1
|
Nagase K, Kuramochi H, Grainger DW, Takahashi H. Functional aligned mesenchymal stem cell sheets fabricated using micropatterned thermo-responsive cell culture surfaces. Mater Today Bio 2025; 32:101657. [PMID: 40166377 PMCID: PMC11957804 DOI: 10.1016/j.mtbio.2025.101657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 03/09/2025] [Accepted: 03/10/2025] [Indexed: 04/02/2025] Open
Abstract
Mesenchymal stem cells (MSCs) are frequently applied for cell transplantation and regenerative therapy because they secrete diverse therapeutic cytokines that prompt immuno-stimulatory and tissue repair processes. Furthermore, cultured MSC sheets exhibit enhanced cytokine secretion compared to their MSC suspensions, and represent a durable, versatile format for tissue engineering as singular, multi-layered, or multi-cell type sandwiched, transplantable constructs. Tissue engineered implants with various cellular orientations have been reported. In this study, patterned, temperature-responsive culture surfaces were used to prepare oriented MSC sheets. Patterned culture surfaces were fabricated by grafting polyacrylamide (PAAm) onto commercial poly(N-isopropylacrylamide) (PNIPAAm)-modified plastic via photopolymerization using a stripe-patterned photomask. Patterned surfaces were characterized using x-ray photoelectron spectroscopy, fluorescently labelled fibronectin and albumin adsorption assays, wetting (contact angle) measurements, atomic force microscopy, and scanning electron microscopy. Striped grafted patterns of PAAm were fabricated on the PNIPAAm-coated culture substrates, and PAAm polymerized within the PNIPAAm overlayer. Cell-aligned MSC sheets were then produced from MSC culture on this patterned surface, secreting higher amounts of therapeutic cytokines (vascular endothelial growth factor, hepatocyte growth factor, and transforming growth factor-β) than non-aligned MSC control sheets. In addition, aligned MSC sheets maintained enhanced cell multi-potent differentiation capabilities. New, aligned MSC sheets might exhibit improved functional properties for cell sheet transplant therapies.
Collapse
Affiliation(s)
- Kenichi Nagase
- Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima City, Hiroshima, 734-8553, Japan
- Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato, Tokyo, 105-8512, Japan
| | - Hasumi Kuramochi
- Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato, Tokyo, 105-8512, Japan
| | - David W. Grainger
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, 84112, USA
- Cell Sheet Tissue Engineering Center (CSTEC), Department of Molecular Pharmaceutics, University of Utah, Health Sciences, Salt Lake City, UT, 84112, USA
| | - Hironobu Takahashi
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku, Tokyo, 162-8666, Japan
| |
Collapse
|
2
|
Nagase K, Watanabe M, Kikuchi A, Okano T. Effective cell sheet preparation using thermoresponsive polymer brushes with various graft densities and chain lengths. Biomater Sci 2025; 13:1657-1670. [PMID: 39996321 DOI: 10.1039/d4bm01705f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2025]
Abstract
Various cell sheets have been used as effective and useful cellular tissues in tissue engineering and regenerative therapy. Poly(N-isopropylacrylamide) (PNIPAAm)-modified surfaces have been investigated for effective cell sheet preparation. In this study, the effective PNIPAAm graft density and chain length of PNIPAAm brushes for various cell types were investigated. The PNIPAAm brush-grafted glass was prepared via silanization and subsequent atom transfer radical polymerization (ATRP). The density of the PNIPAAm brushes was modulated by changing the ATRP initiator and co-adsorber composition, while the PNIPAAm brush length was modulated by changing the monomer concentration in the ATRP. The hydrophilicity of the PNIPAAm brushes increased with increasing PNIPAAm brush length because long PNIPAAm brushes tended to hydrate. Fibronectin adsorption increased with decreasing PNIPAAm brush concentration because the exposed hydrophobic co-adsorber in the dilute PNIPAAm brush enhanced the adsorption of fibronectin. The cell-sheet fabrication ability was investigated using six types of PNIPAAm brushes. An endothelial cell sheet was fabricated using a dense, short PNIPAAm brush. NIH/3T3 sheets can be fabricated using three types of PNIPAAm brushes: dense-long PNIPAAm brushes, moderately dense-short PNIPAAm brushes, and dilute-long PNIPAAm brushes. MDCK cell sheets could not be prepared using the PNIPAAm brushes. A549 cell sheets were prepared using a dense-short PNIPAAm brush and moderately dense-short PNIPAAm brushes. These results indicate that the optimal PNIPAAm brush conditions for cell sheet preparation vary depending on cell type. Thus, modulation of PNIPAAm brush density and length is an effective approach for preparing target cell sheets.
Collapse
Affiliation(s)
- Kenichi Nagase
- Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima City, Hiroshima, 734-8553, Japan.
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku, Tokyo, 162-8666, Japan
| | - Minami Watanabe
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku, Tokyo, 162-8666, Japan
- Department of Materials Science and Technology, Graduate School of Advanced Engineering, Tokyo University of Science, 6-3-1 Niijuku, Katsushika, Tokyo 125-8585, Japan
| | - Akihiko Kikuchi
- Department of Materials Science and Technology, Graduate School of Advanced Engineering, Tokyo University of Science, 6-3-1 Niijuku, Katsushika, Tokyo 125-8585, Japan
| | - Teruo Okano
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku, Tokyo, 162-8666, Japan
- Cell Sheet Tissue Engineering Center, Department of Pharmaceutics and Pharmaceutical Chemistry, Health Sciences, University of Utah, Salt Lake City, UT84112, Utah, USA
| |
Collapse
|
3
|
Strauch C, Roß L, Schneider S. Exploring guest molecule uptake in pH-responsive polyelectrolyte microgels via Monte Carlo simulations. SOFT MATTER 2024; 20:9664-9672. [PMID: 39618406 DOI: 10.1039/d4sm00950a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
Understanding the interactions of guest molecules like proteins and nanoparticles with microgels is fundamental for using microgels as nanocarriers. However, understanding and predicting the system properties becomes increasingly difficult as the systems become more complex. In this study, we systematically investigated the uptake of these guest molecules in a pH-responsive polyelectrolyte microgel modeled as a bead-spring network using Monte Carlo simulations. To narrow down the complexity of the systems, we modeled the guest molecules as simple charged beads. The simulations included the variation of (i) guest molecule charge, (ii) size, and (iii) number, as well as the influence of (iv) the addition of salt. The effect of these parameters on the ionization, swelling, and guest molecule uptake was investigated. The uptake of guest molecules with higher charges enhanced the ionization of the microgel at low pH. The strongest effect was observed for beads with charge z = +15. For higher guest molecule charges, the polymer chains could not fully wrap around the guest molecules, to provide enough microgel charges to fully compensate for the repulsive interactions between the guest beads. In general, the uptake of guest molecules leads to a collapse of the microgel due to attractive electrostatic interactions. With the increasing size of the guest molecules, their excluded volume increases, and the microgel swells with their uptake. Adding monovalent salt slightly decreases the uptake at low ionization of the network due to electrostatic screening. The presence of salt ions with higher valency further decreases the uptake of guest molecules into a fully ionized microgel.
Collapse
Affiliation(s)
- Christian Strauch
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, 52056 Aachen, Germany.
| | - Lars Roß
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, 52056 Aachen, Germany.
| | - Stefanie Schneider
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, 52056 Aachen, Germany.
| |
Collapse
|
4
|
Niebuur BJ, Pipich V, Appavou MS, Mullapudi D, Nieth A, Rende E, Schulte A, Papadakis CM. PNIPAM Mesoglobules in Dependence on Pressure. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:22314-22323. [PMID: 39395149 PMCID: PMC11500402 DOI: 10.1021/acs.langmuir.4c02952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/01/2024] [Accepted: 10/07/2024] [Indexed: 10/14/2024]
Abstract
Poly(N-isopropylacrylamide) (PNIPAM) in aqueous solution forms mesoglobules above its cloud point temperature Tcp. While these are small and compact at atmospheric pressure, they are large and water-rich at high pressure. To identify the transition between these states, we employed optical microscopy and carried out isothermal pressure scans. Using very small angle neutron scattering, we determined the size and water content of the mesoglobules in pressure scans at different temperatures above Tcp. We observe a distinct transition at pressures of 35-55 MPa with the transition pressure depending on temperature. While the transition is smooth at high temperatures, i.e., far away from the coexistence line, it is abrupt at low temperatures, i.e., close to the coexistence line. Hence, at high temperatures, the swelling of the mesoglobules dominates, whereas at low temperatures, the coalescence of mesoglobules prevails. Subsequently decreasing the pressure results in a gradual deswelling of the mesoglobules at high temperature. In contrast, at low temperatures, small and compact mesoglobules form, but the large aggregates persist. We conclude that, on the time scale of the experiment, the disintegration of the large swollen aggregates into small and compact mesoglobules is only partially possible. Erasing the history by cooling the sample at the maximum pressure into the one-phase state does not result in qualitative changes for the behavior with the only difference that Fewer mesoglobules are formed when the pressure is decreased again. The newly identified transition line separates the low-pressure from the high-pressure regime.
Collapse
Affiliation(s)
- Bart-Jan Niebuur
- TUM
School of Natural Sciences, Physics Department, Soft Matter Physics
Group, Technical University of Munich, James-Franck-Str. 1, Garching 85748, Germany
| | - Vitaliy Pipich
- Jülich
Centre for Neutron Science (JCNS) at Heinz Maier-Leibnitz Zentrum
(MLZ), Forschungszentrum Jülich GmbH, Lichtenbergstr. 1, Garching 85748, Germany
| | - Marie-Sousai Appavou
- Jülich
Centre for Neutron Science (JCNS) at Heinz Maier-Leibnitz Zentrum
(MLZ), Forschungszentrum Jülich GmbH, Lichtenbergstr. 1, Garching 85748, Germany
| | - Dharani Mullapudi
- Department
of Physics and College of Optics and Photonics, University of Central Florida, 4111 Libra Drive, Orlando, Florida 32816-2385, United States
| | - Alec Nieth
- Department
of Physics and College of Optics and Photonics, University of Central Florida, 4111 Libra Drive, Orlando, Florida 32816-2385, United States
| | - Eric Rende
- Department
of Physics and College of Optics and Photonics, University of Central Florida, 4111 Libra Drive, Orlando, Florida 32816-2385, United States
| | - Alfons Schulte
- Department
of Physics and College of Optics and Photonics, University of Central Florida, 4111 Libra Drive, Orlando, Florida 32816-2385, United States
| | - Christine M. Papadakis
- TUM
School of Natural Sciences, Physics Department, Soft Matter Physics
Group, Technical University of Munich, James-Franck-Str. 1, Garching 85748, Germany
| |
Collapse
|
5
|
Harsányi A, Kardos A, Xavier P, Campbell RA, Varga I. A Novel Approach for the Synthesis of Responsive Core-Shell Nanogels with a Poly(N-Isopropylacrylamide) Core and a Controlled Polyamine Shell. Polymers (Basel) 2024; 16:2584. [PMID: 39339048 PMCID: PMC11435478 DOI: 10.3390/polym16182584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/05/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
Microgel particles can play a key role, e.g., in drug delivery systems, tissue engineering, advanced (bio)sensors or (bio)catalysis. Amine-functionalized microgels are particularly interesting in many applications since they can provide pH responsiveness, chemical functionalities for, e.g., bioconjugation, unique binding characteristics for pollutants and interactions with cell surfaces. Since the incorporation of amine functionalities in controlled amounts with predefined architectures is still a challenge, here, we present a novel method for the synthesis of responsive core-shell nanogels (dh < 100 nm) with a poly(N-isopropylacrylamide) (pNIPAm) core and a polyamine shell. To achieve this goal, a surface-functionalized pNIPAm nanogel was first prepared in a semi-batch precipitation polymerization reaction. Surface functionalization was achieved by adding acrylic acid to the reaction mixture in the final stage of the precipitation polymerization. Under these conditions, the carboxyl functionalities were confined to the outer shell of the nanogel particles, preserving the core's temperature-responsive behavior and providing reactive functionalities on the nanogel surface. The polyamine shell was prepared by the chemical coupling of polyethyleneimine to the nanogel's carboxyl functionalities using a water-soluble carbodiimide (EDC) to facilitate the coupling reaction. The efficiency of the coupling was assessed by varying the EDC concentration and reaction temperature. The molecular weight of PEI was also varied in a wide range (Mw = 0.6 to 750 kDa), and we found that it had a profound effect on how many polyamine repeat units could be immobilized in the nanogel shell. The swelling and the electrophoretic mobility of the prepared core-shell nanogels were also studied as a function of pH and temperature, demonstrating the successful formation of the polyamine shell on the nanogel core and its effect on the nanogel characteristics. This study provides a general framework for the controlled synthesis of core-shell nanogels with tunable surface properties, which can be applied in many potential applications.
