Lebanon, Lebanon.
| | - Walid Hleihel
- Faculty of Sciences, Holy Spirit University of Kaslik, 446 Jounieh, Mount Lebanon, Lebanon.
| | - Abdelhamid Errachid
- Institut des Sciences Analytiques, Université de Lyon, Claude Bernard Lyon 1, UMR 5280, CNRS - 5, rue de la Doua, 69100 Villeurbanne, France.
| | - Nicole Jafferzic-Renault
- Institut des Sciences Analytiques, Université de Lyon, Claude Bernard Lyon 1, UMR 5280, CNRS - 5, rue de la Doua, 69100 Villeurbanne, France.
| | - Nadia Zine
- Institut des Sciences Analytiques, Université de Lyon, Claude Bernard Lyon 1, UMR 5280, CNRS - 5, rue de la Doua, 69100 Villeurbanne, France.
| |
Collapse
|
17
|
Sakamoto S, Kiyonaka S, Hamachi I. Construction of ligand assay systems by protein-based semisynthetic biosensors. Curr Opin Chem Biol 2019; 50:10-18. [PMID: 30875618 DOI: 10.1016/j.cbpa.2019.02.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 02/06/2019] [Accepted: 02/09/2019] [Indexed: 01/14/2023]
Abstract
Proteins as causative agents of diseases such as cancers, diabetes and neurological disorders are attractive drug targets. For developing chemicals selectively acting on key disease-causing proteins, one useful concept is the direct conversion of such target proteins into biosensors. This approach provides ligand-binding assay systems based on protein-based biosensors, which can quantitatively evaluate interactions between the protein and a specific ligand in many environments. Site-specific chemical modifications are used widely for the creation of protein-based semisynthetic biosensors in vitro. Notably, a few bio-orthogonal approaches capable of selectively modifying drug-targets have been developed, allowing conversion of specific target proteins into semisynthetic biosensors in live cells. These biosensors can be used for quantitative drug binding analyses in native environments. In this review, we discuss recent efforts for the construction of ligand assay systems using semisynthetic protein-based biosensors and their application to quantitative analysis and high-throughput screening of small molecules for drug discovery.
Collapse
Affiliation(s)
- Seiji Sakamoto
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Shigeki Kiyonaka
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Itaru Hamachi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan.
| |
Collapse
|
18
|
Nakano S, Shimizu M, Dinh H, Morii T. Highly selective dual sensing of ATP and ADP using fluorescent ribonucleopeptide sensors. Chem Commun (Camb) 2019; 55:1611-1614. [PMID: 30657140 DOI: 10.1039/c8cc09934k] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Highly selective fluorescent sensors for ATP and ADP were constructed from RNA aptamers by applying a modular design of a ribonucleopeptide scaffold. These sensors allow facile and quantitative detection of ATP and ADP simultaneously in a solution and enable monitoring of the time-course changes of ATP and ADP concentrations in an enzymatic reaction.
Collapse
Affiliation(s)
- Shun Nakano
- Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan.
| | | | | | | |
Collapse
|
19
|
Abstract
Chemically constructed biosensors consisting of a protein scaffold and an artificial small molecule have recently been recognized as attractive analytical tools for the specific detection and real-time monitoring of various biological substances or events in cells. Conventionally, such semisynthetic biosensors have been prepared in test tubes and then introduced into cells using invasive methods. With the impressive advances seen in bioorthogonal protein conjugation methodologies, however, it is now becoming feasible to directly construct semisynthetic biosensors in living cells, providing unprecedented tools for life-science research. We discuss here recent efforts regarding the in situ construction of protein-based semisynthetic biosensors and highlight their uses in the visualization and quantification of biomolecules and events in multimolecular and crowded cellular systems.
Collapse
Affiliation(s)
- Tsuyoshi Ueda
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Tomonori Tamura
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Itaru Hamachi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
- CREST(Core Research for Evolutional Science and Technology, JST), Sanbancho, Chiyodaku, Tokyo, 102-0075, Japan
| |
Collapse
|
20
|
Park Y, Nim-Anussornkul D, Vilaivan T, Morii T, Kim BH. Facile conversion of ATP-binding RNA aptamer to quencher-free molecular aptamer beacon. Bioorg Med Chem Lett 2017; 28:77-80. [PMID: 29248297 DOI: 10.1016/j.bmcl.2017.12.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 11/23/2017] [Accepted: 12/05/2017] [Indexed: 01/02/2023]
Abstract
We have developed RNA-based quencher-free molecular aptamer beacons (RNA-based QF-MABs) for the detection of ATP, taking advantage of the conformational changes associated with ATP binding to the ATP-binding RNA aptamer. The RNA aptamer, with its well-defined structure, was readily converted to the fluorescence sensors by incorporating a fluorophore into the loop region of the hairpin structure. These RNA-based QF-MABs exhibited fluorescence signals in the presence of ATP relative to their low background signals in the absence of ATP. The fluorescence emission intensity increased upon formation of a RNA-based QF-MAB·ATP complex.
