1
|
Wen P, Su H, Yin WJ, Hu JC, Wang Y, Yang JY, Xiao ZL, Xu ZL, Shen YD, Wang H, Hammock BD. Fabrication of a high-sensitivity electrochemical immunosensor by the oriented immobilization of engineered nanobody on nanofibrous membrane. Mikrochim Acta 2024; 191:712. [PMID: 39470822 DOI: 10.1007/s00604-024-06763-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 10/09/2024] [Indexed: 11/01/2024]
Abstract
A new type of label-free electrochemical immunosensor for the high-sensitivity determination of parathion was developed based on the oriented immobilization of nanobody (VHH9) on a gold nanoparticle-loaded polyvinyl alcohol/citric acid nanofiber membrane-modified electrode. The morphology characterization and assembly process of the modified materials were investigated using scanning electron microscopy (SEM) and electrochemical impedance spectroscopy (EIS). Under the optimum conditions, the label-free electrochemical immunosensor for parathion exhibited a linear range of 0.0015-6400 ng/mL and a low detection limit of 0.48 pg/mL, the signal response of which was 10 times higher than that of the randomly immobilized VHH9. The immunosensor possessed high selectivity, good repeatability and reusability (keeping above 90% of its initial activity after repeating 8 times), and stability (remaining 90% after 9 weeks of storage). Finally, the average recoveries of parathion from food samples were 93.76-105.73% with the coefficient of variation being 2.65-6.85%, showing good correlation with UPLC (R2 = 0.9950). Therefore, our nanobody immobilization protocol is simple and effective and proves the potential to be utilized as a promising candidate for sensing platform.
Collapse
Affiliation(s)
- Peng Wen
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, Guangzhou Dublin International College of Life Sciences and Technology, South China Agricultural University, Guangzhou, 510642, China
| | - Hao Su
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, Guangzhou Dublin International College of Life Sciences and Technology, South China Agricultural University, Guangzhou, 510642, China
| | - Wen-Jia Yin
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, Guangzhou Dublin International College of Life Sciences and Technology, South China Agricultural University, Guangzhou, 510642, China
| | - Jian-Cheng Hu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, Guangzhou Dublin International College of Life Sciences and Technology, South China Agricultural University, Guangzhou, 510642, China
| | - Yu Wang
- Guangzhou Institute of Food Inspection, Guangzhou, 510080, China
| | - Jin-Yi Yang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, Guangzhou Dublin International College of Life Sciences and Technology, South China Agricultural University, Guangzhou, 510642, China
| | - Zhi-Li Xiao
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, Guangzhou Dublin International College of Life Sciences and Technology, South China Agricultural University, Guangzhou, 510642, China
| | - Zhen-Lin Xu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, Guangzhou Dublin International College of Life Sciences and Technology, South China Agricultural University, Guangzhou, 510642, China
| | - Yu-Dong Shen
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, Guangzhou Dublin International College of Life Sciences and Technology, South China Agricultural University, Guangzhou, 510642, China
| | - Hong Wang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, Guangzhou Dublin International College of Life Sciences and Technology, South China Agricultural University, Guangzhou, 510642, China.
| | - Bruce D Hammock
- Department of Entomology and Nematology and UCD Comprehensive Cancer Center, University of California, Davis, CA, 95616, USA
| |
Collapse
|
2
|
Flores-Ramírez AY, González-Estrada RR, Chacón-López MA, García-Magaña MDL, Montalvo-González E, Álvarez-López A, Rodríguez-López A, López-García UM. Detection of foodborne pathogens in contaminated food using nanomaterial-based electrochemical biosensors. Anal Biochem 2024; 693:115600. [PMID: 38964698 DOI: 10.1016/j.ab.2024.115600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/10/2024] [Accepted: 07/02/2024] [Indexed: 07/06/2024]
Abstract
Foodborne pathogens are a grave concern for the for food, medical, environmental, and economic sectors. Their ease of transmission and resistance to treatments, such as antimicrobial agents, make them an important challenge. Food tainted with these pathogens is swiftly rejected, and if ingested, can result in severe illnesses and even fatalities. This review provides and overview of the current status of various pathogens and their metabolites transmitted through food. Despite a plethora of studies on treatments to eradicate and inhibit these pathogens, their indiscriminate use can compromise the sensory properties of food and lead to contamination. Therefore, the study of detection methods such as electrochemical biosensors has been proposed, which are devices with advantages such as simplicity, fast response, and sensitivity. However, these biosensors may also present some limitations. In this regard, it has been reported that nanomaterials with high conductivity, surface-to-volume ratio, and robustness have been observed to improve the detection of foodborne pathogens or their metabolites. Therefore, in this work, we analyze the detection of pathogens transmitted through food and their metabolites using electrochemical biosensors based on nanomaterials.
Collapse
Affiliation(s)
- Ana Yareli Flores-Ramírez
- Tecnológico Nacional de México/Instituto Tecnológico de Tepic, Laboratorio Integral de Investigación en Alimentos, Av. Tecnológico # 2595, Col. Lagos del country, C.P. 63175, Tepic, Nayarit, Mexico
| | - Ramsés Ramón González-Estrada
- Tecnológico Nacional de México/Instituto Tecnológico de Tepic, Laboratorio Integral de Investigación en Alimentos, Av. Tecnológico # 2595, Col. Lagos del country, C.P. 63175, Tepic, Nayarit, Mexico
| | - Martina Alejandra Chacón-López
- Tecnológico Nacional de México/Instituto Tecnológico de Tepic, Laboratorio Integral de Investigación en Alimentos, Av. Tecnológico # 2595, Col. Lagos del country, C.P. 63175, Tepic, Nayarit, Mexico
| | - María de Lourdes García-Magaña
- Tecnológico Nacional de México/Instituto Tecnológico de Tepic, Laboratorio Integral de Investigación en Alimentos, Av. Tecnológico # 2595, Col. Lagos del country, C.P. 63175, Tepic, Nayarit, Mexico
| | - Efigenia Montalvo-González
- Tecnológico Nacional de México/Instituto Tecnológico de Tepic, Laboratorio Integral de Investigación en Alimentos, Av. Tecnológico # 2595, Col. Lagos del country, C.P. 63175, Tepic, Nayarit, Mexico
| | - Alejandra Álvarez-López
- Facultad de Ingeniería, Universidad Autónoma de Querétaro, Campus Aeropuerto, Centro Universitario, Cerro de las Campanas, C.P. 76010, Santiago de Querétaro, Querétaro, Mexico
| | - Aarón Rodríguez-López
- Universidad Politécnica de Santa Rosa Jáuregui, Carretera Federal 57, Querétaro-San Luis Potosí km 31-150, Parque Industrial Querétaro, C.P. 76220, Santiago de Querétaro, Querétaro, Mexico.
| | - Ulises Miguel López-García
- Tecnológico Nacional de México/Instituto Tecnológico de Tepic, Laboratorio Integral de Investigación en Alimentos, Av. Tecnológico # 2595, Col. Lagos del country, C.P. 63175, Tepic, Nayarit, Mexico.
| |
Collapse
|
3
|
Ozcelikay G, Cetinkaya A, Kaya SI, Yence M, Canavar Eroğlu PE, Unal MA, Ozkan SA. Novel Sensor Approaches of Aflatoxins Determination in Food and Beverage Samples. Crit Rev Anal Chem 2024; 54:982-1001. [PMID: 35917408 DOI: 10.1080/10408347.2022.2105136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
The rapid quantification of toxins in food and beverage products has become a significant issue in overcoming and preventing many life-threatening diseases. Aflatoxin-contaminated food is one of the reasons for primary liver cancer and induces some tumors and cancer types. Advancements in biosensors technology have brought out different analysis methods. Therefore, the sensing performance has been improved for agricultural and beverage industries or food control processes. Nanomaterials are widely used for the enhancement of sensing performance. The enzymes, molecularly imprinted polymers (MIP), antibodies, and aptamers can be used as biorecognition elements. The transducer part of the biosensor can be selected, such as optical, electrochemical, and mass-based. This review explains the classification of major types of aflatoxins, the importance of nanomaterials, electrochemical, optical biosensors, and QCM and their applications for the determination of aflatoxins.