Collapse
Affiliation(s)
- Anna Harsányi
- Institute of Chemistry, Eötvös Loránd University, Pázmány P. s. 1/A, 1117 Budapest, Hungary
| | - Attila Kardos
- Institute of Chemistry, Eötvös Loránd University, Pázmány P. s. 1/A, 1117 Budapest, Hungary
- Department of Chemistry, University J. Selyeho, 945 01 Komárno, Slovakia
| | - Pinchu Xavier
- Division of Pharmacy and Optometry, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Richard A. Campbell
- Division of Pharmacy and Optometry, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Imre Varga
- Institute of Chemistry, Eötvös Loránd University, Pázmány P. s. 1/A, 1117 Budapest, Hungary
- Department of Chemistry, University J. Selyeho, 945 01 Komárno, Slovakia
| |
Collapse
|
6
|
Jana S, Wöll D. Moisture changes inside hydrogel particles during their drying process investigated with fluorescence lifetime imaging. Phys Chem Chem Phys 2024; 26:23250-23255. [PMID: 39192777 DOI: 10.1039/d4cp02684e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
The properties of hydrogels and microgels, i.e. hydrogel particles, depend strongly on their water content. Based on our previously developed method to access the local water content in microgels, we performed fluorescence lifetime microscopy measurements at different stages of drying poly(N-isopropylacrylamide) (PNIPAM) microgels under ambient conditions. For this purpose, the red-emitting dye ATTO 655 was covalently attached to the microgels. Its emission is quenched by water molecules due to an energy transfer from the first excited state of the dye to a vibrational level of the water molecules. The quenching constant or, equivalently, the fluorescence lifetime, gives direct access to the local water concentration. We measured the fluorescence lifetime after spin-coating, reswelling and at different times of subsequent drying to follow the changes of water content during this process. We found that the microgels are not totally dry after spin coating, but drying them to their equilibrium moisture under ambient temperature and humidity conditions requires several hours. Additionally, we determined the moisture inside microgels in equilibrium at different air humidities. In summary, the method allows for a detailed investigation of the moisture inside hydrogels and gives straight-forward access to in situ and operando measurements of hydrogel systems.
Collapse
Affiliation(s)
- Sankar Jana
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, 52074 Aachen, Germany.
| | - Dominik Wöll
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, 52074 Aachen, Germany.
| |
Collapse
|
7
|
Buratti E, Sguizzato M, Sotgiu G, Zamboni R, Bertoldo M. Keratin-PNIPAM Hybrid Microgels: Preparation, Morphology and Swelling Properties. Gels 2024; 10:411. [PMID: 38920957 PMCID: PMC11202486 DOI: 10.3390/gels10060411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/13/2024] [Accepted: 06/17/2024] [Indexed: 06/27/2024] Open
Abstract
Combinations of synthetic polymers, such as poly(N-isopropylacrylamide) (PNIPAM), with natural biomolecules, such as keratin, show potential in the field of biomedicine, since these hybrids merge the thermoresponsive properties of PNIPAM with the bioactive characteristics of keratin. This synergy aims to produce hybrids that can respond to environmental stimuli while maintaining biocompatibility and functionality, making them suitable for various medical and biotechnological uses. In this study, we exploit keratin derived from wool waste in the textile industry, extracted via sulfitolysis, to synthesize hybrids with PNIPAM microgel. Utilizing two distinct methods-polymerization of NIPAM with keratin (HYB-P) and mixing preformed PNIPAM microgels with keratin (HYB-M)-resulted in hybrids with 20% and 25% keratin content, respectively. Dynamic light scattering (DLS) and transmission electron microscopic (TEM) analyses indicated the formation of colloidal systems with particle sizes of around 110 nm for HYB-P and 518 nm for HYB-M. The presence of keratin in both systems, 20% and 25%, respectively, was confirmed by spectroscopic (FTIR and NMR) and elemental analyses. Distinct structural differences were observed between HYB-P and HYB-M, suggesting a graft copolymer configuration for the former hybrid and a complexation for the latter one. Furthermore, these hybrids demonstrated temperature responsiveness akin to PNIPAM microgels and pH responsiveness, underscoring their potential for diverse biomedical applications.
Collapse
Affiliation(s)
- Elena Buratti
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via L. Borsari 46, 44121 Ferrara, Italy; (M.S.); (M.B.)
| | - Maddalena Sguizzato
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via L. Borsari 46, 44121 Ferrara, Italy; (M.S.); (M.B.)
| | - Giovanna Sotgiu
- Institute for Organic Synthesis and Photoreactivity (ISOF), National Research Council, Via Gobetti 101, 40129 Bologna, Italy; (G.S.); (R.Z.)
| | - Roberto Zamboni
- Institute for Organic Synthesis and Photoreactivity (ISOF), National Research Council, Via Gobetti 101, 40129 Bologna, Italy; (G.S.); (R.Z.)
| | - Monica Bertoldo
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via L. Borsari 46, 44121 Ferrara, Italy; (M.S.); (M.B.)
| |
Collapse
|
8
|
Nagase K, Nagaoka M, Nakano Y, Utoh R. bFGF-releasing biodegradable nanoparticles for effectively engrafting transplanted hepatocyte sheet. J Control Release 2024; 366:160-169. [PMID: 38154542 DOI: 10.1016/j.jconrel.2023.12.040] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/06/2023] [Accepted: 12/24/2023] [Indexed: 12/30/2023]
Abstract
Hepatic tissue engineering has been applied for the treatment of intractable liver diseases, and hepatocyte sheets are promising for this purpose. However, hepatocyte sheets have poor survival after transplantation because of their high metabolic activity. In this study, we aimed to develop basic fibroblast growth factor (bFGF)-releasing nanoparticles to prolong the survival of hepatocyte sheets after transplantation. The nanoparticles were prepared by electrospraying a bFGF-dispersed poly(D,l-lactide-co-glycolide) emulsion. bFGF-loaded PLGA nanoparticles can be developed by optimizing the applied electrospray voltage and the oil:water ratio of the emulsion. The prepared nanoparticles exhibited prompt release at the initial duration and continuous gradual release at the subsequent duration. Hepatocyte sheet engraftment was evaluated by transplanting hepatocyte sheets containing the prepared nanoparticles into rats. The hepatocyte sheets with the prepared nanoparticles exhibited longer survival than those without the bFGF nanoparticles or solution owing to the local and continuous release of bFGF from the nanoparticles and the subsequent enhanced angiogenesis at the transplantation site. These results indicated that the prepared bFGF-releasing nanoparticles can enhance the efficiency of hepatocyte sheet transplantation. The developed bFGF-releasing nanoparticles would be useful for the transplantation of cellular tissue with post-transplantation survival challenges.
Collapse
Affiliation(s)
- Kenichi Nagase
- Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato, Tokyo 105-8512, Japan.
| | - Marin Nagaoka
- Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato, Tokyo 105-8512, Japan
| | - Yuto Nakano
- Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato, Tokyo 105-8512, Japan
| | - Rie Utoh
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| |
Collapse
|
9
|
Adam S, Mohanan A, Bakshi S, Ghadai A, Majumdar S. Network architecture dependent mechanical response in temperature responsive collagen-PNIPAM composites. Colloids Surf B Biointerfaces 2023; 227:113380. [PMID: 37263106 DOI: 10.1016/j.colsurfb.2023.113380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/22/2023] [Accepted: 05/25/2023] [Indexed: 06/03/2023]
Abstract
Collagen is the most abundant protein in the mammalian extracellular matrix. In-vitro collagen-based materials with specific mechanical properties are important for various bio-medical and tissue-engineering applications. Here, we study the reversible mechanical switching behaviour of a bio-compatible composite formed by collagen networks seeded with thermo-responsive poly(N-isopropylacrylamide) (PNIPAM) microgel particles, by exploiting the swelling/de-swelling of the particles across the lower critical solution temperature (LCST). Interestingly, we find that the shear modulus of the system reversibly enhances whenever the diameter of the microgel particles is changed from that corresponding to the polymerization temperature of the composite, irrespective of swelling or, de-swelling. However, the degree of such enhancement significantly depends on the temperature-dependent collagen network architecture quantified by the mesh size of the network. Furthermore, confocal imaging of the composite during the temperature switching reveals that the reversible clustering of microgel particles above LCST plays a crucial role in the observed switching response.
Collapse
Affiliation(s)
- Shibil Adam
- Soft Condensed Matter Group, Raman Research Institute, Bengaluru 560080, Karnataka, India
| | - Akhil Mohanan
- Soft Condensed Matter Group, Raman Research Institute, Bengaluru 560080, Karnataka, India
| | - Swarnadeep Bakshi
- Soft Condensed Matter Group, Raman Research Institute, Bengaluru 560080, Karnataka, India
| | - Abhishek Ghadai
- Soft Condensed Matter Group, Raman Research Institute, Bengaluru 560080, Karnataka, India
| | - Sayantan Majumdar
- Soft Condensed Matter Group, Raman Research Institute, Bengaluru 560080, Karnataka, India.
| |
Collapse
|
10
|
Hagemans F, Camerin F, Hazra N, Lammertz J, Dux F, Del Monte G, Laukkanen OV, Crassous JJ, Zaccarelli E, Richtering W. Buckling and Interfacial Deformation of Fluorescent Poly( N-isopropylacrylamide) Microgel Capsules. ACS NANO 2023; 17:7257-7271. [PMID: 37053566 DOI: 10.1021/acsnano.2c10164] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Hollow microgels are fascinating model systems at the crossover between polymer vesicles, emulsions, and colloids as they deform, interpenetrate, and eventually shrink at higher volume fraction or when subjected to an external stress. Here, we introduce a system consisting of microgels with a micrometer-sized cavity enabling a straightforward characterization in situ using fluorescence microscopy techniques. Similarly to elastic capsules, these systems are found to reversibly buckle above a critical osmotic pressure, conversely to smaller hollow microgels, which were previously reported to deswell at high volume fraction. Simulations performed on monomer-resolved in silico hollow microgels confirm the buckling transition and show that the presented microgels can be described with a thin shell model theory. When brought to an interface, these microgels, that we define as microgel capsules, strongly deform and we thus propose to utilize them to locally probe interfacial properties within a theoretical framework adapted from the Johnson-Kendall-Roberts (JKR) theory. Besides their capability to sense their environment and to address fundamental questions on the elasticity and permeability of microgel systems, microgel capsules can be further envisioned as model systems mimicking anisotropic responsive biological systems such as red blood and epithelial cells thanks to the possibility offered by microgels to be synthesized with custom-designed properties.