Collapse
Affiliation(s)
- Yoojin Park
- Department of Chemistry, Division of Advanced Materials Science, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | | | - Tirayut Vilaivan
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Takashi Morii
- Institute of Advanced Energy, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Byeang Hyean Kim
- Department of Chemistry, Division of Advanced Materials Science, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea.
| |
Collapse
|
21
|
Nakano S, Tamura T, Das RK, Nakata E, Chang YT, Morii T. A Diversity-Oriented Library of Fluorophore-Modified Receptors Constructed from a Chemical Library of Synthetic Fluorophores. Chembiochem 2017; 18:2212-2216. [PMID: 28879678 DOI: 10.1002/cbic.201700403] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Indexed: 12/16/2022]
Abstract
The practical application of biosensors can be determined by evaluating the sensing ability of fluorophore-modified derivatives of a receptor with appropriate recognition characteristics for target molecules. One of the key determinants for successfully obtaining a useful biosensor is wide variation in the fluorophores attached to a given receptor. Thus, using a larger fluorophore-modified receptor library provides a higher probability of obtaining a practically useful biosensor. However, no effective method has yet been developed for constructing such a diverse library of fluorophore-modified receptors. Herein, we report a method for constructing fluorophore-modified receptors by using a chemical library of synthetic fluorophores with a thiol-reactive group. This library was converted into a library of fluorophore-modified adenosine-binding ribonucleopeptide (RNP) receptors by introducing the fluorophores to the Rev peptide of the RNP complex by alkylation of the thiol group. This method enabled the construction of 263 fluorophore-modified ATP-binding RNP receptors and allowed the selection of suitable receptor-based fluorescent sensors that target ATP.
Collapse
Affiliation(s)
- Shun Nakano
- Institute of Advanced Energy, Kyoto University, Uji, Kyoto, 611-0011, Japan
| | - Tomoki Tamura
- Institute of Advanced Energy, Kyoto University, Uji, Kyoto, 611-0011, Japan
| | - Raj Kumar Das
- Bharat Petroleum Corporation Ltd., Corporate R&D Centre, Plot No. 2 A, Udyog Kendra, Surajpur Industrial Area, Greater Noida, 201 306, India
| | - Eiji Nakata
- Institute of Advanced Energy, Kyoto University, Uji, Kyoto, 611-0011, Japan
| | - Young-Tae Chang
- Department of Chemistry and MedChem Program of Life Sciences, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore.,Department of Chemistry, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk, 37673, Korea
| | - Takashi Morii
- Institute of Advanced Energy, Kyoto University, Uji, Kyoto, 611-0011, Japan
| |
Collapse
|
22
|
Najeeb MA, Ahmad Z, Shakoor RA, Mohamed AMA, Kahraman R. A novel classification of prostate specific antigen (PSA) biosensors based on transducing elements. Talanta 2017; 168:52-61. [PMID: 28391865 DOI: 10.1016/j.talanta.2017.03.022] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 03/04/2017] [Accepted: 03/07/2017] [Indexed: 01/14/2023]
Abstract
During the last few decades, there has been a tremendous rise in the number of research studies dedicated towards the development of diagnostic tools based on bio-sensing technology for the early detection of various diseases like cardiovascular diseases (CVD), many types of cancer, diabetes mellitus (DM) and many infectious diseases. Many breakthroughs have been developed in the areas of improving specificity, selectivity and repeatability of the biosensor devices. Innovations in the interdisciplinary areas like biotechnology, genetics, organic electronics and nanotechnology also had a great positive impact on the growth of bio-sensing technology. As a product of these improvements, fast and consistent sensing policies have been productively created for precise and ultrasensitive biomarker-based disease diagnostics. Prostate-specific antigen (PSA) is widely considered as an important biomarker used for diagnosing prostate cancer. There have been many publications based on various biosensors used for PSA detection, but a limited review was available for the classification of these biosensors used for the detection of PSA. This review highlights the various biosensors used for PSA detection and proposes a novel classification for PSA biosensors based on the transducer type used. We also highlight the advantages, disadvantages and limitations of each technique used for PSA biosensing which will make this article a complete reference tool for the future researches in PSA biosensing.
Collapse
Affiliation(s)
- Mansoor Ani Najeeb
- Center for Advanced Materials (CAM), Qatar University, Doha 2713, Qatar.
| | - Zubair Ahmad
- Center for Advanced Materials (CAM), Qatar University, Doha 2713, Qatar
| | - R A Shakoor
- Center for Advanced Materials (CAM), Qatar University, Doha 2713, Qatar.