Collapse
Affiliation(s)
- Goksu Ozcelikay
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Yenimahalle, Ankara, Turkey
| | - Ahmet Cetinkaya
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Yenimahalle, Ankara, Turkey
| | - S Irem Kaya
- Department of Analytical Chemistry, Gulhane Faculty of Pharmacy, University of Health Sciences, Kecioren, Ankara, Turkey
| | - Merve Yence
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Yenimahalle, Ankara, Turkey
| | | | | | - Sibel A Ozkan
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Yenimahalle, Ankara, Turkey
| |
Collapse
|
4
|
Xu Y, Jia X, Yang S, Cao M, He B, Ren W, Suo Z. Simultaneous Determination of Aflatoxin B1 and Ochratoxin A in Cereals by a Novel Electrochemical Aptasensor Using Metal-Organic Framework as Signal Carrier. Foods 2024; 13:2177. [PMID: 39063260 PMCID: PMC11276064 DOI: 10.3390/foods13142177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/05/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
A novel electrochemical aptasensor was prepared for the simultaneous determination of aflatoxin B1 (AFB1) and ochratoxin A (OTA). Composites of Au nanoparticles and polyethyleneimine-reduced graphene oxide (AuNPs/PEI-RGO) with good electrical conductivity and high specific surface area were employed as the supporting substrate, demonstrating the ability to provide more binding sites for aptamers and accelerate the electron transfer. Aptamers were immobilized on a AuNPs/PEI-RGO surface to specifically recognize AFB1 and OTA. A metal-organic framework of UiO-66-NH2 served as the signal carrier to load metal ions of Cu2+ and Pb2+, which facilitated the generation of independent current peaks and effectively improved the electrochemical signals. The prepared aptasensor exhibited sensitive current responses for AFB1 and OTA with a linear range of 0.01 to 1000 ng/mL, with detection limits of 6.2 ng/L for AFB1 and 3.7 ng/L for OTA, respectively. The aptasensor was applied to detect AFB1 and OTA in cereal samples, achieving results comparable with HPLC-MS, with recovery results from 92.5% to 104.1%. With these merits of high sensitivity and good selectivity and stability, the prepared aptasensor proved to be a powerful tool for evaluating contaminated cereals.
Collapse
Affiliation(s)
- Yiwei Xu
- School of Food Science and Technology, National Engineering Research Center of Wheat and Corn Further Processing, Henan University of Technology, Zhengzhou 450001, China; (X.J.); (M.C.); (W.R.); (Z.S.)
| | - Xupeng Jia
- School of Food Science and Technology, National Engineering Research Center of Wheat and Corn Further Processing, Henan University of Technology, Zhengzhou 450001, China; (X.J.); (M.C.); (W.R.); (Z.S.)
| | - Sennan Yang
- Henan Institute of Food and Salt Industry Inspection Technology, Zhengzhou 450003, China
| | - Mengrui Cao
- School of Food Science and Technology, National Engineering Research Center of Wheat and Corn Further Processing, Henan University of Technology, Zhengzhou 450001, China; (X.J.); (M.C.); (W.R.); (Z.S.)
| | - Baoshan He
- School of Food Science and Technology, National Engineering Research Center of Wheat and Corn Further Processing, Henan University of Technology, Zhengzhou 450001, China; (X.J.); (M.C.); (W.R.); (Z.S.)
| | - Wenjie Ren
- School of Food Science and Technology, National Engineering Research Center of Wheat and Corn Further Processing, Henan University of Technology, Zhengzhou 450001, China; (X.J.); (M.C.); (W.R.); (Z.S.)
| | - Zhiguang Suo
- School of Food Science and Technology, National Engineering Research Center of Wheat and Corn Further Processing, Henan University of Technology, Zhengzhou 450001, China; (X.J.); (M.C.); (W.R.); (Z.S.)
| |
Collapse
|
5
|
Robinson C, Juska VB, O'Riordan A. Surface chemistry applications and development of immunosensors using electrochemical impedance spectroscopy: A comprehensive review. ENVIRONMENTAL RESEARCH 2023; 237:116877. [PMID: 37579966 DOI: 10.1016/j.envres.2023.116877] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 08/04/2023] [Accepted: 08/10/2023] [Indexed: 08/16/2023]
Abstract
Immunosensors are promising alternatives as detection platforms for the current gold standards methods. Electrochemical immunosensors have already proven their capability for the sensitive, selective, detection of target biomarkers specific to COVID-19, varying cancers or Alzheimer's disease, etc. Among the electrochemical techniques, electrochemical impedance spectroscopy (EIS) is a highly sensitive technique which examines the impedance of an electrochemical cell over a range of frequencies. There are several important critical requirements for the construction of successful impedimetric immunosensor. The applied surface chemistry and immobilisation protocol have impact on the electroanalytical performance of the developed immunosensors. In this Review, we summarise the building blocks of immunosensors based on EIS, including self-assembly monolayers, nanomaterials, polymers, immobilisation protocols and antibody orientation.
Collapse
Affiliation(s)
- Caoimhe Robinson
- Tyndall National Institute, University College Cork, T12 R5CP, Cork, Ireland
| | - Vuslat B Juska
- Tyndall National Institute, University College Cork, T12 R5CP, Cork, Ireland.
| | - Alan O'Riordan
- Tyndall National Institute, University College Cork, T12 R5CP, Cork, Ireland.
| |
Collapse
|
6
|
Chen X, Wu H, Tang X, Zhang Z, Li P. Recent Advances in Electrochemical Sensors for Mycotoxin Detection in Food. ELECTROANAL 2023; 35. [DOI: 10.1002/elan.202100223] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Indexed: 12/11/2022]
Abstract
AbstractMycotoxins pose a grave global threat to human life and health by contaminating food and feed and cause enormous losses in healthcare and trading. Trace mycotoxin concentrations and diverse matrices in food make identification and measurement challenges, necessitating highly specific and sensitive detection methods. Electrochemical (EC) sensors are characterized by simple operation, outstanding sensitivity, low cost, and facile miniaturization and have become a promising strategy for addressing specificity and sensitivity in detection. Recent studies on EC sensors for mycotoxin detection for food safety are reviewed here. First, we summarize the fabrication of EC sensors and techniques with enhanced specificity and sensitivity. Then, we review state‐of‐the‐art EC sensors for detecting major mycotoxins. Challenges and opportunities for this technology are further discussed. Finally, in‐depth information is provided on using EC sensors to detect mycotoxins for food safety, as well as the development of EC sensors for academic study and practical application.