Collapse
Affiliation(s)
- Fabian Hagemans
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, DE-52074 Aachen, Germany
| | - Fabrizio Camerin
- CNR-ISC, Sapienza University of Rome, p.le A. Moro 2, 00185 Roma, Italy
- Department of Physics, Sapienza University of Rome, p.le A. Moro 2 00185 Roma, Italy
| | - Nabanita Hazra
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, DE-52074 Aachen, Germany
| | - Janik Lammertz
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, DE-52074 Aachen, Germany
| | - Frédéric Dux
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, DE-52074 Aachen, Germany
| | - Giovanni Del Monte
- CNR-ISC, Sapienza University of Rome, p.le A. Moro 2, 00185 Roma, Italy
- Department of Physics, Sapienza University of Rome, p.le A. Moro 2 00185 Roma, Italy
| | - Olli-Ville Laukkanen
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, DE-52074 Aachen, Germany
- VTT Technical Research Centre of Finland Ltd, Koivurannantie 1, 40400 Jyväskylä, Finland
| | - Jérôme J Crassous
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, DE-52074 Aachen, Germany
| | - Emanuela Zaccarelli
- CNR-ISC, Sapienza University of Rome, p.le A. Moro 2, 00185 Roma, Italy
- Department of Physics, Sapienza University of Rome, p.le A. Moro 2 00185 Roma, Italy
| | - Walter Richtering
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, DE-52074 Aachen, Germany
| |
Collapse
|
11
|
Dichotomous behaviors of stress and dielectric relaxations in dense suspensions of swollen thermoreversible hydrogel microparticles. J Colloid Interface Sci 2023; 630:223-231. [DOI: 10.1016/j.jcis.2022.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/29/2022] [Accepted: 10/01/2022] [Indexed: 11/05/2022]
|
12
|
Uehara N, Takita M, Sato K, Ito S, Inagawa A. Ionic thermoresponsive fluorescent polymers for detecting countercharged surfactants without phase separation. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2022.130366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
13
|
Elancheliyan R, Del Monte G, Chauveau E, Sennato S, Zaccarelli E, Truzzolillo D. Role of Charge Content in the Two-Step Deswelling of Poly( N-isopropylacrylamide)-Based Microgels. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Rajam Elancheliyan
- Laboratoire Charles Coulomb, UMR 5221, CNRS−Université de Montpellier, F-34095 Montpellier, France
| | - Giovanni Del Monte
- National Research Council−Institute for Complex Systems (CNR-ISC), Sapienza University of Rome, 00185 Rome, Italy
- Department of Physics, Sapienza University of Rome, 00185 Rome, Italy
| | - Edouard Chauveau
- Laboratoire Charles Coulomb, UMR 5221, CNRS−Université de Montpellier, F-34095 Montpellier, France
| | - Simona Sennato
- National Research Council−Institute for Complex Systems (CNR-ISC), Sapienza University of Rome, 00185 Rome, Italy
- Department of Physics, Sapienza University of Rome, 00185 Rome, Italy
| | - Emanuela Zaccarelli
- National Research Council−Institute for Complex Systems (CNR-ISC), Sapienza University of Rome, 00185 Rome, Italy
- Department of Physics, Sapienza University of Rome, 00185 Rome, Italy
| | - Domenico Truzzolillo
- Laboratoire Charles Coulomb, UMR 5221, CNRS−Université de Montpellier, F-34095 Montpellier, France
| |
Collapse
|
14
|
Wenisch SE, Schaffer A, Rieger B. Effect of Hofmeister Salts on the LCST of Poly(diethyl vinylphosphonate) and Poly(2‐vinylpyridine‐
block‐
diethyl vinylphosphonate). MACROMOL CHEM PHYS 2022. [DOI: 10.1002/macp.202200063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Sandra E. Wenisch
- WACKER‐Lehrstuhl für Makromolekulare Chemie Catalysis Research Center Department of Chemistry Technische Universität München 85748 Garching bei München Germany
| | - Andreas Schaffer
- WACKER‐Lehrstuhl für Makromolekulare Chemie Catalysis Research Center Department of Chemistry Technische Universität München 85748 Garching bei München Germany
| | - Bernhard Rieger
- WACKER‐Lehrstuhl für Makromolekulare Chemie Catalysis Research Center Department of Chemistry Technische Universität München 85748 Garching bei München Germany
| |
Collapse
|
15
|
Two-dimensional colloidal crystal of soft microgel spheres: Development, preparation and applications. Colloids Surf B Biointerfaces 2022; 212:112358. [PMID: 35101822 DOI: 10.1016/j.colsurfb.2022.112358] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 01/17/2022] [Accepted: 01/21/2022] [Indexed: 02/07/2023]
Abstract
Two-dimensional (2D) colloidal crystals are ordered monolayer arrays of colloidal sphere particles assembled on the substrates or at phase interfaces. Owing to their unique periodic structure and fascinating properties, 2D colloidal crystals have aroused considerable interest because of their potential applications. Among them, 2D colloidal crystals self-assembled from soft microgel spheres stand out particularly. The 2D colloidal crystals of soft microgel spheres combine the advantages of monolayer colloidal crystals and sensitive microgels, which have a good application prospect in biomedical area. In this article, we provide a systematic overview of 2D colloidal crystals of soft microgel spheres related to their development, preparation and applications. First, various preparation methods of 2D colloidal crystal of microgels are introduced, including dip-coating, drop-coating, spin-coating, interface assembly, surface reaction-assisted assembly, and so forth. Second, representative biomedical applications consisting of optical sensor, drug delivery, antibacterial coating, cell culture, and colloidal template are also exemplified to show the high performance of 2D colloidal crystals of soft microgel spheres. In addition, we also present prospects of future developments of 2D microgel colloidal crystals.
Collapse
|
16
|
Witt MU, Landers J, Hinrichs S, Salamon S, Kopp J, Hankiewicz B, Wende H, von Klitzing R. Magnetic response of CoFe 2O 4 nanoparticles confined in a PNIPAM microgel network. SOFT MATTER 2022; 18:1089-1099. [PMID: 35037679 DOI: 10.1039/d1sm01597d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The paper addresses coupling of magnetic nanoparticles (MNPs) with the polymer matrix of temperature-sensitive microgels and their response to magnetic fields. Therefore, CoFe2O4@CA (CA = citric acid) NPs are embedded within N-isopropylacrylamid (NIPAM) based microgels. The volume phase transition (VPT) of the magnetic microgels and the respective pure microgels is studied by dynamic light scattering and electrophoretic mobility measurements. The interaction between MNPs and microgel network is studied via magnetometry and AC-susceptometry using a superconducting quantum interference device (SQUID). The data show a significant change of the magnetic properties by crossing the VPT temperature (VPTT). The change is related to the increased confinement of the MNP due to the shrinking of the microgels. Modifying the microgel with hydrophobic allyl mercaptan (AM) affects the swelling ability and the magnetic response, i.e. the coupling of MNPs with the polymer matrix. Modeling the AC-susceptibility data results in an effective size distribution. This distribution represents the varying degree of constraint in MNP rotation and motion by the microgel network. These findings help to understand the interaction between MNPs and the microgel matrix to design multi responsive systems with tunable particle matrix coupling strength for future applications.
Collapse
Affiliation(s)
- Marcus U Witt
- Department of Physics, Soft Matter at Interfaces, Technical University Darmstadt, Hochschulstraße 8, 64287 Darmstadt, Germany.
| | - Joachim Landers
- Faculty of Physics and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Lotharstr. 1, 47057 Duisburg, Germany
| | - Stephan Hinrichs
- Institute of Physical Chemistry, Hamburg University, Grindelallee 117, 20146 Hamburg, Germany
| | - Soma Salamon
- Faculty of Physics and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Lotharstr. 1, 47057 Duisburg, Germany
| | - Juri Kopp
- Faculty of Physics and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Lotharstr. 1, 47057 Duisburg, Germany
| | - Birgit Hankiewicz
- Institute of Physical Chemistry, Hamburg University, Grindelallee 117, 20146 Hamburg, Germany
| | - Heiko Wende
- Faculty of Physics and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Lotharstr. 1, 47057 Duisburg, Germany
| | - Regine von Klitzing
- Department of Physics, Soft Matter at Interfaces, Technical University Darmstadt, Hochschulstraße 8, 64287 Darmstadt, Germany.
| |
Collapse
|
17
|
Wang G, Chen D, Wang T, Chen H, Zhang X, Li Y, Zhang L, Fan F, Fu Y. Lab-on-fiber sensing system based on responsive Fabry-Perot optical resonance cavities prepared through in situconstruction strategy. NANOTECHNOLOGY 2021; 32:41LT01. [PMID: 34233312 DOI: 10.1088/1361-6528/ac121d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 07/07/2021] [Indexed: 06/13/2023]
Abstract
For decades, lab-on-fiber (LOF) sensing systems have become an emerging optical sensing platform due to the features of small size and light weight. Herein, a simple and efficientin situconstruction strategy was reported for the preparation of LOF sensing platform based on the integration of responsive Fabry-Perot optical resonance cavity on optical fibers. The responsive Fabry-Perot optical resonance cavity with thermal poly(N-isopropylacrylamide) polymer brush layer sandwiched by two silver layers was constructed on the end surface of the optical fiber through combiningin situsurface-initiated polymerization and metal film deposition techniques. Owing to the thermo-responsiveness of the intermediate layer, the as-prepared LOF sensing system shows a sensitive response towards the environmental temperature. Importantly, the as-prepared LOF sensing system also possesses excellent repeatability and rapid response rate. Together with the features of high sensitivity, excellent repeatability and rapid response rate, we believe such LOF sensing system will provide a foundation for the future applications of medical diagnosis,in vivodetection and public security.