| | - A M A Mohamed
- Department of Metallurgical and Materials Engineering, Faculty of Petroleum and Mining Engineering, Suez University, 43721 Suez, Egypt
| | - Ramazan Kahraman
- Department of Chemical Engineering, College of Engineering, Qatar University, 2713 Doha, Qatar
| |
Collapse
|
23
|
Farrants H, Hiblot J, Griss R, Johnsson K. Rational Design and Applications of Semisynthetic Modular Biosensors: SNIFITs and LUCIDs. Methods Mol Biol 2017; 1596:101-117. [PMID: 28293883 DOI: 10.1007/978-1-4939-6940-1_7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Biosensors are used in many fields to measure the concentration of analytes, both in a cellular context and in human samples for medical care. Here, we outline the design of two types of modular biosensors: SNAP-tag-based indicators with a Fluorescent Intramolecular Tether (SNIFITs) and LUCiferase-based Indicators of Drugs (LUCIDs). These semisynthetic biosensors quantitatively measure analyte concentrations in vitro and on cell surfaces by an intramolecular competitive mechanism. We provide an overview of how to design and apply SNIFITs and LUCIDs.
Collapse
Affiliation(s)
- Helen Farrants
- National Centre of Competence in Research (NCCR) Chemical Biology, Institute of Chemical Sciences and Engineering (ISIC), Institute of Bioengineering, École Polytechnique Fédéralede Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Julien Hiblot
- National Centre of Competence in Research (NCCR) Chemical Biology, Institute of Chemical Sciences and Engineering (ISIC), Institute of Bioengineering, École Polytechnique Fédéralede Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Rudolf Griss
- National Centre of Competence in Research (NCCR) Chemical Biology, Institute of Chemical Sciences and Engineering (ISIC), Institute of Bioengineering, École Polytechnique Fédéralede Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Kai Johnsson
- National Centre of Competence in Research (NCCR) Chemical Biology, Institute of Chemical Sciences and Engineering (ISIC), Institute of Bioengineering, École Polytechnique Fédéralede Lausanne (EPFL), 1015, Lausanne, Switzerland.
- Max-Planck Institute for Medical Research, Department of Chemical Biology, 69120, Heidelberg, Germany.
| |
Collapse
|
24
|
Shrestha P, Mandal S, Mao H. Mechanochemical Sensing: A Biomimetic Sensing Strategy. Chemphyschem 2015; 16:1829-37. [PMID: 25916512 DOI: 10.1002/cphc.201500080] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Indexed: 01/14/2023]
Abstract
Existing biosensors employ two major components: analyte recognition and signal transduction. Although specificity is achieved through analyte recognition, sensitivity is usually enhanced through a chemical amplification stage that couples the two main units in a sensor. Although highly sensitive, the extra chemical amplification stage complicates the sensing protocol. In addition, it separates the two elements spatiotemporally, reducing the real-time response of the biosensor. In this review, we discuss the new mechanochemical biosensors that employ mechanochemical coupling strategies to overcome these issues. By monitoring changes in the mechanical properties of a single-molecule template upon analyte binding, single-molecule sensitivity is reached. As chemical amplification becomes unnecessary in this single-molecule mechanochemical sensing (SMMS) strategy, real-time sensing is achieved.
Collapse
Affiliation(s)
- Prakash Shrestha
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH 44242 (USA)
| | - Shankar Mandal
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH 44242 (USA)
| | - Hanbin Mao
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH 44242 (USA).
| |
Collapse
|
25
|
Finkbeiner S, Frumkin M, Kassner PD. Cell-based screening: extracting meaning from complex data. Neuron 2015; 86:160-74. [PMID: 25856492 PMCID: PMC4457442 DOI: 10.1016/j.neuron.2015.02.023] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 09/23/2014] [Accepted: 01/22/2015] [Indexed: 01/23/2023]
Abstract
Unbiased discovery approaches have the potential to uncover neurobiological insights into CNS disease and lead to the development of therapies. Here, we review lessons learned from imaging-based screening approaches and recent advances in these areas, including powerful new computational tools to synthesize complex data into more useful knowledge that can reliably guide future research and development.
Collapse
Affiliation(s)
- Steven Finkbeiner
- Director of the Taube/Koret Center for Neurodegenerative Disease and the Hellman Family Foundation Program in Alzheimer's Disease Research, Gladstone Institute of Neurological Disease, San Francisco, CA 94158, USA; Departments of Neurology and Physiology, University of California, San Francisco, San Francisco, CA 94143, USA.