Collapse
Affiliation(s)
- Xiao Chen
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials & Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules Hubei Key Laboratory of Polymer Materials National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology Key Laboratory of Regional Development and Environmental Response in Hubei Province Faculty of Resources and Environmental Science College of Chemistry & Chemical
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences 430062 Wuhan P. R. China
| | - Huimin Wu
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials & Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules Hubei Key Laboratory of Polymer Materials National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology Key Laboratory of Regional Development and Environmental Response in Hubei Province Faculty of Resources and Environmental Science College of Chemistry & Chemical
| | - Xiaoqian Tang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences 430062 Wuhan P. R. China
- Key Laboratory of Detection for Mycotoxins Ministry of Agriculture and Rural Affairs 430062 Wuhan P. R. China
| | - Zhaowei Zhang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences 430062 Wuhan P. R. China
- National Reference Laboratory for Agricultural Testing (Biotoxin) 430062 Wuhan P. R. China
- Key Laboratory of Biology and Genetic Improvement of Oil Crops Ministry of Agriculture and Rural Affairs 430062 Wuhan P. R. China
- Key Laboratory of Detection for Mycotoxins Ministry of Agriculture and Rural Affairs 430062 Wuhan P. R. China
- Laboratory of Risk Assessment for Oilseeds Products Wuhan, Ministry of Agriculture 430062 Wuhan P. R. China
| | - Peiwu Li
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences 430062 Wuhan P. R. China
- National Reference Laboratory for Agricultural Testing (Biotoxin) 430062 Wuhan P. R. China
- Key Laboratory of Biology and Genetic Improvement of Oil Crops Ministry of Agriculture and Rural Affairs 430062 Wuhan P. R. China
- Key Laboratory of Detection for Mycotoxins Ministry of Agriculture and Rural Affairs 430062 Wuhan P. R. China
- Laboratory of Risk Assessment for Oilseeds Products Wuhan, Ministry of Agriculture 430062 Wuhan P. R. China
| |
Collapse
|
7
|
A highly sensitive electrochemical biosensor for chlorpyrifos pesticide detection using the adsorbent nanomatrix contain the human serum albumin and the Pd:CdTe quantum dots. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107424] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
8
|
Zhao C, Pan B, Wang M, Si Y, Taha AY, Liu G, Pan T, Sun G. Improving the Sensitivity of Nanofibrous Membrane-Based ELISA for On-Site Antibiotics Detection. ACS Sens 2022; 7:1458-1466. [PMID: 35426310 DOI: 10.1021/acssensors.2c00208] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An ultrasensitive and portable colorimetric enzyme-linked immunosorbent assay (ELISA) sensor for antibiotics was fabricated by immobilizing antibodies inside the largely porous and highly hydrophilic nanofibrous membranes. Different from regular electrospun nanofibrous membranes where antibodies may frequently be blocked by the heterogeneous porous structure and sterically crowded loaded on the surface, the controlled microporous structure and increased hydrophilicity of nanofibrous membranes could improve the diffusion properties of antibodies, reduce the sterically crowding effect, and dramatically improve the sensitivity of the membrane-based ELISA. The limitation of detection (LOD) for chloramphenicol (CAP) reached 0.005 ng/mL, around 200 times lower than the conventional paper-based ELISA, making quantitative analysis and portable on-site detection achievable via the use of smartphones. The successful design and fabrication of the nanofibrous membrane-based ELISA with novel features overcome the structural drawbacks of regular electrospun nanofibrous membranes and provide new paths to develop highly sensitive on-site detection of hazardous chemical agents.
Collapse
Affiliation(s)
- Cunyi Zhao
- Department of Biological and Agricultural Engineering, University of California, Davis, California 95616, United States
| | - Bofeng Pan
- Department of Biological and Agricultural Engineering, University of California, Davis, California 95616, United States
| | - Minyuan Wang
- Agricultural and Environmental Chemistry Graduate Group, University of California, Davis, California 95616, United States
| | - Yang Si
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai 201620, China
| | - Ameer Y Taha
- Department of Food Science and Technology, University of California, Davis, California 95616, United States
| | - Gangyu Liu
- Agricultural and Environmental Chemistry Graduate Group, University of California, Davis, California 95616, United States
- Department of Chemistry, University of California, Davis, California 95616, United States
| | - Tingrui Pan
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123, China
| | - Gang Sun
- Department of Biological and Agricultural Engineering, University of California, Davis, California 95616, United States
| |
Collapse
|
9
|
Liu B, Peng J, Wu Q, Zhao Y, Shang H, Wang S. A novel screening on the specific peptide by molecular simulation and development of the electrochemical immunosensor for aflatoxin B1 in grains. Food Chem 2022; 372:131322. [PMID: 34818740 DOI: 10.1016/j.foodchem.2021.131322] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 08/26/2021] [Accepted: 10/02/2021] [Indexed: 01/03/2023]
Abstract
In this work, based on a specific antibody was obtained from the Protein Data Bank (PDB), a library of the specific peptides of aflatoxin B1 (AFB1) was constructed by combining key amino acids, amino acid mutations and molecular docking. Then, the porous gold nanoparticles (porous AuNPs) were fabricated on the surface of a glassy carbon electrode (GCE). A novel, sensitive and no-label signal immunosensor was developed by signal enhancement with the specific peptide as the recognition element for the detection of AFB1 in cereals. Under the optimal conditions, the limit of detection (S/N = 3) was 9.4 × 10-4 μg·L-1, and the linear range was 0.01 μg·L-1 to 20 μg·L-1. The recovery results were 88.4%∼102.0%, which indicated an excellent accuracy. This sensor is an ideal candidate for screening the peptides of AFB1, and a novel immunosensor was used to detect AFB1 in cereals.
Collapse
Affiliation(s)
- Bing Liu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China.
| | - Jiaxuan Peng
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Qiuyue Wu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Yaoshuai Zhao
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Hua Shang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Shuo Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| |
Collapse
|
10
|
Development of an electrochemical aptasensor based on Au nanoparticles decorated on metal-organic framework nanosheets and p-biphenol electroactive label for the measurement of aflatoxin B1 in a rice flour sample. Anal Bioanal Chem 2022; 414:1973-1985. [PMID: 35028689 DOI: 10.1007/s00216-021-03833-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 11/22/2021] [Accepted: 12/03/2021] [Indexed: 11/01/2022]
Abstract
This study purposes designing a new aptasensor to detect aflatoxin B1 (AFB1). The AFB1 aptasensor was developed by growing gold nanoparticles on the surface of nickel-based metal-organic framework nanosheets (AuNPs/Ni-MOF) and an electroactive indicator (p-biphenol, PBP). The AFB1 aptamer was immobilized on the AuNPs/Ni-MOF and then hybridized with the complementary DNA (cDNA). PBP was intercalated within the double helix of the cDNA-aptamer. The difference between electrochemical responses of intercalated PBP before and after incubation of AFB1 with the immobilized aptamer was considered as an analytical response. Electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) were used to monitor the construction processes of the aptasensor. By recording the differential pulse voltammograms of PBP in phosphate buffer (pH 7.0, 0.1 M), the linear range and the detection limit of AFB1 were found to be 5.0 × 10-3-150.0 ng mL-1 and 1.0 × 10-3 ng mL-1 (S/N = 3), respectively. Finally, the designed aptasensor has been successfully used to measure AFB1 in a rice flour sample with satisfying results. Schematic illustrated the different steps of constructing the electrochemical aptasensor based on Au nanoparticles decorated on Ni-metal-organic framework nanosheets and p-biphenol electroactive label for measuring aflatoxin B1 (AFB1).