Collapse
Affiliation(s)
- Guangrong Wang
- College of Sciences, Northeastern University, Shenyang 110819, People's Republic of China
| | - Dan Chen
- College of Sciences, Northeastern University, Shenyang 110819, People's Republic of China
| | - Tieqiang Wang
- College of Sciences, Northeastern University, Shenyang 110819, People's Republic of China
| | - Hongxu Chen
- College of Material and Textile Engineering, Jiaxing University, Jiaxing 314001, People's Republic of China
| | - Xuemin Zhang
- College of Sciences, Northeastern University, Shenyang 110819, People's Republic of China
| | - Yunong Li
- College of Sciences, Northeastern University, Shenyang 110819, People's Republic of China
| | - Liying Zhang
- College of Sciences, Northeastern University, Shenyang 110819, People's Republic of China
| | - Fuqiang Fan
- College of Sciences, Northeastern University, Shenyang 110819, People's Republic of China
| | - Yu Fu
- College of Sciences, Northeastern University, Shenyang 110819, People's Republic of China
| |
Collapse
|
18
|
Nigro V, Angelini R, Bertoldo M, Buratti E, Franco S, Ruzicka B. Chemical-Physical Behaviour of Microgels Made of Interpenetrating Polymer Networks of PNIPAM and Poly(acrylic Acid). Polymers (Basel) 2021; 13:polym13091353. [PMID: 33919087 PMCID: PMC8122350 DOI: 10.3390/polym13091353] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/01/2021] [Accepted: 04/13/2021] [Indexed: 01/06/2023] Open
Abstract
Microgels composed of stimuli responsive polymers have attracted worthwhile interest as model colloids for theorethical and experimental studies and for nanotechnological applications. A deep knowledge of their behaviour is fundamental for the design of new materials. Here we report the current understanding of a dual responsive microgel composed of poly(N-isopropylacrylamide) (PNIPAM), a temperature sensitive polymer, and poly(acrylic acid) (PAAc), a pH sensitive polymer, at different temperatures, PAAc contents, concentrations, solvents and pH. The combination of multiple techniques as Dynamic Light Scattering (DLS), Raman spectroscopy, Small Angle Neutron Scattering (SANS), rheology and electrophoretic measurements allow to investigate the hydrodynamic radius behaviour across the typical Volume Phase Transition (VPT), the involved molecular mechanism and the internal particle structure together with the viscoelastic properties and the role of ionic charge in the aggregation phenomena.
Collapse
Affiliation(s)
- Valentina Nigro
- Istituto dei Sistemi Complessi del Consiglio Nazionale delle Ricerche (ISC-CNR), Sede Sapienza, 00185 Roma, Italy; (V.N.); (E.B.)
| | - Roberta Angelini
- Istituto dei Sistemi Complessi del Consiglio Nazionale delle Ricerche (ISC-CNR), Sede Sapienza, 00185 Roma, Italy; (V.N.); (E.B.)
- Dipartimento di Fisica, Sapienza Università, 00185 Rome, Italy
- Correspondence: (R.A.); (B.R.)
| | - Monica Bertoldo
- Dipartimento di Scienze Chimiche, Farmaceutiche ed Agrarie, Università degli Studi di Ferrara, 45121 Ferrara, Italy;
| | - Elena Buratti
- Istituto dei Sistemi Complessi del Consiglio Nazionale delle Ricerche (ISC-CNR), Sede Sapienza, 00185 Roma, Italy; (V.N.); (E.B.)
| | - Silvia Franco
- Dipartimento di Scienze di Base e Applicate per l’Ingegneria (SBAI), Sapienza Università, 00185 Rome, Italy;
| | - Barbara Ruzicka
- Istituto dei Sistemi Complessi del Consiglio Nazionale delle Ricerche (ISC-CNR), Sede Sapienza, 00185 Roma, Italy; (V.N.); (E.B.)
- Dipartimento di Fisica, Sapienza Università, 00185 Rome, Italy
- Correspondence: (R.A.); (B.R.)
| |
Collapse
|
19
|
Importance of pH in Synthesis of pH-Responsive Cationic Nano- and Microgels. Polymers (Basel) 2021; 13:polym13050827. [PMID: 33800332 PMCID: PMC7962641 DOI: 10.3390/polym13050827] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/01/2021] [Accepted: 03/04/2021] [Indexed: 01/12/2023] Open
Abstract
While cationic microgels are potentially useful for the transfection or transformation of cells, their synthesis has certain drawbacks regarding size, polydispersity, yield, and incorporation of the cationic comonomers. In this work, a range of poly(N-isopropylacrylamide) (PNIPAM) microgels with different amounts of the primary amine N-(3-aminopropyl)methacrylamide hydrochloride (APMH) as the cationic comonomer were synthesized. Moreover, the pH-value during reaction was varied for the synthesis of microgels with 10 mol% APMH-feed. The microgels were analyzed by means of their size, thermoresponsive swelling behavior, synthesis yield, polydispersity and APMH-incorporation. The copolymerization of APMH leads to a strong decrease in size and yield of the microgels, while less than one third of the nominal APMH monomer feed is incorporated into the microgels. With an increase of the reaction pH up to 9.5, the negative effects of APMH copolymerization were significantly reduced. Above this pH, synthesis was not feasible due to aggregation. The results show that the reaction pH has a strong influence on the synthesis of pH-responsive cationic microgels and therefore it can be used to tailor the microgel properties.
Collapse
|
20
|
Savage DT, Briot NJ, Hilt JZ, Dziubla TD. On the swelling behavior of poly( N-Isopropylacrylamide) hydrogels exposed to perfluoroalkyl acids. JOURNAL OF POLYMER SCIENCE 2021; 59:289-299. [PMID: 34859243 PMCID: PMC8631585 DOI: 10.1002/pol.20200805] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 12/18/2020] [Indexed: 11/06/2022]
Abstract
Per- and polyfluoroalkyl substances (PFAS) have rapidly accumulated in the environment due to their widespread use prior to commercial discussion in the early 21st century, and their slow degradation has magnified concerns of their potential toxicity. Monitoring their distribution is, therefore, necessary to evaluate and control their impact on the health of exposed populations. This investigation evaluates the capability of a simple polymeric detection scheme for PFAS based on crosslinked, thermoresponsive poly(N-isopropylacrylamide) (PNIPAM) hydrogels. Surveying swelling perturbations induced by several hydrotropes and comparable hydrocarbon analogs, tetraethylammonium perfluorooctane sulfonate (TPFOS) showed a significantly higher swelling ratio on a mass basis (65.5 ± 8.8 at 15°C) than any of the other analytes tested. Combining swelling with the fluorimetric response of a solvachromatic dye, nile red, revealed the fluorosurfactant to initiate observable aggregation (i.e., its critical aggregation concentration) at 0.05 mM and reach saturation (i.e., its charge neutralization concentration) at 0.5 mM. The fluorosurfactant was found to homogeneously distribute throughout the polymer matrix with energy dispersive X-ray spectroscopy, marking the swelling response as a peculiar nexus of fluorinated interfacial positioning and delocalized electrostatic repulsion. Results from the current study hold promise for exploiting the physiochemical response of PNIPAM to assess TPFOS's concentration.
Collapse
Affiliation(s)
- Dustin T. Savage
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, Kentucky
| | - Nicolas J. Briot
- Electron Microscopy Center, University of Kentucky, Lexington, Kentucky
| | - J. Zach Hilt
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, Kentucky
| | - Thomas D. Dziubla
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, Kentucky
| |
Collapse
|
21
|
Schulte MF, Bochenek S, Brugnoni M, Scotti A, Mourran A, Richtering W. Stiffness Tomography of Ultra-Soft Nanogels by Atomic Force Microscopy. Angew Chem Int Ed Engl 2021; 60:2280-2287. [PMID: 33459462 PMCID: PMC7898630 DOI: 10.1002/anie.202011615] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Indexed: 01/02/2023]
Abstract
The softness of nanohydrogels results in unique properties and recently attracted tremendous interest due to the multi-functionalization of interfaces. Herein, we study extremely soft temperature-sensitive ultra-low cross-linked (ULC) nanogels adsorbed to the solid/water interface by atomic force microscopy (AFM). The ultra-soft nanogels seem to disappear in classical imaging modes since a sharp tip fully penetrates these porous networks with very low forces in the range of steric interactions (ca. 100 pN). However, the detailed evaluation of Force Volume mode measurements allows us to resolve their overall shape and at the same time their internal structure in all three dimensions. The nanogels exhibit an extraordinary disk-like and entirely homogeneous but extremely soft structure-even softer than polymer brushes. Moreover, the temperature-sensitive nanogels can be switched on demand between the ultra-soft and a very stiff state.
Collapse
Affiliation(s)
| | - Steffen Bochenek
- Institute of Physical ChemistryRWTH Aachen UniversityLandoltweg 252056AachenGermany
| | - Monia Brugnoni
- Institute of Physical ChemistryRWTH Aachen UniversityLandoltweg 252056AachenGermany
| | - Andrea Scotti
- Institute of Physical ChemistryRWTH Aachen UniversityLandoltweg 252056AachenGermany
| | - Ahmed Mourran
- DWI—Leibniz Institute for Interactive MaterialsForckenbeckstr. 5052056AachenGermany
| | - Walter Richtering
- Institute of Physical ChemistryRWTH Aachen UniversityLandoltweg 252056AachenGermany
- DWI—Leibniz Institute for Interactive MaterialsForckenbeckstr. 5052056AachenGermany
| |
Collapse
|
22
|
Tang L, Wang L, Yang X, Feng Y, Li Y, Feng W. Poly(N-isopropylacrylamide)-based smart hydrogels: Design, properties and applications. PROGRESS IN MATERIALS SCIENCE 2021; 115:100702. [DOI: 10.1016/j.pmatsci.2020.100702] [Citation(s) in RCA: 267] [Impact Index Per Article: 66.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
23
|
Umar M, Son D, Arif S, Kim M, Kim S. Multistimuli-Responsive Optical Hydrogel Nanomembranes to Construct Planar Color Display Boards for Detecting Local Environmental Changes. ACS APPLIED MATERIALS & INTERFACES 2020; 12:55231-55242. [PMID: 33232110 DOI: 10.1021/acsami.0c15195] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Planar metal-insulator-metal (MIM) optical cavities are attractive for biochemical and environmental sensing applications, as they offer a cost-effective cavity platform with acceptable performances. However, localized detection and scope of expansion of applicable analytes are still challenging. Here, we report a stimuli-responsive color display board that can exhibit local spectral footprints, for locally applied heat and alcohol presence. A thermoresponsive, optically applicable, and patternable copolymer, poly(N-isopropylacrylamide-r-glycidyl methacrylate), is synthesized and used with a photosensitive cross-linker to produce a responsive insulating layer. This layer is then sandwiched between two nanoporous silver membranes to yield a thermoresponsive MIM cavity. The resonant spectral peak is blue-shifted as the environmental temperature increases, and the dynamic range of the resonant peak is largely affected by the composition and structure of the cross-linker and the copolymer. The localized temperature increase of silk particles with gold nanoparticles by laser heating can be measured by reading the spectral shift. In addition, a free-standing color board can be transferred onto a curved biological tissue sample, allowing us to simultaneously read the temperature of the tissue sample and the concentration of ethanol. The stimuli-responsive MIM provides a new way to optically sense localized environmental temperature and ethanol concentration fluctuations.