| | - Michael Frumkin
- Director of Engineering, Research, Google, Inc., 1600 Amphitheatre Parkway, Mountain View, CA 94043, USA
| | - Paul D Kassner
- Director of Research, Amgen, Inc., 1120 Veterans Boulevard South, San Francisco, CA 94080, USA
| |
Collapse
|
26
|
A signal-on fluorosensor based on quench-release principle for sensitive detection of antibiotic rapamycin. BIOSENSORS-BASEL 2015; 5:131-40. [PMID: 25822756 PMCID: PMC4493541 DOI: 10.3390/bios5020131] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 03/13/2015] [Accepted: 03/20/2015] [Indexed: 11/17/2022]
Abstract
An antibiotic rapamycin is one of the most commonly used immunosuppressive drugs, and also implicated for its anti-cancer activity. Hence, the determination of its blood level after organ transplantation or tumor treatment is of great concern in medicine. Although there are several rapamycin detection methods, many of them have limited sensitivity, and/or need complicated procedures and long assay time. As a novel fluorescent biosensor for rapamycin, here we propose "Q'-body", which works on the fluorescence quench-release principle inspired by the antibody-based quenchbody (Q-body) technology. We constructed rapamycin Q'-bodies by linking the two interacting domains FKBP12 and FRB, whose association is triggered by rapamycin. The fusion proteins were each incorporated position-specifically with one of fluorescence dyes ATTO520, tetramethylrhodamine, or ATTO590 using a cell-free translation system. As a result, rapid rapamycin dose-dependent fluorescence increase derived of Q'-bodies was observed, especially for those with ATTO520 with a lowest detection limit of 0.65 nM, which indicates its utility as a novel fluorescent biosensor for rapamycin.
Collapse
|
27
|
Alfaro K, Bustos P, O Sullivan C, Conejeros P. Facile and Cost-Effective Detection of Saxitoxin Exploiting Aptamer Structural Switching. Food Technol Biotechnol 2015; 53:337-341. [PMID: 27904366 DOI: 10.17113/ftb.53.03.15.3911] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
A simple method to detect saxitoxin (STX), one of the main components of the paralytic shellfish poison from red tide, has been developed. By using a next generation dye for double-stranded DNA we were able to differentiate fluorescence from STX-binding aptamers when exposed to different concentrations of STX, suggesting a change in aptamer folding upon target binding. The developed method is extremely rapid, only requiring small sample volumes, with quantitative results in the concentration range of 15 ng/mL to 3 µg/mL of STX, with a detection limit of 7.5 ng/mL.
Collapse
Affiliation(s)
- Karol Alfaro
- Centro de Investigación y Gestión de Recursos Naturales, Facultad de Ciencias,
Universidad de Valparaíso, Gran Bretańa 1111, Valparaíso, Chile
| | - Paulina Bustos
- Centro de Investigación y Gestión de Recursos Naturales, Facultad de Ciencias,
Universidad de Valparaíso, Gran Bretańa 1111, Valparaíso, Chile
| | - Ciara O Sullivan
- Nanobiotechnology and Bioanalysis Group, Department of Chemical Engineering,
Universitat Rovira i Virgili, 43007 ES-Tarragona, Spain
| | - Pablo Conejeros
- Centro de Investigación y Gestión de Recursos Naturales, Facultad de Ciencias,
Universidad de Valparaíso, Gran Bretańa 1111, Valparaíso, Chile
| |
Collapse
|
28
|
Tamura T, Hamachi I. Recent progress in design of protein-based fluorescent biosensors and their cellular applications. ACS Chem Biol 2014; 9:2708-17. [PMID: 25317665 DOI: 10.1021/cb500661v] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Protein-based fluorescent biosensors have emerged as key bioanalytical tools to visualize and quantify a wide range of biological substances and events in vitro, in cells, and even in vivo. On the basis of the construction method, the protein-based fluorescent biosensors can be principally classified into two classes: (1) genetically encoded fluorescent biosensors harnessing fluorescent proteins (FPs) and (2) semisynthetic biosensors comprised of protein scaffolds and synthetic fluorophores. Recent advances in protein engineering and chemical biology not only allowed the further optimization of conventional biosensors but also facilitated the creation of novel biosensors based on unique strategies. In this review, we survey the recent studies in the development and improvement of protein-based fluorescent biosensors and highlight the successful applications to live cell and in vivo imaging. Furthermore, we provide perspectives on possible future directions of the technique.
Collapse
Affiliation(s)
- Tomonori Tamura
- Department
of Synthetic Chemistry and Biological Chemistry, Graduate School of
Engineering, Kyoto University, Katsura, Kyoto 615-8510, Japan
| | - Itaru Hamachi
- Department
of Synthetic Chemistry and Biological Chemistry, Graduate School of
Engineering, Kyoto University, Katsura, Kyoto 615-8510, Japan
- Core
Research for Evolutional Science and Technology, Japan Science and Technology Agency, 5 Sanbancho, Chiyoda-ku, Tokyo 102-0075, Japan
| |
Collapse
|
29
|
Mungroo NA, Neethirajan S. Biosensors for the Detection of Antibiotics in Poultry Industry—A Review. BIOSENSORS 2014; 4:472-93. [PMID: 25587435 PMCID: PMC4287714 DOI: 10.3390/bios4040472] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 10/27/2014] [Accepted: 11/14/2014] [Indexed: 12/16/2022]
Abstract
Antibiotic resistance is emerging as a potential threat in the next decades. This is a global phenomenon whereby globalization is acting as a catalyst. Presently, the most common techniques used for the detection of antibiotics are biosensors, ELISA and liquid chromatography-mass spectrometry. Each of these techniques has its benefits as well as drawbacks. This review aims to evaluate different biosensing techniques and their working principles in order to accurately, quickly and practically detect antibiotics in chicken muscle and blood serum. The review is divided into three main sections, namely: a biosensors overview, a section on biosensor recognition and a section on biosensor transducing elements. The first segment provides a detailed overview on the different techniques available and their respective advantages and disadvantages. The second section consists of an evaluation of several analyte systems and their mechanisms. The last section of this review studies the working principles of biosensing transducing elements, focusing mainly on surface plasmon resonance (SPR) technology and its applications in industries.