Collapse
|
11
|
Khan NZ, Chen LY, Lindenbauer A, Pliquett U, Rothe H, Nguyen TH. Label-Free Detection and Characterization of Heparin-Induced Thrombocytopenia (HIT)-like Antibodies. ACS OMEGA 2021; 6:25926-25939. [PMID: 34660955 PMCID: PMC8515375 DOI: 10.1021/acsomega.1c02496] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 09/16/2021] [Indexed: 05/04/2023]
Abstract
Heparin-induced thrombocytopenia (HIT) antibodies (Abs) can mediate and activate blood cells, forming blood clots. To detect HIT Abs, immunological assays with high sensitivity (≥95%) and fast response are widely used, but only about 50% of these tests are accurate as non-HIT Abs also bind to the same antigens. We aim to develop biosensor-based electrical detection to better differentiate HIT-like from non-HIT-like Abs. As a proof of principle, we tested with two types of commercially available monoclonal Abs including KKO (inducing HIT) and RTO (noninducing HIT). Platelet factor 4/Heparin antigens were immobilized on gold electrodes, and binding of antibodies on the chips was detected based on the change in the charge transfer resistance (R ct). Binding of KKO on sensors yielded a significantly lower charge transfer resistance than that of RTO. Bound antibodies and their binding characteristics on the sensors were confirmed and characterized by complementary techniques. Analysis of thermal kinetics showed that RTO bonds are more stable than those of KKO, whereas KKO exhibited a higher negative ζ potential than RTO. These different characteristics made it possible to electrically differentiate these two types of antibodies. Our study opens a new avenue for the development of sensors for better detection of pathogenic Abs in HIT patients.
Collapse
Affiliation(s)
- Nida Zaman Khan
- Institute
for Bioprocessing and Analytical Measurement Techniques (iba), 37308 Heiligenstadt, Germany
- Institute
for Chemistry and Biotechnology, Faculty of Mathematics and Natural
Sciences, Technische Universität
Ilmenau, 98694 Ilmenau, Germany
| | - Li-Yu Chen
- Institute
for Bioprocessing and Analytical Measurement Techniques (iba), 37308 Heiligenstadt, Germany
- Institute
of Microbiology, Friedrich Schiller University, 07745 Jena, Germany
| | - Annerose Lindenbauer
- Institute
for Bioprocessing and Analytical Measurement Techniques (iba), 37308 Heiligenstadt, Germany
| | - Uwe Pliquett
- Institute
for Bioprocessing and Analytical Measurement Techniques (iba), 37308 Heiligenstadt, Germany
| | - Holger Rothe
- Institute
for Bioprocessing and Analytical Measurement Techniques (iba), 37308 Heiligenstadt, Germany
| | - Thi-Huong Nguyen
- Institute
for Bioprocessing and Analytical Measurement Techniques (iba), 37308 Heiligenstadt, Germany
- Institute
for Chemistry and Biotechnology, Faculty of Mathematics and Natural
Sciences, Technische Universität
Ilmenau, 98694 Ilmenau, Germany
| |
Collapse
|
12
|
Jin Y, Luan Y, Wu Z, Wen W, Zhang X, Wang S. Photocatalytic Fuel Cell-Assisted Molecularly Imprinted Self-Powered Sensor: A Flexible and Sensitive Tool for Detecting Aflatoxin B1. Anal Chem 2021; 93:13204-13211. [PMID: 34528807 DOI: 10.1021/acs.analchem.1c02074] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The self-powered electrochemical sensor has gained big achievements in energy and devices, but it is challenging in analytical application owing to its low energy conversion efficiency and limited selectivity caused by the plentiful interference in actual samples. Herein, a new self-powered biosensor was constructed by the integration of a photocatalytic fuel cell (PFC) with a molecular imprinting polymer (MIP) to achieve sensitive and specific detection of aflatoxin B1 (AFB1). Compared with other fuel cells, the PFC owns the advantages of low cost, high energy, good stability, and friendly environment by using light as the excitation source. MoS2-Ti3C2Tx MXene (MoS2-MX) served as the photoanode material for the first time by forming a heterojunction structure, which can enhance the photocurrent by about 3-fold and greatly improve the photoelectric conversion efficiency. Aiming at the poor selectivity of the self-powered sensor, the MIP was introduced to achieve the specific capture and separation of targets without sample pretreatment. Using the MIP and PFC as recognition and signal conversion elements, respectively, the proposed self-powered biosensor showed a wide dynamic range of 0.01-1000 ng/mL with a detection limit of 0.73 pg/mL, which opened opportunities to design more novel self-powered biosensors and promoted its application in food safety and environmental monitoring.
Collapse
Affiliation(s)
- Yunxia Jin
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, PR China
| | - Yang Luan
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, PR China
| | - Zhen Wu
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, PR China
| | - Wei Wen
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, PR China
| | - Xiuhua Zhang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, PR China
| | - Shengfu Wang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, PR China
| |
Collapse
|
13
|
Mamo FT, Abate BA, Zheng Y, Nie C, He M, Liu Y. Distribution of Aspergillus Fungi and Recent Aflatoxin Reports, Health Risks, and Advances in Developments of Biological Mitigation Strategies in China. Toxins (Basel) 2021; 13:678. [PMID: 34678973 PMCID: PMC8541519 DOI: 10.3390/toxins13100678] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/15/2021] [Accepted: 09/20/2021] [Indexed: 12/24/2022] Open
Abstract
Aflatoxins (AFs) are secondary metabolites that represent serious threats to human and animal health. They are mainly produced by strains of the saprophytic fungus Aspergillus flavus, which are abundantly distributed across agricultural commodities. AF contamination is receiving increasing attention by researchers, food producers, and policy makers in China, and several interesting review papers have been published, that mainly focused on occurrences of AFs in agricultural commodities in China. The goal of this review is to provide a wider scale and up-to-date overview of AF occurrences in different agricultural products and of the distribution of A. flavus across different food and feed categories and in Chinese traditional herbal medicines in China, for the period 2000-2020. We also highlight the health impacts of chronic dietary AF exposure, the recent advances in biological AF mitigation strategies in China, and recent Chinese AF standards.
Collapse
Affiliation(s)
- Firew Tafesse Mamo
- School of Food Science and Engineering, Food Safety Research Centre, Foshan University, Foshan 528231, China; (C.N.); (M.H.)