Collapse
Affiliation(s)
- Muhammad Umar
- Department of Energy Systems Research, Ajou University, Suwon 16499, Republic of Korea
| | - Dongwan Son
- Department of Chemistry and Chemical Engineering, Inha University, Incheon 22212, Republic of Korea
| | - Sara Arif
- Department of Energy Systems Research, Ajou University, Suwon 16499, Republic of Korea
| | - Myungwoong Kim
- Department of Chemistry and Chemical Engineering, Inha University, Incheon 22212, Republic of Korea
| | - Sunghwan Kim
- Department of Energy Systems Research, Ajou University, Suwon 16499, Republic of Korea
- Department of Physics, Ajou University, Suwon 16499, Republic of Korea
| |
Collapse
|
24
|
Schulte MF, Bochenek S, Brugnoni M, Scotti A, Mourran A, Richtering W. Stiffness Tomography of Ultra‐Soft Nanogels by Atomic Force Microscopy. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202011615] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- M. Friederike Schulte
- Institute of Physical Chemistry RWTH Aachen University Landoltweg 2 52056 Aachen Germany
| | - Steffen Bochenek
- Institute of Physical Chemistry RWTH Aachen University Landoltweg 2 52056 Aachen Germany
| | - Monia Brugnoni
- Institute of Physical Chemistry RWTH Aachen University Landoltweg 2 52056 Aachen Germany
| | - Andrea Scotti
- Institute of Physical Chemistry RWTH Aachen University Landoltweg 2 52056 Aachen Germany
| | - Ahmed Mourran
- DWI—Leibniz Institute for Interactive Materials Forckenbeckstr. 50 52056 Aachen Germany
| | - Walter Richtering
- Institute of Physical Chemistry RWTH Aachen University Landoltweg 2 52056 Aachen Germany
- DWI—Leibniz Institute for Interactive Materials Forckenbeckstr. 50 52056 Aachen Germany
| |
Collapse
|
25
|
Buratti E, Sanzari I, Dinelli F, Prodromakis T, Bertoldo M. Formation and Stability of Smooth Thin Films with Soft Microgels Made of Poly( N-Isopropylacrylamide) and Poly(Acrylic Acid). Polymers (Basel) 2020; 12:E2638. [PMID: 33182647 PMCID: PMC7697199 DOI: 10.3390/polym12112638] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/29/2020] [Accepted: 11/05/2020] [Indexed: 11/30/2022] Open
Abstract
In this work, soft microgels of Poly(N-Isopropylacrylamide) (PNIPAm) at two different sizes and of interpenetrated polymer network (IPN) composed of PNIPAm and Poly(Acrylic Acid) (PAAc) were synthesized. Then, solutions of these different types of microgels have been spin-coated on glass substrates with different degrees of hydrophobicity. PNIPAm particles with a larger diameter form either patches or a continuous layer, where individual particles are still distinct, depending on the dispersion concentration and spin speed. On the other, PNIPAm particles with a smaller diameter and IPN particles form a continuous and smooth film, with a thickness depending on the dispersion concentration and spin-speed. The difference in morphology observed can be explained if one considers that the microgels may behave as colloidal particles or macromolecules, depending on their size and composition. Additionally, the microgel size and composition can also affect the stability of the depositions when rinsed in water. In particular, we find that the smooth and continuous films show a stimuli-dependent stability on parameters such as temperature and pH, while large particle layers are stable under any condition except on hydrophilic glass by washing at 50 °C.
Collapse
Affiliation(s)
- Elena Buratti
- Istituto per i Processi Chimico Fisici del Consiglio Nazionale delle Ricerche (IPCF-CNR), sede di Pisa, via Moruzzi 1, 56124 Pisa, Italy;
- Istituto dei Sistemi Complessi del Consiglio Nazionale delle Ricerche (ISC-CNR), sede Sapienza, Pz.le Aldo Moro 5, 00185 Roma, Italy
| | - Ilaria Sanzari
- Zepler Institute for Photonics and Nanoelectronics, Highfield Campus, University of Southampton, Southampton SO17 1BJ, UK; (I.S.); (T.P.)
| | - Franco Dinelli
- Istituto Nazionale di Ottica del Consiglio Nazionale delle Ricerche (INO-CNR), via Moruzzi 1, 56124 Pisa, Italy;
| | - Themistoklis Prodromakis
- Zepler Institute for Photonics and Nanoelectronics, Highfield Campus, University of Southampton, Southampton SO17 1BJ, UK; (I.S.); (T.P.)
| | - Monica Bertoldo
- Istituto per la Sintesi Organica e la Fotoreattivitá del Consiglio Nazionale delle Ricerche (ISOF-CNR), via P. Gobetti 101, 40129 Bologna, Italy
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università degli Studi di Ferrara, via L. Borsari, 45121 Ferrara, Italy
| |
Collapse
|
26
|
Ko CH, Claude KL, Niebuur BJ, Jung FA, Kang JJ, Schanzenbach D, Frielinghaus H, Barnsley LC, Wu B, Pipich V, Schulte A, Müller-Buschbaum P, Laschewsky A, Papadakis CM. Temperature-Dependent Phase Behavior of the Thermoresponsive Polymer Poly(N-isopropylmethacrylamide) in an Aqueous Solution. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c01256] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Chia-Hsin Ko
- Fachgebiet Physik weicher Materie, Physik-Department, Technische Universität München, James-Franck-Straße 1, 85748 Garching, Germany
| | - Kora-Lee Claude
- Fachgebiet Physik weicher Materie, Physik-Department, Technische Universität München, James-Franck-Straße 1, 85748 Garching, Germany
| | - Bart-Jan Niebuur
- Fachgebiet Physik weicher Materie, Physik-Department, Technische Universität München, James-Franck-Straße 1, 85748 Garching, Germany
| | - Florian A. Jung
- Fachgebiet Physik weicher Materie, Physik-Department, Technische Universität München, James-Franck-Straße 1, 85748 Garching, Germany
| | - Jia-Jhen Kang
- Fachgebiet Physik weicher Materie, Physik-Department, Technische Universität München, James-Franck-Straße 1, 85748 Garching, Germany
| | - Dirk Schanzenbach
- Institut für Chemie, Universität Potsdam, Karl-Liebknecht-Straße 24-25, 14476 Potsdam-Golm, Germany
| | - Henrich Frielinghaus
- Jülich Centre for Neutron Science (JCNS) at Heinz Maier-Leibnitz Zentrum (MLZ), Forschungszentrum Jülich GmbH, Lichtenbergstraße 1, 85748 Garching, Germany
| | - Lester C. Barnsley
- Jülich Centre for Neutron Science (JCNS) at Heinz Maier-Leibnitz Zentrum (MLZ), Forschungszentrum Jülich GmbH, Lichtenbergstraße 1, 85748 Garching, Germany
- Australian Synchrotron, ANSTO, 800 Blackburn Road, Clayton 3168, Australia
| | - Baohu Wu
- Jülich Centre for Neutron Science (JCNS) at Heinz Maier-Leibnitz Zentrum (MLZ), Forschungszentrum Jülich GmbH, Lichtenbergstraße 1, 85748 Garching, Germany
| | - Vitaliy Pipich
- Jülich Centre for Neutron Science (JCNS) at Heinz Maier-Leibnitz Zentrum (MLZ), Forschungszentrum Jülich GmbH, Lichtenbergstraße 1, 85748 Garching, Germany
| | - Alfons Schulte
- Department of Physics and College of Optics and Photonics, University of Central Florida, 4111 Libra Drive, Orlando, Florida 32816-2385, United States
| | - Peter Müller-Buschbaum
- Lehrstuhl für Funktionelle Materialien, Physik-Department, Technische Universität München, James-Franck-Straße 1, 85748 Garching, Germany
- Heinz Maier-Leibnitz Zentrum (MLZ), Technische Universität München, Lichtenbergstraße 1, 85748 Garching, Germany
| | - André Laschewsky
- Institut für Chemie, Universität Potsdam, Karl-Liebknecht-Straße 24-25, 14476 Potsdam-Golm, Germany
- Fraunhofer-Institut für Angewandte Polymerforschung, Geiselbergstraße 69, 14476 Potsdam-Golm, Germany
| | - Christine M. Papadakis
- Fachgebiet Physik weicher Materie, Physik-Department, Technische Universität München, James-Franck-Straße 1, 85748 Garching, Germany
| |
Collapse
|
27
|
Brugnoni M, Fink F, Scotti A, Richtering W. Synthesis and structure of temperature-sensitive nanocapsules. Colloid Polym Sci 2020. [DOI: 10.1007/s00396-020-04686-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AbstractThe transport and systematic release of functional agents at specific areas are key challenges in various application fields. These make the development of micro- and nanocapsules, which allow for uptake, storage, and triggered release, of high interest. Hollow thermoresponsive microgels, cross-linked polymer networks with a solvent-filled cavity in their center, are promising candidates as triggerable nanocapsules, as they can adapt their size and shape to the environment. Their shell permeability can be controlled by temperature, while the cavity can serve as a storage place for guest species. Here, we present the synthesis and structural characterization of temperature-responsive microgels, which are deswollen at room temperature and swell upon moderate cooling, to facilitate potential encapsulation experiments. We present microgels made from poly(N-isopropylacrylamide-co-diacetone acrylamide), p(NIPAM-co-DAAM), possessing a volume phase transition temperature below room temperature. Their colloidal stability in the deswollen state can be enhanced by adding a swollen polymer shell made of poly(N-isopropylacrylamide), pNIPAM, as periphery. The synthesis of hollow double-shell microgels comprising a cavity surrounded by an inner p(NIPAM-co-DAAM) shell and an outer pNIPAM shell is established. The inner network enables the control of the shell permeability: the network is deswollen at room temperature and swells upon moderate cooling. The outer network guarantees for steric stability at room temperature. Light scattering techniques are employed for the characterization of the microgels. Form factor analysis reveals that the cavity of the nanocapsules persists at all swelling states, making it an ideal site for the storage of guest species.
Collapse
|
28
|
Yang F, Xu J, Fu M, Ji J, Chi L, Zhai G. Development of stimuli-responsive intelligent polymer micelles for the delivery of doxorubicin. J Drug Target 2020; 28:993-1011. [PMID: 32378974 DOI: 10.1080/1061186x.2020.1766474] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Doxorubicin is still used as a first-line drug in current therapeutics for numerous types of malignant tumours (including lymphoma, transplantable leukaemia and solid tumour). Nevertheless, to overcome the serious side effects like cardiotoxicity and myelosuppression caused by effective doses of doxorubicin remains as a world-class puzzle. In recent years, the usage of biocompatible polymeric nanomaterials to form an intelligently sensitive carrier for the targeted release in tumour microenvironment has attracted wide attention. These different intelligent polymeric micelles (PMs) could change the pharmacokinetics process of drugs or respond in the special microenvironment of tumour site to maximise the efficacy and reduce the toxicity of doxorubicin in other tissues and organs. Several intelligent PMs have already been in the clinical research stage and planned for market. Therefore, related research remains active, and the latest nanotechnology approaches for doxorubicin delivery are always in the spotlight. Centring on the model drugs doxorubicin, this review summarised the mechanisms of PMs, classified the polymers used in the application of doxorubicin delivery and discussed some interesting and imaginative smart PMs in recent years.