Collapse
Affiliation(s)
- Nawfal Adam Mungroo
- BioNano Laboratory, School of Engineering, University of Guelph, Guelph, ON N1G 2W1, Canada; E-Mail:
| | - Suresh Neethirajan
- BioNano Laboratory, School of Engineering, University of Guelph, Guelph, ON N1G 2W1, Canada; E-Mail:
| |
Collapse
|
30
|
Ziółczyk P, Kur-Kowalska K, Przybyt M, Miller E. Quantum dots as a possible oxygen sensor. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2014; 126:28-35. [PMID: 24568848 DOI: 10.1016/j.saa.2014.01.112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 01/15/2014] [Accepted: 01/22/2014] [Indexed: 06/03/2023]
Abstract
Results of studies on optical properties of low toxicity quantum dots (QDs) obtained from copper doped zinc sulfate are discussed in the paper. The effect of copper admixture concentration and solution pH on the fluorescence emission intensity of QDs was investigated. Quenching of QDs fluorescence by oxygen was reported and removal of the oxygen from the environment by two methods was described. In the chemical method oxygen was eliminated by adding sodium sulfite, in the other method oxygen was removed from the solution using nitrogen gas. For elimination of oxygen by purging the solution with nitrogen the increase of fluorescence intensity with decreasing oxygen concentration obeyed Stern-Volmer equation indicating quenching. For the chemical method Stern-Volmer equation was not fulfilled. The fluorescence decays lifetimes were determined and the increase of mean lifetimes at the absence of oxygen support hypothesis that QDs fluorescence is quenched by oxygen.
Collapse
Affiliation(s)
- Paulina Ziółczyk
- Institute of General Food Chemistry, Lodz University of Technology, Stefanowskiego 4/10, 90-924 Łódź, Poland
| | - Katarzyna Kur-Kowalska
- Institute of General Food Chemistry, Lodz University of Technology, Stefanowskiego 4/10, 90-924 Łódź, Poland
| | - Małgorzata Przybyt
- Institute of General Food Chemistry, Lodz University of Technology, Stefanowskiego 4/10, 90-924 Łódź, Poland
| | - Ewa Miller
- Institute of General Food Chemistry, Lodz University of Technology, Stefanowskiego 4/10, 90-924 Łódź, Poland.
| |
Collapse
|
31
|
Ozyurt C, Evran S, Telefoncu A. Development of genetically encoded fluorescent protein constructs of hyperthermophilic maltose-binding protein. Prep Biochem Biotechnol 2014; 44:132-45. [PMID: 24152100 DOI: 10.1080/10826068.2013.797436] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Circularly permuted green fluorescent protein (cGFP) was inserted into the hyperthermophilic maltose binding protein at two different locations. cGFP was inserted between amino acid residues 206 and 207, or fused to the N-terminal of maltose binding protein from Thermotoga maritima. The cloned DNA constructs were expressed in Escherichia coli cells, and purified by metal chelate affinity chromatography. Conformational change upon ligand binding was monitored by the increase in fluorescence intensity. Both of the fusion proteins developed significant fluorescence change at 0.5 mM maltose concentration, whereas their maltose binding affinities and optimum incubation times were different. Fluorescent biosensors based on mesophilic maltose binding proteins have been described in the literature, but there is a growing interest in biosensors based on thermostable proteins. Therefore, the developed protein constructs could be models for thermophilic protein-based fluorescent biosensors.
Collapse
Affiliation(s)
- Canan Ozyurt
- a Department of Biochemistry, Faculty of Science , Ege University , Izmir , Turkey
| | | | | |
Collapse
|
32
|
de Picciotto S, Imperiali B, Griffith LG, Wittrup KD. Equilibrium and dynamic design principles for binding molecules engineered for reagentless biosensors. Anal Biochem 2014; 460:9-15. [PMID: 24814226 DOI: 10.1016/j.ab.2014.04.036] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Revised: 04/28/2014] [Accepted: 04/29/2014] [Indexed: 01/09/2023]
Abstract
Reagentless biosensors rely on the interaction of a binding partner and its target to generate a change in fluorescent signal using an environment-sensitive fluorophore or Förster resonance energy transfer. Binding affinity can exert a significant influence on both the equilibrium and the dynamic response characteristics of such a biosensor. We here develop a kinetic model for the dynamic performance of a reagentless biosensor. Using a sinusoidal signal for ligand concentration, our findings suggest that it is optimal to use a binding moiety whose equilibrium dissociation constant matches that of the average predicted input signal, while maximizing both the association rate constant and the dissociation rate constant at the necessary ratio to create the desired equilibrium constant. Although practical limitations constrain the attainment of these objectives, the derivation of these design principles provides guidance for improved reagentless biosensor performance and metrics for quality standards in the development of biosensors. These concepts are broadly relevant to reagentless biosensor modalities.