- Ethiopian Biotechnology Institute, Addis Ababa 5954, Ethiopia;
| | | | - Yougquan Zheng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China;
| | - Chengrong Nie
- School of Food Science and Engineering, Food Safety Research Centre, Foshan University, Foshan 528231, China; (C.N.); (M.H.)
| | - Mingjun He
- School of Food Science and Engineering, Food Safety Research Centre, Foshan University, Foshan 528231, China; (C.N.); (M.H.)
| | - Yang Liu
- School of Food Science and Engineering, Food Safety Research Centre, Foshan University, Foshan 528231, China; (C.N.); (M.H.)
| |
Collapse
|
14
|
Recent Achievements in Electrochemical and Surface Plasmon Resonance Aptasensors for Mycotoxins Detection. CHEMOSENSORS 2021. [DOI: 10.3390/chemosensors9070180] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Mycotoxins are secondary metabolites of fungi that contaminate agriculture products. Their release in the environment can cause severe damage to human health. Aptasensors are compact analytical devices that are intended for the fast and reliable detection of various species able to specifically interact with aptamers attached to the transducer surface. In this review, assembly of electrochemical and surface plasmon resonance (SPR) aptasensors are considered with emphasis on the mechanism of signal generation. Moreover, the properties of mycotoxins and the aptamers selected for their recognition are briefly considered. The analytical performance of biosensors developed within last three years makes it possible to determine mycotoxin residues in water and agriculture/food products on the levels below their maximal admissible concentrations. Requirements for the development of sample treatment and future trends in aptasensors are also discussed.
Collapse
|
15
|
Janik E, Niemcewicz M, Podogrocki M, Ceremuga M, Gorniak L, Stela M, Bijak M. The Existing Methods and Novel Approaches in Mycotoxins' Detection. Molecules 2021; 26:3981. [PMID: 34210086 PMCID: PMC8271920 DOI: 10.3390/molecules26133981] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 06/23/2021] [Accepted: 06/28/2021] [Indexed: 11/24/2022] Open
Abstract
Mycotoxins represent a wide range of secondary, naturally occurring and practically unavoidable fungal metabolites. They contaminate various agricultural commodities like cereals, maize, peanuts, fruits, and feed at any stage in pre- or post-harvest conditions. Consumption of mycotoxin-contaminated food and feed can cause acute or chronic toxicity in human and animals. The risk that is posed to public health have prompted the need to develop methods of analysis and detection of mycotoxins in food products. Mycotoxins wide range of structural diversity, high chemical stability, and low concentrations in tested samples require robust, effective, and comprehensible detection methods. This review summarizes current methods, such as chromatographic and immunochemical techniques, as well as novel, alternative approaches like biosensors, electronic noses, or molecularly imprinted polymers that have been successfully applied in detection and identification of various mycotoxins in food commodities. In order to highlight the significance of sampling and sample treatment in the analytical process, these steps have been comprehensively described.
Collapse
Affiliation(s)
- Edyta Janik
- Biohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (E.J.); (M.N.); (M.P.); (L.G.)
| | - Marcin Niemcewicz
- Biohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (E.J.); (M.N.); (M.P.); (L.G.)
| | - Marcin Podogrocki
- Biohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (E.J.); (M.N.); (M.P.); (L.G.)
| | - Michal Ceremuga
- Military Institute of Armament Technology, Prymasa Stefana Wyszyńskiego 7, 05-220 Zielonka, Poland;
| | - Leslaw Gorniak
- Biohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (E.J.); (M.N.); (M.P.); (L.G.)
| | - Maksymilian Stela
- CBRN Reconnaissance and Decontamination Department, Military Institute of Chemistry and Radiometry, Antoniego Chrusciela “Montera” 105, 00-910 Warsaw, Poland;
| | - Michal Bijak
- Biohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (E.J.); (M.N.); (M.P.); (L.G.)
| |
Collapse
|
16
|
Abstract
An increasing number of foodborne outbreaks, growing consumer desire for healthier products, and surging numbers of food allergy cases necessitate strict handling and screening of foods at every step of the food supply chain. Current standard procedures for detecting food toxins, contaminants, allergens, and pathogens require costly analytical devices, skilled technicians, and long sample preparation times. These challenges can be overcome with the use of biosensors because they provide accurate, rapid, selective, qualitative, and quantitative detection of analytes. Their ease of use, low-cost production, portability, and nondestructive measurement techniques also enable on-site detection of analytes. For this reason, biosensors find many applications in food safety and quality assessments. The detection mechanisms of biosensors can be varied with the use of different transducers, such as optical, electrochemical, or mechanical. These options provide a more appropriate selection of the biosensors for the intended use. In this review, recent studies focusing on the fabrication of biosensors for food safety or food quality purposes are summarized. To differentiate the detection mechanisms, the review is divided into sections based on the transducer type used.
Collapse
Affiliation(s)
- Hazal Turasan
- Department of Food Science, Purdue University, West Lafayette, Indiana 47907, USA; ,
| | - Jozef Kokini
- Department of Food Science, Purdue University, West Lafayette, Indiana 47907, USA; ,
| |
Collapse
|
17
|
Abstract
Mycotoxins are toxic secondary metabolites naturally produced by fungi. They can cause various kinds of acute and chronic diseases in both humans and animals since food usually contains trace amounts of mycotoxins. Thus, it is important to develop a rapid and sensitive technique for mycotoxin detection. Except for the original and classical enzyme-linked immunosorbent assays (ELISA), a series of biosensors has been developed to analyze mycotoxins in food in the last decade with the advantages of rapid analysis, simplicity, portability, reproducibility, stability, accuracy, and low cost. Nanomaterials have been incorporated into biosensors for the purpose of achieving better analytical performance in terms of limit of detection, linear range, analytical stability, low production cost, etc. Gold nanoparticles (AuNPs) are one of the most extensively studied and commonly used nanomaterials, which can be employed as an immobilization carrier, signal amplifier, mediator and mimic enzyme label. This paper aims to present an extensive overview of the recent progress in AuNPs in mycotoxin detection through ELISA and biosensors. The details of the detection methods and their application principles are described, and current challenges and future prospects are discussed as well.
Collapse
Affiliation(s)
- Linxia Wu
- Beijing Research Center for Agricultural Standards and Testing, No. 9 Middle Road of Shuguanghuayuan, Haidian Dist., Beijing, 100097, China.
| | | | | |
Collapse
|
18
|
|
19
|
|
20
|
SPR nanosensor based on molecularly imprinted polymer film with gold nanoparticles for sensitive detection of aflatoxin B1. Talanta 2020; 219:121219. [DOI: 10.1016/j.talanta.2020.121219] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/21/2020] [Accepted: 05/25/2020] [Indexed: 12/19/2022]
|
21
|
Rahimi F, Roshanfekr H, Peyman H. Ultra-sensitive electrochemical aptasensor for label-free detection of Aflatoxin B1 in wheat flour sample using factorial design experiments. Food Chem 2020; 343:128436. [PMID: 33127223 DOI: 10.1016/j.foodchem.2020.128436] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 10/14/2020] [Accepted: 10/16/2020] [Indexed: 12/20/2022]
Abstract
Considering the significance of mycotoxin detection in food industries, herein, an ultrasensitive aptasensor was developed based on aflatoxin B1 aptamer immobilized on Carbon quantum dots/octahedral Cu2O nanocomposite. Electrochemical measurements were based on Electrochemical Impedance Spectroscopy (EIS) and Differential Pulse Voltammetry (DPV). Since the effective parameters (pH, temperature, incubation time and concentration of aptamers) are interdependent, so their dependent study can be nonideal. Taguchi method has solved this problem and optimized the experimental conditions using a smaller number of experiments. Under optimum conditions, the electrochemical signals declined as AFB1 concentrations increased with a dynamic range of 3 ag.ml-1 -1.9 µg.ml-1 and a low limit of detection (LOD) of 0.9 ± 0.04 ag ml-1. The obtained results proved sufficient repeatability (RSD = 2.4%), reproducibility (RSD = 2.56%), accuracy (97.2-104.4% recovery), and robustness (RSD = 3.25%). Furthermore, considerable selectivity, stability and reliability of the aptasensor confirmed the capability to work in future real assays.