Collapse
Affiliation(s)
- Fan Yang
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, PR China
| | - Jiangkang Xu
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, PR China
| | - Manfei Fu
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, PR China
| | - Jianbo Ji
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, PR China
| | - Liqun Chi
- Department of Pharmacy, Haidian Maternal and Child Health Hospital of Beijing, Beijing, PR China
| | - Guangxi Zhai
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, PR China
| |
Collapse
|
29
|
Zhao Z, Ma X, Chen R, Xue H, Lei J, Du H, Zhang Z, Chen H. Universal Antibacterial Surfaces Fabricated from Quaternary Ammonium Salt-Based PNIPAM Microgels. ACS APPLIED MATERIALS & INTERFACES 2020; 12:19268-19276. [PMID: 32255339 DOI: 10.1021/acsami.0c00791] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Because of the excellent film-forming ability of poly(N-isopropylacrylamide) (PNIPAM) microgel and high-efficient bactericidal property of quaternary ammonium salt (QAS), QAS-based PNIPAM (QAS-PNIPAM) microgels are synthesized and employed to modify the surface of a range of commonly used materials including metal, plastic, and elastomer. Bacterial culture is carried out on such QAS-PNIPAM microgel-modified surfaces to examine the viability of the attached bacteria. It is found that the bactericidal efficiency is nearly 100% on the modified surfaces of all the studied materials. We attribute the high-efficient bactericidal performance of QAS-PNIPAM microgel film to the QAS component rather than the topography of the microgel film itself. In addition, the microgel film is robust and shows great integrity even after culture of the bacteria and repeated rinses, and the cell experiment demonstrates that this microgel film is cyto-compatible. Therefore, such a simple, versatile method of preparing antibacterial films paves the way for future bactericidal applications.
Collapse
Affiliation(s)
- Ziqing Zhao
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Xiaoliang Ma
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Rui Chen
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Hui Xue
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Jiehua Lei
- Jiangsu Biosurf Biotech Company Ltd., 218 Xinghu Street, Suzhou 215123, P. R. China
| | - Hui Du
- Jiangsu Biosurf Biotech Company Ltd., 218 Xinghu Street, Suzhou 215123, P. R. China
| | - Zexin Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Hong Chen
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| |
Collapse
|
30
|
Xue H, Zhao Z, Chen R, Brash JL, Chen H. Precise regulation of particle size of poly(N-isopropylacrylamide) microgels: Measuring chain dimensions with a "molecular ruler". J Colloid Interface Sci 2020; 566:394-400. [PMID: 32018179 DOI: 10.1016/j.jcis.2020.01.076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 01/15/2020] [Accepted: 01/19/2020] [Indexed: 10/25/2022]
Abstract
HYPOTHESIS Poly(N-isopropylacrylamide) microgels are used extensively in the design of drug carriers, surfaces for control of cell adhesion, and optical devices. Particle size is a key factor and has a significant influence in many areas. EXPERIMENTS In this work, precise control of the particle size of poly(N-isopropylacrylamide) microgels was achieved by controlling the separation distance of the poly(N-isopropylacrylamide) chains. Dibromoalkanes of different size were used as an adjustable "molecular ruler" to measure molecular dimensions in poly(N-isopropylacrylamide) nanoaggregates at the critical crosslinking temperature. FINDINGS We find that the chain separation distance decreases as the temperature increases with a sharp decrease over the 55-to-65 °C interval. Based on the observed relationships between chain separation and crosslinker, the particle size of poly(N-isopropylacrylamide) microgels can be regulated by changing the length of the "molecular ruler" (crosslinker) at the same temperature. Furthermore, for partly crosslinked poly(N-isopropylacrylamide) microgels that contain free crosslinkable sites, the particle size can be reduced still more by further crosslinking ("re-crosslinking") with crosslinkers of different size. It is shown that the particle size can be regulated by adjusting the length of "molecular ruler" and the degree of crosslinking. This work provides a "molecular level" method for precise control of poly(N-isopropylacrylamide) microgel particle size.
Collapse
Affiliation(s)
- Hui Xue
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren'ai Road, Suzhou 215123, P. R. China
| | - Ziqing Zhao
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren'ai Road, Suzhou 215123, P. R. China
| | - Rui Chen
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren'ai Road, Suzhou 215123, P. R. China.
| | - John L Brash
- Department of Chemical Engineering and School of Biomedical Engineering, McMaster University, Hamilton, Ontario, Canada
| | - Hong Chen
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren'ai Road, Suzhou 215123, P. R. China.
| |
Collapse
|
31
|
de Solorzano IO, Prieto M, Mendoza G, Sebastian V, Arruebo M. Triggered drug release from hybrid thermoresponsive nanoparticles using near infrared light. Nanomedicine (Lond) 2020; 15:219-234. [DOI: 10.2217/nnm-2019-0270] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Aim: Developing hybrid poly(N-isopropylacrylamide)-based nanogels decorated with plasmonic hollow gold nanoparticles for on-demand drug delivery and their physico-chemical characterization, bupivacaine loading and release ability upon light irradiation, and in vitro cell viability. Materials & methods: Hollow gold nanoparticles were prepared by galvanic replacement reaction; poly(N-isopropylacrylamide)-based nanogels were synthesized via precipitation polymerization and their electrostatic coupling was accomplished using poly(allylamine hydrochloride) as cationic polyelectrolyte linker. Results & conclusion: Colloidal stability of the resulted hybrid nanovectors was demonstrated under physiological conditions together with their fast response and excellent heating efficiency after light stimulation, indicating their potential use as triggered drug-delivery vectors. Moreover, their influence on cell metabolism and cell cycle under subcytotoxic doses were studied showing excellent cytocompatibility.
Collapse
Affiliation(s)
- Isabel Ortiz de Solorzano
- Department of Chemical Engineering, Aragon Institute of Nanoscience (INA), University of Zaragoza, Campus Río Ebro-Edificio I+D, C/ Poeta Mariano Esquillor S/N, 50018-Zaragoza, Spain
- Aragon Health Research Institute (IIS Aragón), 50009 Zaragoza, Spain
- Networking Research Center on Bioengineering, Biomaterials & Nanomedicine, CIBER-BBN, 28029-Madrid, Spain
| | - Martin Prieto
- Department of Chemical Engineering, Aragon Institute of Nanoscience (INA), University of Zaragoza, Campus Río Ebro-Edificio I+D, C/ Poeta Mariano Esquillor S/N, 50018-Zaragoza, Spain
- Aragon Health Research Institute (IIS Aragón), 50009 Zaragoza, Spain
| | - Gracia Mendoza
- Department of Chemical Engineering, Aragon Institute of Nanoscience (INA), University of Zaragoza, Campus Río Ebro-Edificio I+D, C/ Poeta Mariano Esquillor S/N, 50018-Zaragoza, Spain
- Aragon Health Research Institute (IIS Aragón), 50009 Zaragoza, Spain
| | - Victor Sebastian
- Department of Chemical Engineering, Aragon Institute of Nanoscience (INA), University of Zaragoza, Campus Río Ebro-Edificio I+D, C/ Poeta Mariano Esquillor S/N, 50018-Zaragoza, Spain
- Aragon Health Research Institute (IIS Aragón), 50009 Zaragoza, Spain
- Networking Research Center on Bioengineering, Biomaterials & Nanomedicine, CIBER-BBN, 28029-Madrid, Spain
| | - Manuel Arruebo
- Department of Chemical Engineering, Aragon Institute of Nanoscience (INA), University of Zaragoza, Campus Río Ebro-Edificio I+D, C/ Poeta Mariano Esquillor S/N, 50018-Zaragoza, Spain
- Aragon Health Research Institute (IIS Aragón), 50009 Zaragoza, Spain
- Networking Research Center on Bioengineering, Biomaterials & Nanomedicine, CIBER-BBN, 28029-Madrid, Spain
| |
Collapse
|
32
|
Lopez CG, Lohmeier T, Wong JE, Richtering W. Electrostatic expansion of polyelectrolyte microgels: Effect of solvent quality and added salt. J Colloid Interface Sci 2020; 558:200-210. [DOI: 10.1016/j.jcis.2019.07.042] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 07/05/2019] [Accepted: 07/16/2019] [Indexed: 11/24/2022]
|
33
|
Xue J, Ji W, Dong S, Zhang Z, Gao J, Yang P, Nie J, Du B. Degradable and Thermosensitive Microgels with Tannic Acid as the Sole Cross-Linker. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:16353-16365. [PMID: 31718193 DOI: 10.1021/acs.langmuir.9b03112] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Poly(N-isopropylacrylamide) (PNIPAM)-tannic acid (TA) microgels were successfully prepared via surfactant-free emulsion polymerization (SFEP) at 70 °C in aqueous solution using N-isopropylacrylamide (NIPAM) as the monomer and a natural polyphenol macromolecule, TA, as the sole cross-linker. The cross-linking network of the PNIPAM-TA microgels was confirmed to contain both physical cross-linking structures formed via hydrogen-bonding interactions between TA and PNIPAM chains and chemical cross-linking structures formed via capturing the radicals of propagating polymer chains by catechol and pyrogallol groups of TA. Furthermore, TA was applied to modify the surface of hydrophobic Fe3O4 nanoparticles, leading to hydrophilic Fe3O4@TA composite nanoparticles, which were successfully used as the cross-linker to fabricate PNIPAM-Fe3O4@TA organic-inorganic hybrid microgels. The obtained PNIPAM-TA and PNIPAM-Fe3O4@TA organic-inorganic hybrid microgels had a uniform spherical shape with a relatively narrow size distribution and exhibited thermosensitive behavior and pH-tunable degradation. The PNIPAM-TA microgels were stable in the pH range of 1.3-11.1 but underwent complete degradation with pH above 11.4. The PNIPAM-Fe3O4@TA hybrid microgels were partially degraded at pH values of 1.3 and 2.1, stable in the pH range of 3.1-11.1, and underwent complete degradation at pH above 11.4. The partial degradation of PNIPAM-Fe3O4@TA organic-inorganic hybrid microgels under strong acidic conditions was attributed to the disintegration of Fe3O4 nanoparticles. The complete degradation of both microgels at pH above 11.4 was attributed to the hydrolysis of ester groups of TA under strong alkali conditions.
Collapse
|
34
|
Schulte MF, Scotti A, Brugnoni M, Bochenek S, Mourran A, Richtering W. Tuning the Structure and Properties of Ultra-Low Cross-Linked Temperature-Sensitive Microgels at Interfaces via the Adsorption Pathway. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:14769-14781. [PMID: 31638406 DOI: 10.1021/acs.langmuir.9b02478] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The structure of poly(N-isopropylacrylamide) (PNIPAM) microgels adsorbed onto a solid substrate is investigated in the dry and hydrated states by means of atomic force microscopy (AFM). We compare two different systems: a regularly cross-linked microgel containing 5 mol % cross-linker and ultra-low cross-linked microgels (ULC) prepared without a dedicated cross-linker. Furthermore, we compare three different adsorption processes: (i) in situ adsorption from solution, (ii) spin-coating, and (iii) Langmuir-Blodgett deposition from an oil-water interface. The results demonstrate that the morphology and the temperature-induced collapse of microgels adsorbed onto a solid substrate are very different for ultra-low cross-linked microgels as compared to regularly cross-linked microgels, despite the fact that their general behavior in solution is very similar. Furthermore, the morphology of ULC microgels can be controlled by the adsorption pathway onto the substrate. Absorbed ULC microgels are strongly deformed when being prepared either by spin-coating or by Langmuir-Blodgett deposition from an oil-water interface. After rehydration, the ULC microgels cannot collapse as entire objects, instead small globules are formed. Such a strong deformation can be avoided by in situ adsorption onto the substrate. Then, the ULC microgels exhibit half-ellipsoidal shapes with a smooth surface in the collapsed state similar to the more cross-linked microgels. As ULC microgels can be selectively trapped either in a more particle-like or in a more polymer-like behavior, coatings with strongly different topographies and properties can be prepared by one and the same ultra-low cross-linked microgel. This provides new opportunities for the development of smart polymeric coatings.