Collapse
Affiliation(s)
- Seymour de Picciotto
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Barbara Imperiali
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Linda G Griffith
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - K Dane Wittrup
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
33
|
Ozyurt C, Evran S, Telefoncu A. Development of a novel fluorescent protein construct by genetically fusing green fluorescent protein to the N-terminal of aspartate dehydrogenase. Biotechnol Appl Biochem 2013; 60:399-404. [PMID: 24033594 DOI: 10.1002/bab.1107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Accepted: 02/06/2013] [Indexed: 11/11/2022]
Abstract
We developed a fluorescent protein construct by genetically fusing green fluorescent protein (GFP) to aspartate dehydrogenase from Thermotoga maritima. The fusion protein was cloned, heterologously expressed in Escherichia coli cells, and purified by Ni-chelate affinity chromatography. It was then introduced into a measurement cuvette to monitor its fluorescence signal. Aspartate dehydrogenase functioned as the biorecognition element, and aspartate-induced conformational change was converted to a fluorescence signal by GFP. The recombinant protein responded to l-aspartate (l-Asp) linearly within the concentration range of 1-50 mM, and it was capable of giving a fluorescence signal in 1 Min. Although a linear response was also observed for l-Glu, the fluorescence signal was 2.7 times lower than that observed for l-Asp. In the present study, we describe two novelties: development of a genetically encoded fluorescent protein construct for monitoring of l-Asp in vitro, and employment of aspartate dehydrogenase scaffold as a biorecognition element. A few genetically encoded amino-acid biosensors have been described in the literature, but to our knowledge, a protein has not been constructed solely for determination of l-Asp. Periplasmic ligand binding proteins offer high binding affinity in the micromolar range, and they are frequently used as biorecognition elements. Instead of choosing a periplasmic l-Asp binding protein, we attempted to use the substrate specificity of aspartate dehydrogenase enzyme.
Collapse
Affiliation(s)
- Canan Ozyurt
- Department of Biochemistry, Faculty of Science, Ege University, Izmir, Turkey
| | | | | |
Collapse
|
34
|
Annoni C, Nakata E, Tamura T, Liew FF, Nakano S, Gelmi ML, Morii T. Construction of ratiometric fluorescent sensors by ribonucleopeptides. Org Biomol Chem 2013; 10:8767-9. [PMID: 23069733 DOI: 10.1039/c2ob26722e] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Ratiometric fluorescent sensors were constructed from RNA aptamers by generating modular ribonucleopeptide complexes. Fluorescent ribonucleopeptides containing fluorophore seminaphthorhodafluor tethered to their peptide subunit revealed a dual emission property, which permitted a ratiometric fluorescent measurement of a substrate-binding event. The strategy successfully afforded ratiometric fluorescent sensors for biologically active small ligands, tetracycline, dopamine and streptomycin.
Collapse
Affiliation(s)
- Chiara Annoni
- Dipartimento di Scienze Farmaceutiche Pietro Pratesi, Sezione Chimica Generale Organica A. Marchesini, Universita` degli Studi di Milano, via Venezian 21, 20133 Milan, Italy
| | | | | | | | | | | | | |
Collapse
|
35
|
Nakano S, Fukuda M, Tamura T, Sakaguchi R, Nakata E, Morii T. Simultaneous detection of ATP and GTP by covalently linked fluorescent ribonucleopeptide sensors. J Am Chem Soc 2013; 135:3465-73. [PMID: 23373863 DOI: 10.1021/ja3097652] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
A noncovalent RNA complex embedding an aptamer function and a fluorophore-labeled peptide affords a fluorescent ribonucleopeptide (RNP) framework for constructing fluorescent sensors. By taking an advantage of the noncovalent properties of the RNP complex, the ligand-binding and fluorescence characteristics of the fluorescent RNP can be independently tuned by taking advantage of the nature of the RNA and peptide subunits, respectively. Fluorescent sensors tailored for given measurement conditions, such as a detection wavelength and a detection concentration range for a ligand of interest can be easily identified by screening of fluorescent RNP libraries. The noncovalent configuration of a RNP becomes a disadvantage when the sensor is to be utilized at very low concentrations or when multiple sensors are applied to the same solution. Here, we report a strategy to convert a fluorescent RNP sensor in the noncovalent configuration into a covalently linked stable fluorescent RNP sensor. This covalently linked fluorescent RNP sensor enabled ligand detection at a low sensor concentration, even in cell extracts. Furthermore, application of both ATP and GTP sensors enabled simultaneous detection of ATP and GTP by monitoring each wavelength corresponding to the respective sensor. Importantly, when a fluorescein-modified ATP sensor and a pyrene-modified GTP sensor were co-incubated in the same solution, the ATP sensor responded at 535 nm only to changes in the concentration of ATP, whereas the GTP sensor detected GTP at 390 nm without any effect on the ATP sensor. Finally, simultaneous monitoring by these sensors enabled real-time measurement of adenosine deaminase enzyme reactions.