Collapse
Affiliation(s)
- Faezeh Rahimi
- Department of Chemistry, Ilam Branch, Islamic Azad University, Ilam, Iran
| | - Hamideh Roshanfekr
- Department of Chemistry, Ilam Branch, Islamic Azad University, Ilam, Iran.
| | - Hossein Peyman
- Department of Chemistry, Ilam Branch, Islamic Azad University, Ilam, Iran
| |
Collapse
|
22
|
Begić M, Josić D. Biofilm formation and extracellular microvesicles-The way of foodborne pathogens toward resistance. Electrophoresis 2020; 41:1718-1739. [PMID: 32901923 DOI: 10.1002/elps.202000106] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 07/08/2020] [Accepted: 07/15/2020] [Indexed: 12/21/2022]
Abstract
Almost all known foodborne pathogens are able to form biofilms as one of the strategies for survival under harsh living conditions, to ward off the inhibition and the disinfection during food production, transport and storage, as well as during cleaning and sanitation of corresponding facilities. Biofilms are communities where microbial cells live under constant intracellular interaction and communication. Members of the biofilm community are embedded into extracellular matrix that contains polysaccharides, DNA, lipids, proteins, and small molecules that protect microorganisms and enable their intercellular communication under stress conditions. Membrane vesicles (MVs) are produced by both Gram positive and Gram negative bacteria. These lipid membrane-enveloped nanoparticles play an important role in biofilm genesis and in communication between different biofilm members. Furthermore, MVs are involved in other important steps of bacterial life like cell wall modeling, cellular division, and intercellular communication. They also carry toxins and virulence factors, as well as nucleic acids and different metabolites, and play a key role in host infections. After entering host cells, MVs can start many pathologic processes and cause serious harm and cell death. Prevention and inhibition of both biofilm formation and shedding of MVs by foodborne pathogens has a very important role in food production, storage, and food safety in general. Better knowledge of biofilm formation and maintaining, as well as the role of microbial vesicles in this process and in the process of host cells' infection is essential for food safety and prevention of both food spoilage and host infection.
Collapse
Affiliation(s)
- Marija Begić
- Faculty of Medicine, Juraj Dobrila University, Pula, Croatia
| | - Djuro Josić
- Faculty of Medicine, Juraj Dobrila University, Pula, Croatia.,Warren Alpert Medical School, Brown University, Providence, RI, USA
| |
Collapse
|
23
|
Bhardwaj H, Sumana G, Marquette CA. Gold nanobipyramids integrated ultrasensitive optical and electrochemical biosensor for Aflatoxin B 1 detection. Talanta 2020; 222:121578. [PMID: 33167265 DOI: 10.1016/j.talanta.2020.121578] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 08/16/2020] [Accepted: 08/19/2020] [Indexed: 12/30/2022]
Abstract
This work reports the development of an electrical and optical biosensing for label-free detection of Aflatoxin B1 (AFB1) using gold (Au) nanobipyramids (NBPs). AuNBPs were synthesized through a two-step seed-mediated growth process followed by an exchange of capping agent from surfactant to lipoic acid. Pure and monodispersed AuNBPs of 70 nm base length were obtained and deposited on indium tin oxide (ITO)-coated glass substrate modified with self-assembled (3-Aminopropyl) triethoxysilane (APTES) film. The characterization of the obtained surfaces using spectroscopy, microscopy and diffractometry confirms the formation of AuNBPs, the conjugation to ITO electrode substrate and the immobilization of anti-AFB1 antibodies. AuNBPs modified ITO substrates were used for both electrochemical and Surface Plasmon Resonance biosensing studies. Localized Surface Plasmon Resonance (LSPR) local field enhancement was demonstrated. SPR based AFB1 detection was found to be linear in the 0.1-500 nM range with a limit of detection of 0.4 nM, whereas, impedimetric AFB1 detection was shown to be linear in the 0.1-25 nM range with a limit of detection of 0.1 nM. The practical utility of the impedimetric sensor was tested in spiked maize samples and 95-100% recovery percentage was found together with low relative standard deviation, proof of the robustness of this AFB1 sensor.
Collapse
Affiliation(s)
- Hema Bhardwaj
- 3d.FAB, Université Lyon1, CNRS, INSA, CPE-Lyon, ICBMS, UMR 5246, 43, Bd du 11 november 1918, 69622, Villeurbanne cedex, France; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India; CSIR-National Physical Laboratory, Dr. K.S. Krishnan Marg, New Delhi, 110012, India
| | - Gajjala Sumana
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India; CSIR-National Physical Laboratory, Dr. K.S. Krishnan Marg, New Delhi, 110012, India
| | - Christophe A Marquette
- 3d.FAB, Université Lyon1, CNRS, INSA, CPE-Lyon, ICBMS, UMR 5246, 43, Bd du 11 november 1918, 69622, Villeurbanne cedex, France.
| |
Collapse
|
24
|
Bhardwaj H, Marquette CA, Dutta P, Rajesh, Sumana G. Integrated graphene quantum dot decorated functionalized nanosheet biosensor for mycotoxin detection. Anal Bioanal Chem 2020; 412:7029-7041. [DOI: 10.1007/s00216-020-02840-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/03/2020] [Accepted: 07/23/2020] [Indexed: 12/17/2022]
|
25
|
Liu X, Wen Y, Wang W, Zhao Z, Han Y, Tang K, Wang D. Nanobody-based electrochemical competitive immunosensor for the detection of AFB1 through AFB1-HCR as signal amplifier. Mikrochim Acta 2020. [DOI: https://doi.org/10.1007/s00604-020-04343-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
26
|
Liu X, Wen Y, Wang W, Zhao Z, Han Y, Tang K, Wang D. Nanobody-based electrochemical competitive immunosensor for the detection of AFB 1 through AFB 1-HCR as signal amplifier. Mikrochim Acta 2020; 187:352. [PMID: 32462392 DOI: 10.1007/s00604-020-04343-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 05/18/2020] [Indexed: 02/07/2023]
Abstract
A novel nanobody (Nb)-based voltammetric immunosensor coupled with horseradish peroxidase concatemer-modified hybridization chain reaction (HRP-HCR) signal amplifying system is described to realize the rapid and ultrasensitive detection of AFB1. To design such an immunoassay, anti-AFB1 Nbs with smaller molecular size were coated densely onto the surface of Au nanoparticle-tungsten disulfide-multi-walled carbon nanotubes (AuNPs/WS2/MWCNTs) functional nanocomposites as an effective molecular recognition element, whereas AFB1-streptavidin (AFB1-SA) conjugates were ingeniously bound with biotinylated HCR dsDNA nanostructures as the competitor, amplifier, and signal report element. In the presence of AFB1 targets, a competitive immunoreaction was performed between the analyte and AFB1-SA-labeled HCR (AFB1-HCR) platform. Upon the addition of SA-modified polyHRP (SA-polyHRP), AFB1-HCR nanostructures containing abundant biotins were allowed to cross-link to a quantity of HRP by streptavidin-biotin chemistry for signal amplification and signal conversion. Under optimal conditions, the immunosensor displayed a good linear correlation toward AFB1 ranging from 0.5 to 10 ng mL-1 with a sensitivity of 2.7 μA • (mL ng-1) and an ultralow limit of detection (LOD) of 68 fg mL-1. The specificity test showed that the AFB1 immunosensor had no obvious cross-reaction with OTA, DON, ZEN, and FB1. The signal of this sensor decreased by 10.18% in 4 weeks indicating satisfactory stability, and its intra- and inter-laboratory reproducibility was 3.42~10.35% and 4.03%~12.11%, respectively. This biosensing system will open up new opportunities for the detection of AFB1 in food safety and environmental analysis and extend a wide range of applications in the analysis of other small molecules. Graphical abstract.