Collapse
Affiliation(s)
- M Friederike Schulte
- Institute of Physical Chemistry , RWTH Aachen University , Landoltweg 2 , 52056 Aachen , Germany
- DWI-Leibniz Institute for Interactive Materials , Forckenbeckstr. 50 , 52056 Aachen , Germany
| | - Andrea Scotti
- Institute of Physical Chemistry , RWTH Aachen University , Landoltweg 2 , 52056 Aachen , Germany
| | - Monia Brugnoni
- Institute of Physical Chemistry , RWTH Aachen University , Landoltweg 2 , 52056 Aachen , Germany
| | - Steffen Bochenek
- Institute of Physical Chemistry , RWTH Aachen University , Landoltweg 2 , 52056 Aachen , Germany
| | - Ahmed Mourran
- DWI-Leibniz Institute for Interactive Materials , Forckenbeckstr. 50 , 52056 Aachen , Germany
| | - Walter Richtering
- Institute of Physical Chemistry , RWTH Aachen University , Landoltweg 2 , 52056 Aachen , Germany
- DWI-Leibniz Institute for Interactive Materials , Forckenbeckstr. 50 , 52056 Aachen , Germany
| |
Collapse
|
35
|
Furchner A, Kratz C, Rappich J, Hinrichs K. Hyperspectral infrared laser polarimetry for single-shot phase-amplitude imaging of thin films. OPTICS LETTERS 2019; 44:4893-4896. [PMID: 31568469 DOI: 10.1364/ol.44.004893] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 08/29/2019] [Indexed: 06/10/2023]
Abstract
We recently presented a novel laser-based infrared (IR) spectroscopic phase-amplitude polarimeter for sub-decisecond and sub-mm2 measurements of organic thin films [Opt. Lett.44, 4387 (2019)OPLEDP0146-959210.1364/OL.44.004387]. Here we report on the hyperspectral-imaging capabilities of this device. The single-shot polarimeter employs a broadly tunable mid-IR (1318-1765 cm-1) quantum cascade laser (QCL) and a four-channel beam-division design for simultaneous phase and amplitude measurements. Fast QCL tuning speeds of up to 1500 cm-1/s enable hyperspectral mapping of large sample areas (50×50 mm2) within several tens of minutes, achieving 120 μm spatial and <0.5 cm-1 spectral resolution. We apply the instrument for imaging both the heterogeneous chemical and structural properties of sub-100 nm thin polymer and fatty-acid films. Our polarimeter opens up new applications regarding laterally resolved IR analyses of complex thin films.
Collapse
|
36
|
Optical Detection of Fe 3+ Ions in Aqueous Solution with High Selectivity and Sensitivity by Using Sulfasalazine Functionalized Microgels. SENSORS 2019; 19:s19194223. [PMID: 31569397 PMCID: PMC6806204 DOI: 10.3390/s19194223] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 09/21/2019] [Accepted: 09/26/2019] [Indexed: 01/02/2023]
Abstract
A highly selective and sensitive optical sensor was developed to colorimetric detect trace Fe3+ ions in aqueous solution. The sensor was the sulfasalazine (SSZ) functionalized microgels (SSZ-MGs), which were fabricated via in-situ quaternization reaction. The obtained SSZ-MGs had hydrodynamic radius of about 259 ± 24 nm with uniform size distribution at 25 °C. The SSZ-MG aqueous suspensions can selectively and sensitively response to Fe3+ ions in aqueous solution at 25 °C and pH of 5.6, which can be quantified by UV-visible spectroscopy and also easily distinguished by the naked eye. Job’s plot indicated that the molar binding ratio of SSZ moiety in SSZ-MGs to Fe3+ was close to 1:1 with an apparent association constant of 1.72 × 104 M−1. A linear range of 0–12 μM with the detection limit of 0.110 μM (0.006 mg/L) was found. The obtained detection limit was much lower than the maximum allowance level of Fe3+ ions in drinking water (0.3 mg/L) regulated by the Environmental Protection Agency (EPA) of the United States. The existence of 19 other species of metal ions, namely, Ag+, Li+, Na+, K+, Ca2+, Ba2+, Cu2+, Ni2+, Mn2+, Pb2+, Zn2+, Cd2+, Co2+, Cr3+, Yb3+, La3+, Gd3+, Ce3+, and Bi3+, did not interfere with the detection of Fe3+ ions.
Collapse
|
37
|
Lin CY, Liu JC. Incorporation of short, charged peptide tags affects the temperature responsiveness of positively-charged elastin-like polypeptides. J Mater Chem B 2019; 7:5245-5256. [PMID: 31384872 PMCID: PMC7098454 DOI: 10.1039/c9tb00821g] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Elastin-like polypeptides (ELPs) are recombinant protein domains exhibiting lower critical solution temperature (LCST) behavior. This LCST behavior is controlled not only by intrinsic factors including amino acid composition and polypeptide chain length but also by non-ELP fusion domains. Here, we report that the presence of a composite non-ELP sequence that includes both His and T7 tags or a short Ser-Lys-Gly-Pro-Gly (SKGPG) sequence can dramatically change the LCST behavior of a positively-charged ELP domain. Both the His and T7 tags have been widely used in recombinant protein design to enable affinity chromatography and serve as epitopes for protein detection. The SKGPG sequence has been used to improve the expression of ELPs. Both the composite tag and the SKGPG sequence are <15% of the total length of the ELP fusion proteins. Despite the small size of the composite tag, its incorporation imparted pH-sensitive LCST behavior to the positively-charged ELP fusion protein. This pH sensitivity was not observed with the incorporation of the SKGPG sequence. The pH sensitivity results from both electrostatic and hydrophobic interactions between the composite tag and the positively-charged ELP domain. The hydrophobicity of the composite tag also alters the ELP interaction with Hofmeister salts by changing the overall hydrophobicity of the fusion protein. Our results suggest that incorporation of short tag sequences should be considered when designing temperature-responsive ELPs and provide insights into utilizing both electrostatic and hydrophobic interactions to design temperature-responsive recombinant proteins as well as synthetic polymers.
Collapse
Affiliation(s)
- Charng-Yu Lin
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907, USA.
| | - Julie C Liu
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907, USA. and Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
38
|
Zou J, Liu Y, Wang Q, Liu H, Jia H, Lian P. The Effects of Dynamic Noncovalent Interaction between Surfactants and Additional Salt on the pH‐Switchable Interfacial Tension Variations. J SURFACTANTS DETERG 2019. [DOI: 10.1002/jsde.12342] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jian Zou
- Bohai Oilfield Research Institute, Tianjin BranchCNOOC China Limited Tianjin 300459 China
| | - Yigang Liu
- Bohai Oilfield Research Institute, Tianjin BranchCNOOC China Limited Tianjin 300459 China
| | - Qiuxia Wang
- Bohai Oilfield Research Institute, Tianjin BranchCNOOC China Limited Tianjin 300459 China
| | - Hao Liu
- Bohai Oilfield Research Institute, Tianjin BranchCNOOC China Limited Tianjin 300459 China
| | - Han Jia
- Key Laboratory of Unconventional Oil & Gas Development (China University of Petroleum (East China))Ministry of Education Qingdao 266580 China
- Shandong Key Laboratory of Oilfield Chemistry, School of Petroleum EngineeringChina University of Petroleum (East China) Qingdao 266580 China
| | - Peng Lian
- Key Laboratory of Unconventional Oil & Gas Development (China University of Petroleum (East China))Ministry of Education Qingdao 266580 China
- Shandong Key Laboratory of Oilfield Chemistry, School of Petroleum EngineeringChina University of Petroleum (East China) Qingdao 266580 China
| |
Collapse
|
39
|
Jia H, Leng X, Lian P, Han Y, Wang Q, Wang S, Sun T, Liang Y, Huang P, Lv K. pH-Switchable IFT variations and emulsions based on the dynamic noncovalent surfactant/salt assembly at the water/oil interface. SOFT MATTER 2019; 15:5529-5536. [PMID: 31241648 DOI: 10.1039/c9sm00891h] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Additional HCl can facilely control the dynamic noncovalent interaction between anionic surfactant sodium dodecyl benzene sulfonate (SDBS) and additional organic matter, 4,4'-oxydianiline (ODA), at the water/oil interface. At low HCl concentration (ODA/HCl molar ratio (r) = 1 : 1.5, [ODA] = 250 mg L-1), the ODA+ ions effectively enhanced the SDBS ability to reduce the water/oil interfacial tension (IFT) by about two orders of magnitude, while the (SDBS)2/ODA2+ gemini-like surfactants could be constructed at a relatively high HCl concentration (r = 1 : 4, [ODA] = 250 mg L-1), which could largely reduce the IFT to 1.19 × 10-3 mN m-1. Molecular simulation was employed to explore the interfacial activity of ODAn+ (ODA+/ODA2+) ions and the SDBS/ODAn+ interaction. The control experiments used another three surfactants to verify the proposed model. The pH-switchable gradual protonation of amino groups in ODA molecules determined the SDBS/ODA interfacial assembly, which was responsible for the reversal of IFT variations and the related emulsion behaviors.