Collapse
Affiliation(s)
- Shun Nakano
- Institute of Advanced Energy, Kyoto University, Uji, Kyoto 611-0011, Japan
| | | | | | | | | | | |
Collapse
|
36
|
Zherdeva VV, Savitsky AP. Using lanthanide-based resonance energy transfer for in vitro and in vivo studies of biological processes. BIOCHEMISTRY (MOSCOW) 2013; 77:1553-74. [DOI: 10.1134/s0006297912130111] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
37
|
Jayakumar K, Rajesh R, Dharuman V, Venkatesan R. Graphene-PAMAM dendrimer-gold nanoparticle composite for electrochemical DNA hybridization detection. Methods Mol Biol 2013; 1039:201-219. [PMID: 24026698 DOI: 10.1007/978-1-62703-535-4_17] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Graphene oxide is chemically functionalized using planar structured first generation polyamidoamine dendrimer (G1PAMAM) to form graphene core GG1PAMAM. The monolayer of GG1PAMAM is anchored on the 3-mercapto propionic acid monolayer pre-immobilized onto a gold transducer. The GG1PAMAM is decorated using gold nanoparticles for the covalent attachment of single-stranded DNA through simple gold-thiol chemistry. The single- and double-stranded DNAs are discriminated electrochemically in the presence of redox probe K3[Fe(CN)6]. Double-stranded-specific intercalator methylene blue is used to enhance the lower detection limit. The use of linear and planar G1PAMAM along with the graphene core has enhanced the detection limit 100 times higher than the G1PAMAM with the conventional ethylene core. This chapter presents the details of GG1PAMAM preparation and application to DNA sensing by electrochemical methods.
Collapse
Affiliation(s)
- Kumarasamy Jayakumar
- Molecular Electronics Lab, Department of Bioelectronics and Biosensors, Alagappa University, Karaikudi, India
| | | | | | | |
Collapse
|
38
|
Li J, Zhong X, Cheng F, Zhang JR, Jiang LP, Zhu JJ. One-pot synthesis of aptamer-functionalized silver nanoclusters for cell-type-specific imaging. Anal Chem 2012; 84:4140-6. [PMID: 22482827 DOI: 10.1021/ac3003402] [Citation(s) in RCA: 151] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
As an emerging category of fluorescent metal nanoclusters, oligonucleotide-templated silver nanoclusters (Ag NCs) have attracted a lot of interest and have shown wide application in biorelated disciplines. However, the weak fluorescence emission and poor permeability to cell membranes tethered further intracellular applications of Ag NCs. AS1411 is an antiproliferative G-rich phosphodiester oligonucleotide and currently an anticancer agent under phase II clinical trials. Herein, we present a strategy to synthesize AS1411-functionalized Ag NCs with excellent fluorescence through a facile one-pot process. Confocal laser scanning microscopy and Z-axis scanning confirmed that the AS1411-functionalized Ag NCs could be internalized into MCF-7 human breast cancer cells and were able to specifically stain nuclei with red color. To our surprise, 3-[4,5-dimethylthiazol-z-yl]-2,5-diphenyltetrazolium bromide (MTT) assay demonstrated the Ag NCs were cytocompatible and showed better inhibition effects than pure AS1411 on MCF-7 human breast cancer cells. In addition, a universal design of the oligonucleotide scaffold for synthesis of Ag NCs was extended to other aptamers, such as Sgc8c and mucin 1 aptamer. Due to the facile synthesis procedure and capability of specific target recognition, this fluorescent platform will potentially broaden the applications of Ag NCs in biosensing and biological imaging.
Collapse
Affiliation(s)
- Jingjing Li
- State Lab of Analytical Chemistry for Life Science (MOE), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, People's Republic of China
| | | | | | | | | | | |
Collapse
|
39
|
Reagentless fluorescent biosensors based on proteins for continuous monitoring systems. Anal Bioanal Chem 2012; 402:3039-54. [DOI: 10.1007/s00216-012-5715-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Accepted: 01/04/2012] [Indexed: 12/23/2022]
|
40
|
Badran AH, Furman JL, Ma AS, Comi TJ, Porter JR, Ghosh I. Evaluating the global CpG methylation status of native DNA utilizing a bipartite split-luciferase sensor. Anal Chem 2011; 83:7151-7. [PMID: 21797230 DOI: 10.1021/ac2015239] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Epigenetic modifications play an essential role in the regulation of gene expression and ultimately cell fate. Methylation of cytosine at CpG dinucleotides (mCpG) is an important epigenetic mark that has been correlated with cancer when present at promoter sites of tumor suppressor genes. To develop a rapid methodology for the direct assessment of global levels of DNA methylation, we first interrogated the methyl-CpG binding domains (MBDs), the Kaiso family of Cys(2)-His(2) zinc fingers, and an SET- and RING-associated domain using a split-luciferase reassembly methodology. We identified MBD1 as the most selective domain for the discrimination between mCpG and CpG sites with over 90-fold selectivity. Utilizing a bipartite strategy, we constructed a purely methylation-dependent bipartite sensor for the direct detection of global levels of DNA methylation by attaching MBD1 domains to each of the split-luciferase halves. This new sensor was validated for the direct determination of genomic DNA methylation levels in in vitro studies without any intervening chemical or enzymatic processing of DNA. Finally, we demonstrated that this bipartite sensor can be utilized for monitoring dose-dependent changes in global levels of methylation in DNA from HeLa cells challenged with 5-aza-2'-deoxycytidine, a DNA methyltransferase inhibitor.