Collapse
Affiliation(s)
- Xin Liu
- Key Lab for Agro-product Processing and Quality Control of Nanchang City, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, 330045, China
- Department of Biomedical Engineering, Biosensor National Special Laboratory, Key Laboratory of Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, 310027, China
| | - Yangping Wen
- Institute of Functional Materials and Agricultural Applied Chemistry, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Wenjun Wang
- Key Lab for Agro-product Processing and Quality Control of Nanchang City, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, 330045, China.
| | - Zitong Zhao
- Key Lab for Agro-product Processing and Quality Control of Nanchang City, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Yi Han
- Key Lab for Agro-product Processing and Quality Control of Nanchang City, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Kaijie Tang
- Key Lab for Agro-product Processing and Quality Control of Nanchang City, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Dan Wang
- Key Lab for Agro-product Processing and Quality Control of Nanchang City, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, 330045, China.
| |
Collapse
|
27
|
Agriopoulou S, Stamatelopoulou E, Varzakas T. Advances in Analysis and Detection of Major Mycotoxins in Foods. Foods 2020; 9:E518. [PMID: 32326063 PMCID: PMC7230321 DOI: 10.3390/foods9040518] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 04/16/2020] [Indexed: 12/19/2022] Open
Abstract
Mycotoxins are the most widely studied biological toxins, which contaminate foods at very low concentrations. This review describes the emerging extraction techniques and the current and alternatives analytical techniques and methods that have been used to successfully detect and identify important mycotoxins. Some of them have proven to be particularly effective in not only the detection of mycotoxins, but also in detecting mycotoxin-producing fungi. Chromatographic techniques such as high-performance liquid chromatography coupled with various detectors like fluorescence, diode array, UV, liquid chromatography coupled with mass spectrometry, and liquid chromatography-tandem mass spectrometry, have been powerful tools for analyzing and detecting major mycotoxins. Recent progress of the development of rapid immunoaffinity-based detection techniques such as immunoassays and biosensors, as well as emerging technologies like proteomic and genomic methods, molecular techniques, electronic nose, aggregation-induced emission dye, quantitative NMR and hyperspectral imaging for the detection of mycotoxins in foods, have also been presented.
Collapse
Affiliation(s)
| | | | - Theodoros Varzakas
- Department of Food Science and Technology, University of the Peloponnese, Antikalamos, 24100 Kalamata, Greece; (S.A.); (E.S.)
| |
Collapse
|
28
|
Negahdary M. Electrochemical aptasensors based on the gold nanostructures. Talanta 2020; 216:120999. [PMID: 32456913 DOI: 10.1016/j.talanta.2020.120999] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/29/2020] [Accepted: 04/01/2020] [Indexed: 02/07/2023]
Abstract
Electrochemical aptasensors as novel diagnostic tools have attracted sufficient research interest in biomedical sciences. In this review, recent leading trends about gold (Au) nanostructures based electrochemical aptasensors have been collected, reviewed, and compared. Here, the considered electrochemical aptasensors were categorized based on the analytes and diagnostic techniques. Pharmaceutical analytes and biomolecules were reviewed in a separate section consisting of a variety of antibiotics, analgesics, and other biomolecules. Various aptasensors have also measured toxins, ions, and hazardous chemicals, and the findings of them have also been reviewed. Many aptasensors have been designed to detect different disease biomarkers that will play an essential role in the future of early diagnosis of diseases. Pathogen microorganisms have been considered as the analyte in several designed electrochemical aptasensors in recent researches, and their results have been reviewed and discussed as another section. Important aspects considered in the review of the mentioned aptasensors were the type of analyte, features of the aptamer as the biorecognition element, type of Au nanostructures, diagnostic technique, diagnostic mechanism, detection range and the limit of detection (LOD). In the last section, an in-depth analysis has been provided based on the crucial features of all included aptasensors.
Collapse
Affiliation(s)
- Masoud Negahdary
- Nanomedicine and Nanobiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
29
|
Kim SE, Tieu MV, Hwang SY, Lee MH. Magnetic Particles: Their Applications from Sample Preparations to Biosensing Platforms. MICROMACHINES 2020; 11:mi11030302. [PMID: 32183074 PMCID: PMC7142445 DOI: 10.3390/mi11030302] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 02/28/2020] [Accepted: 03/10/2020] [Indexed: 02/07/2023]
Abstract
The growing interest in magnetic materials as a universal tool has been shown by an increasing number of scientific publications regarding magnetic materials and its various applications. Substantial progress has been recently made on the synthesis of magnetic iron oxide particles in terms of size, chemical composition, and surface chemistry. In addition, surface layers of polymers, silica, biomolecules, etc., on magnetic particles, can be modified to obtain affinity to target molecules. The developed magnetic iron oxide particles have been significantly utilized for diagnostic applications, such as sample preparations and biosensing platforms, leading to the selectivity and sensitivity against target molecules and the ease of use in the sensing systems. For the process of sample preparations, the magnetic particles do assist in target isolation from biological environments, having non-specific molecules and undesired molecules. Moreover, the magnetic particles can be easily applied for various methods of biosensing devices, such as optical, electrochemical, and magnetic phenomena-based methods, and also any methods combined with microfluidic systems. Here we review the utilization of magnetic materials in the isolation/preconcentration of various molecules and cells, and their use in various techniques for diagnostic biosensors that may greatly contribute to future innovation in point-of-care and high-throughput automation systems.
Collapse
Affiliation(s)
- Seong-Eun Kim
- Human IT Convergence Research Center, Korea Electronics Technology Institute, Gyeonggi-do 13509, Korea;
| | - My Van Tieu
- School of Integrative Engineering, Chung-Ang University, 84 Heukseok-ro, Seoul 06974, Korea; (M.V.T.); (S.Y.H.)
| | - Sei Young Hwang
- School of Integrative Engineering, Chung-Ang University, 84 Heukseok-ro, Seoul 06974, Korea; (M.V.T.); (S.Y.H.)
| | - Min-Ho Lee
- School of Integrative Engineering, Chung-Ang University, 84 Heukseok-ro, Seoul 06974, Korea; (M.V.T.); (S.Y.H.)