Collapse
Affiliation(s)
- Han Jia
- Key Laboratory of Unconventional Oil & Gas Development (China University of Petroleum (East China)), Ministry of Education, Qingdao, 266580, China. and Shandong Key Laboratory of Oilfield Chemistry, School of Petroleum Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Xu Leng
- Key Laboratory of Unconventional Oil & Gas Development (China University of Petroleum (East China)), Ministry of Education, Qingdao, 266580, China. and Shandong Key Laboratory of Oilfield Chemistry, School of Petroleum Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Peng Lian
- Key Laboratory of Unconventional Oil & Gas Development (China University of Petroleum (East China)), Ministry of Education, Qingdao, 266580, China. and Shandong Key Laboratory of Oilfield Chemistry, School of Petroleum Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Yugui Han
- Bohai Oilfield Research Institute, Tianjin Branch, CNOOC China Limited, Tianjin, 300459, China
| | - Qiuxia Wang
- Bohai Oilfield Research Institute, Tianjin Branch, CNOOC China Limited, Tianjin, 300459, China
| | - Shaoyan Wang
- Key Laboratory of Unconventional Oil & Gas Development (China University of Petroleum (East China)), Ministry of Education, Qingdao, 266580, China. and Shandong Key Laboratory of Oilfield Chemistry, School of Petroleum Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Tunan Sun
- Key Laboratory of Unconventional Oil & Gas Development (China University of Petroleum (East China)), Ministry of Education, Qingdao, 266580, China. and Shandong Key Laboratory of Oilfield Chemistry, School of Petroleum Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Yipu Liang
- Key Laboratory of Unconventional Oil & Gas Development (China University of Petroleum (East China)), Ministry of Education, Qingdao, 266580, China. and Shandong Key Laboratory of Oilfield Chemistry, School of Petroleum Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Pan Huang
- Key Laboratory of Unconventional Oil & Gas Development (China University of Petroleum (East China)), Ministry of Education, Qingdao, 266580, China. and Shandong Key Laboratory of Oilfield Chemistry, School of Petroleum Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Kaihe Lv
- Key Laboratory of Unconventional Oil & Gas Development (China University of Petroleum (East China)), Ministry of Education, Qingdao, 266580, China. and Shandong Key Laboratory of Oilfield Chemistry, School of Petroleum Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| |
Collapse
|
40
|
Affiliation(s)
- Jinhwan Yoon
- Department of Chemistry EducationGraduate Department of Chemical MaterialsInstitute for Plastic Information and Energy MaterialsPusan National UniversityBusan 46241Republic of Korea
| |
Collapse
|
41
|
Song X, Qiao C, Tao J, Bao B, Han X, Zhao S. Interfacial Engineering of Thermoresponsive Microgel Capsules: Polymeric Wetting vs Colloidal Adhesion. Macromolecules 2019. [DOI: 10.1021/acs.macromol.8b02323] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
42
|
Responsive hydrogel colloids: Structure, interactions, phase behavior, and equilibrium and nonequilibrium transitions of microgel dispersions. Curr Opin Colloid Interface Sci 2019. [DOI: 10.1016/j.cocis.2019.02.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
43
|
Wang FW, Hsu CW, Hsieh CC. Numerical Design and Experimental Realization of a PNIPAM-Based Micro Thermosensor. ACS APPLIED MATERIALS & INTERFACES 2019; 11:8591-8600. [PMID: 30724551 DOI: 10.1021/acsami.8b22208] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Stimuli-responsive polymers are capable of responding to external stimuli and therefore have been widely used for sensing. However, such applications are often based on naïve designs and cannot achieve the desired performance. In this study, we created a micro thermosensor with temperature-sensitive poly( N-isopropylacrylamide) (PNIPAM) hydrogel and temperature-insensitive poly(ethylene glycol) diacrylate (PEGDA) hydrogel using stop-flow lithography. The thermosensor is a bihydrogel microparticle consisting of a NIPAM-rich section and a NIPAM-poor section. Since the sensor is similar to a bimetallic strip in structure, its deformation can be easily identified to indicate temperature. To gain better control over the sensor performance, a numerical model capable of predicting the thermal behavior of the sensor was also developed. The model simulated the mass transfer and polymerization reaction during the fabrication process to determine the distributions of PNIPAM and PEGDA in the sensor. The information was then applied to predict the sensor deformation at various temperatures. We have used the model to access the effects of sensor geometry and fabrication temperature on the performance of the sensor. The sensor made under the guidelines from the numerical model has a working range between 16 and 55 °C. Except at very large deformation, the thermal response of the microsensor measured in experiments follows closely the numerical prediction. We believe such a numerical model can also be used for developing other applications involving stimuli-responsive polymers such as shape-evolving microparticles and origami-based microstructures. With the small size, ease of use, low manufacturing cost, good biocompatibility, and broad sensing range near physiological condition, the PNIPAM-based micro thermosensor should have strong potential to be used for bio-related applications and in a confined environment.
Collapse
Affiliation(s)
- Fan-Wei Wang
- Department of Chemical Engineering , National Taiwan University , Taipei 106 , Taiwan
| | - Chia-Wei Hsu
- Department of Chemical Engineering , National Taiwan University , Taipei 106 , Taiwan
| | - Chih-Chen Hsieh
- Department of Chemical Engineering , National Taiwan University , Taipei 106 , Taiwan
| |
Collapse
|
44
|
Dalgakiran E, Tatlipinar H. A Computational Study on the LCST Phase Transition of a POEGMA Type Thermoresponsive Block Copolymer: Effect of Water Ordering and Individual Behavior of Blocks. J Phys Chem B 2019; 123:1283-1293. [DOI: 10.1021/acs.jpcb.8b11775] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Eray Dalgakiran
- Department of Physics, Faculty of Arts and Sciences, Yildiz Technical University, 34220, Istanbul, Turkey
| | - Hasan Tatlipinar
- Department of Physics, Faculty of Arts and Sciences, Yildiz Technical University, 34220, Istanbul, Turkey
| |
Collapse
|
45
|
Song X, Bao B, Tao J, Zhao S, Han X, Liu H. Deswelling Dynamics of Thermoresponsive Microgel Capsules and Their Ultrasensitive Sensing Applications: A Mesoscopic Simulation Study. THE JOURNAL OF PHYSICAL CHEMISTRY C 2019; 123:1828-1838. [DOI: 10.1021/acs.jpcc.8b09998] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
46
|
Jhiang JS, Wu TH, Chou CJ, Chang Y, Huang CJ. Gel-like ionic complexes for antimicrobial, hemostatic and adhesive properties. J Mater Chem B 2019; 7:2878-2887. [DOI: 10.1039/c8tb03367f] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Ion-specific effects offer a great opportunity to construct intelligent macromolecular systems with diverse architectures, on-demand controlled release behaviors and interfacial responsiveness.
Collapse
Affiliation(s)
- Jhia-Sin Jhiang
- R&D Center for Membrane Technology
- Chung Yuan Christian University
- Chung-Li City 32023
- Taiwan
- Department of Chemical Engineering
| | - Tzu-Hsien Wu
- Department of Biomedical Sciences and Engineering
- National Central University
- Jhong-Li
- Taiwan
| | - Chung-Jung Chou
- R&D Center for Membrane Technology
- Chung Yuan Christian University
- Chung-Li City 32023
- Taiwan
- Department of Chemical Engineering
| | - Yung Chang
- R&D Center for Membrane Technology
- Chung Yuan Christian University
- Chung-Li City 32023
- Taiwan
- Department of Chemical Engineering
| | - Chun-Jen Huang
- Department of Chemical Engineering
- Chung Yuan Christian University
- Chung-Li City 32023
- Taiwan
- Department of Biomedical Sciences and Engineering
| |
Collapse
|
47
|
Uehara N. Specific formation of hydrophobic aggregates of ionic thermoresponsive polymers with oppositely charged ionic surfactants under extremely dilute conditions. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2018.10.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
48
|
A Time-Efficient Dip Coating Technique for the Deposition of Microgels onto the Optical Fiber Tip. FIBERS 2018. [DOI: 10.3390/fib6040072] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The combination of responsive microgels and Lab-on-Fiber devices represents a valuable technological tool for developing advanced optrodes, especially useful for biomedical applications. Recently, we have reported on a fabrication method, based on the dip coating technique, for creating a microgels monolayer in a controlled fashion onto the fiber tip. In the wake of these results, with a view towards industrial applications, here we carefully analyze, by means of both morphological and optical characterizations, the effect of each fabrication step (fiber dipping, rinsing, and drying) on the microgels film properties. Interestingly, we demonstrate that it is possible to significantly reduce the duration (from 960 min to 31 min) and the complexity of the fabrication procedure, without compromising the quality of the microgels film at all. Repeatability studies are carried out to confirm the validity of the optimized deposition procedure. Moreover, the new procedure is successfully applied to different kinds of substrates (patterned gold and bare optical fiber glass), demonstrating the generality of our findings. Overall, the results presented in this work offer the possibility to improve of a factor ~30 the fabrication throughput of microgels-assisted optical fiber probes, thus enabling their possible exploitation in industrial applications.
Collapse
|
49
|
Moreno AJ, Lo Verso F. Computational investigation of microgels: synthesis and effect of the microstructure on the deswelling behavior. SOFT MATTER 2018; 14:7083-7096. [PMID: 30118116 DOI: 10.1039/c8sm01407h] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We present computer simulations of a realistic model of microgels. Unlike the regular network frameworks usually assumed in the simulation literature, we model and simulate a realistic and efficient synthesis route, mimicking cross-linking of functionalized chains inside a cavity. This model is inspired, e.g., by microfluidic fabrication of microgels from macromolecular precursors and is different from standard polymerization routes. The assembly of the chains is mediated by a low fraction of interchain crosslinks. The microgels are polydisperse in size and shape but globally spherical objects. In order to deeply understand the microgel structure and eventually improve the synthesis protocol we characterize their conformational properties and deswelling kinetics, and compare them with the results found for microgels obtained via underlying regular (diamond-like) structures. For the same molecular weight, monomer concentration and effective degree of cross-linking, the specific microstructure of the microgel has no significant effect on the locus of the volume phase transition (VPT). However, it strongly affects the deswelling kinetics, as revealed by a consistent analysis of the domain growth during the microgel collapse. Though both the disordered and the regular networks exhibit a similar early growth of the domains, an acceleration is observed in the regular network at the late stage of the collapse. Similar trends are found for the dynamic correlations coupled to the domain growth. As a consequence, the fast late processes for the domain growth and the dynamic correlations in the regular network are compensated, and the dynamic correlations follow a power-law dependence on the growing length scale that is independent of the microgel microstructure.
Collapse
Affiliation(s)
- Angel J Moreno
- Centro de Física de Materiales (CSIC, UPV/EHU) and Materials Physics Center MPC, Paseo Manuel de Lardizabal 5, 20018 San Sebastián, Spain.
| | | |
Collapse
|
50
|
Wen B, Xue J, Zhou X, Wu Q, Nie J, Xu J, Du B. Highly Selective and Sensitive Detection of Pb 2+ in Aqueous Solution Using Tetra(4-pyridyl)porphyrin-Functionalized Thermosensitive Ionic Microgels. ACS APPLIED MATERIALS & INTERFACES 2018; 10:25706-25716. [PMID: 29984989 DOI: 10.1021/acsami.8b08497] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Tetra(4-pyridyl)porphyrin (TPyP)-functionalized thermosensitive ionic microgels (TPyP5-MGs) were synthesized by a two-step quaternization method. The obtained TPyP5-MGs have a hydrodynamic radius of about 189 nm with uniform size distribution and exhibit thermosensitive character. The TPyP5-MG microgel suspensions can optically respond to trace Pb2+ ions in aqueous solution with high sensitivity and selectivity over the interference of other 19 species of metal ions (Yb3+, Gd3+, Ce3+, La3+, Bi3+, Ba2+, Zn2+, Ni2+, Co2+, Mn2+, Cr3+, K+, Na+, Li+, Al3+, Cu2+, Ag+, Cd2+, and Fe3+) by using UV-visible spectroscopy. The sensitivity of TPyP5-MGs toward Pb2+ can be further improved by increasing the solution temperature. The limit of detection for TPyP5-MG microgel suspensions in the detection of Pb2+ in aqueous solution at 50 °C is about 25.2 nM, which can be further improved to be 5.9 nM by using the method of higher order derivative spectrophotometry and is much lower than the U. S. EPA standard for the safety limit of Pb2+ ions in drinking water. It is further demonstrated that the TPyP5-MG microgel suspensions have a potential application in the detection of Pb2+ in real world samples, which give consistent results with those obtained by elemental analysis.
Collapse
Affiliation(s)
- Bin Wen
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science & Engineering , Zhejiang University , Hangzhou 310027 , China
| | - Jinqiao Xue
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science & Engineering , Zhejiang University , Hangzhou 310027 , China
| | - Xianjing Zhou
- Department of Chemistry , Zhejiang Sci-Tech University , Hangzhou 310018 , China
| | - Qingwen Wu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science & Engineering , Zhejiang University , Hangzhou 310027 , China
| | - Jingjing Nie
- Department of Chemistry , Zhejiang University , Hangzhou 310027 , China
| | - Junting Xu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science & Engineering , Zhejiang University , Hangzhou 310027 , China
| | - Binyang Du
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science & Engineering , Zhejiang University , Hangzhou 310027 , China
| |
Collapse
|