Collapse
Affiliation(s)
- Ahmed H Badran
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| | | | | | | | | | | |
Collapse
|
41
|
Liew FF, Hayashi H, Nakano S, Nakata E, Morii T. A ribonucleopeptide module for effective conversion of an RNA aptamer to a fluorescent sensor. Bioorg Med Chem 2011; 19:5771-5. [PMID: 21906952 DOI: 10.1016/j.bmc.2011.08.031] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Accepted: 08/12/2011] [Indexed: 10/17/2022]
Abstract
Ribonucleopeptide (RNP) is a new class of scaffold for modular fluorescent sensors. We report here a short RNA motif that induces an efficient communication between the structural changes associated with the ligand-binding event of RNA aptamer and an optical response of a fluorescent RNP module. An optimized short RNA motif was used as a communication module for the rational design of modular RNP sensors. A modular combination of a GTP-binding RNA aptamer, the short RNA motif and the fluorophore-labeled RNP module afforded a fluorescent GTP sensor that retain the ligand-binding affinity of the parent aptamer.
Collapse
Affiliation(s)
- Fong Fong Liew
- Institute of Advanced Energy, Kyoto University, Uji, Kyoto 611-0011, Japan
| | | | | | | | | |
Collapse
|
42
|
Liew FF, Hasegawa T, Fukuda M, Nakata E, Morii T. Construction of dopamine sensors by using fluorescent ribonucleopeptide complexes. Bioorg Med Chem 2011; 19:4473-81. [PMID: 21742507 DOI: 10.1016/j.bmc.2011.06.031] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Revised: 06/08/2011] [Accepted: 06/10/2011] [Indexed: 11/18/2022]
Abstract
A facile strategy of stepwise molding of a ribonucleopeptide (RNP) complex affords fluorescent RNP sensors with selective dopamine recognition. In vitro selection of a RNA-derived RNP library, a complex of the Rev peptide and its binding site Rev Responsive Element (RRE) RNA appended with random nucleotides in variable lengths, afforded RNP receptors specific for dopamine. The modular structure of the RNP receptor enables conversion of dopamine-binding RNP receptors to fluorescent dopamine sensors. Application of conditional selection schemes, such as the variation of salt concentrations and application of a counter-selection step by using a competitor ligand norepinephrine resulted in isolation of RNP receptors with defined dopamine-binding characteristics. Increasing the salt condition at the in vitro selection stage afforded RNP receptors with higher dopamine affinity, while addition of norepinephrine in the in vitro selection milieu at the counter-selection step reinforced the selectivity of RNP receptors to dopamine against norepinephrine. Thermodynamic analyses and circular dichroismic studies of the dopamine-RNP complexes suggest that the dopamine-binding RNP with higher selectivity against norepinephrine forms a pre-organized binding pocket and that the dopamine-binding RNP with higher affinity binds dopamine through the induced-fit mechanism. These results indicate that the selection condition controls the ligand-binding mechanism of RNP receptors.
Collapse
Affiliation(s)
- Fong Fong Liew
- Institute of Advanced Energy, Kyoto University, Kyoto 611-0011, Japan
| | | | | | | | | |
Collapse
|
43
|
Drewry JA, Gunning PT. Recent advances in biosensory and medicinal therapeutic applications of zinc(II) and copper(II) coordination complexes. Coord Chem Rev 2011. [DOI: 10.1016/j.ccr.2010.10.018] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
44
|
Giacco TD, Carlotti B, Solis SD, Barbafina A, Elisei F. Steady-state and time-resolved investigations of a crown thioether conjugated with methylacridinium and its complexes with metal ions. Phys Chem Chem Phys 2011; 13:2188-95. [DOI: 10.1039/c0cp01411g] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
45
|
Tanaka K, Kitamura N, Chujo Y. Biodegradable Main-Chain Phosphate-Caged Fluorescein Polymers for the Evaluation of Enzymatic Activity. Macromolecules 2010. [DOI: 10.1021/ma1009066] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Kazuo Tanaka
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Narufumi Kitamura
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Yoshiki Chujo
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| |
Collapse
|