- Correspondence: ; Tel.: +82-2-820-5503; Fax: +82-2-814-2651
| |
Collapse
|
30
|
Regasa MB, Soreta TR, Femi OE, Ramamurthy PC, Subbiahraj S. Novel multifunctional molecular recognition elements based on molecularly imprinted poly (aniline-co-itaconic acid) composite thin film for melamine electrochemical detection. SENSING AND BIO-SENSING RESEARCH 2020. [DOI: 10.1016/j.sbsr.2019.100318] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
31
|
|
32
|
Xue Z, Zhang Y, Yu W, Zhang J, Wang J, Wan F, Kim Y, Liu Y, Kou X. Recent advances in aflatoxin B1 detection based on nanotechnology and nanomaterials-A review. Anal Chim Acta 2019; 1069:1-27. [DOI: 10.1016/j.aca.2019.04.032] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 03/22/2019] [Accepted: 04/15/2019] [Indexed: 02/02/2023]
|
33
|
Yagati AK, Go A, Chavan SG, Baek C, Lee MH, Min J. Nanostructured Au-Pt hybrid disk electrodes for enhanced parathyroid hormone detection in human serum. Bioelectrochemistry 2019; 128:165-174. [DOI: 10.1016/j.bioelechem.2019.04.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 04/09/2019] [Accepted: 04/09/2019] [Indexed: 12/22/2022]
|
34
|
An K, Lu X, Wang C, Qian J, Chen Q, Hao N, Wang K. Porous Gold Nanocages: High Atom Utilization for Thiolated Aptamer Immobilization to Well Balance the Simplicity, Sensitivity, and Cost of Disposable Aptasensors. Anal Chem 2019; 91:8660-8666. [DOI: 10.1021/acs.analchem.9b02145] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Keqi An
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P.R. China
| | - Xiaoting Lu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P.R. China
| | - Chengquan Wang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P.R. China
| | - Jing Qian
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P.R. China
| | - Qiaoshan Chen
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, P.R. China
| | - Nan Hao
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P.R. China
| | - Kun Wang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P.R. China
- Key Laboratory of Sensor Analysis of Tumor Marker, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P.R. China
| |
Collapse
|
35
|
Chavan SG, Yagati AK, Mohammadniaei M, Min J, Lee MH. Robust Bioengineered Apoferritin Nanoprobes for Ultrasensitive Detection of Infectious Pancreatic Necrosis Virus. Anal Chem 2019; 91:5841-5849. [PMID: 30938982 DOI: 10.1021/acs.analchem.9b00187] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Infectious pancreatic necrosis virus (IPNV) has been identified as a viral pathogen for many fish diseases that have become a huge hurdle for the growing fishing industry. Thus, in this work, we report a label-free impedance biosensor to quantify IPNV in real fish samples at point-of-care (POC) level. High specificity IPNV sensor with a detection limit of 2.69 TCID50/mL was achieved by conjugating IPNV antibodies to portable Au disk electrode chips using human heavy chain apoferritin (H-AFN) nanoprobes as a binding agent. H-AFN probes were bioengineered through PCR by incorporating pET-28b(+) resulting in 24 subunits of 6 × his-tag and protein-G units on its outer surface to increase the sensitivity of the IPNV detection. The biosensor surface modifications were characterized by differential pulse voltammetry (DPV) and EIS methods for each modification step. The proposed nanoprobe based sensor showed three-fold enhancement in charge transfer resistance toward IPNV detection in comparison with the traditional linker approach when measured in a group of similar virus molecules. The portable sensor exhibited a linear range of 100-10000 TCID50/mL and sensitivity of 5.40 × 10-4 TCID50/mL in real-fish samples. The performance of the proposed IPNV sensor was fully validated using an enzyme-linked immunosorbent assay (ELISA) technique with a sensitivity of 3.02 × 10-4 TCID50/mL. Results from H-AFN nanoprobe based IPNV sensor indicated high selectivity, sensitivity, and stability could be a promising platform for the detection of similar fish viruses and other biological molecules of interest.
Collapse
Affiliation(s)
- Sachin Ganpat Chavan
- School of Integrative Engineering , Chung-Ang University , Heuseok-dong , Dongjak-Gu, Seoul 06974 , South Korea
| | - Ajay Kumar Yagati
- School of Integrative Engineering , Chung-Ang University , Heuseok-dong , Dongjak-Gu, Seoul 06974 , South Korea
| | - Mohsen Mohammadniaei
- School of Integrative Engineering , Chung-Ang University , Heuseok-dong , Dongjak-Gu, Seoul 06974 , South Korea
| | - Junhong Min
- School of Integrative Engineering , Chung-Ang University , Heuseok-dong , Dongjak-Gu, Seoul 06974 , South Korea
| | - Min-Ho Lee
- School of Integrative Engineering , Chung-Ang University , Heuseok-dong , Dongjak-Gu, Seoul 06974 , South Korea
| |
Collapse
|
36
|
Abstract
Modern analysis of food and feed is mostly focused on development of fast and reliable portable devices intended for field applications. In this review, electrochemical biosensors based on immunological reactions and aptamers are considered in the determination of mycotoxins as one of most common contaminants able to negatively affect human health. The characteristics of biosensors are considered from the point of view of general principles of bioreceptor implementation and signal transduction providing sub-nanomolar detection limits of mycotoxins. Moreover, the modern trends of bioreceptor selection and modification are discussed as well as future trends of biosensor development for mycotoxin determination are considered.
Collapse
|
37
|
Bhardwaj H, Singh C, Kotnala RK, Sumana G. Graphene quantum dots-based nano-biointerface platform for food toxin detection. Anal Bioanal Chem 2018; 410:7313-7323. [DOI: 10.1007/s00216-018-1341-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 08/19/2018] [Accepted: 08/22/2018] [Indexed: 01/18/2023]
|
38
|
Goud KY, Kailasa SK, Kumar V, Tsang YF, Lee SE, Gobi KV, Kim KH. Progress on nanostructured electrochemical sensors and their recognition elements for detection of mycotoxins: A review. Biosens Bioelectron 2018; 121:205-222. [PMID: 30219721 DOI: 10.1016/j.bios.2018.08.029] [Citation(s) in RCA: 122] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 08/11/2018] [Accepted: 08/13/2018] [Indexed: 12/31/2022]
Abstract
Nanomaterial-embedded sensors have been developed and applied to monitor various targets. Mycotoxins are fungal secondary metabolites that can exert carcinogenic, mutagenic, teratogenic, immunotoxic, and estrogenic effects on humans and animals. Consequently, the need for the proper regulation on foodstuff and feed materials has been recognized from times long past. This review provides an overview of recent developments in electrochemical sensors and biosensors employed for the detection of mycotoxins. Basic aspects of the toxicity of mycotoxins and the implications of their detection are comprehensively discussed. Furthermore, the development of different molecular recognition elements and nanomaterials required for the detection of mycotoxins (such as portable biosensing systems for point-of-care analysis) is described. The current capabilities, limitations, and future challenges in mycotoxin detection and analysis are also addressed.
Collapse
Affiliation(s)
- K Yugender Goud
- Department of Civil and Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea; Department of Chemistry, National Institute of Technology Warangal, Telangana 506004, India
| | - Suresh Kumar Kailasa
- Department of Applied Chemistry, S. V. National Institute of Technology, Surat 395007, Gujarat, India.
| | - Vanish Kumar
- Department of Applied Sciences, U.I.E.T., Panjab University, Chandigarh 160014, India
| | - Yiu Fai Tsang
- Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, New Territories, Hong Kong, China
| | - S E Lee
- School of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | | | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea.
| |
Collapse
|