1
|
Wang Q, Ottochian A, Turelli M, Pucci A, Ciofini I, Adamo C. Understanding and simulating mechanochromism in dye-dispersed polymer blends: from atomistic insights to macroscopic properties. J Mol Model 2024; 30:387. [PMID: 39470836 DOI: 10.1007/s00894-024-06174-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 10/08/2024] [Indexed: 11/01/2024]
Abstract
CONTEXT In this work, we propose a computational protocol enabling the simulation of mechanochromic responses in dye-dispersed polymer blends. The main objective is the modeling of the molecular-level structural changes responsible for the modulation of the photophysical properties that lead to the mechanochromic phenomenon. In this demonstrative study, we focus on predicting the changes in optical absorption displayed by a model system consisting of a dimer of a tetraphenylethylene derivative dispersed in a polyethylene matrix. The blend is subjected to an external stimulus that causes a modulation of the polymer matrix density that translates, in turn, into the emergence of specific mechanical constraints on the optically active dimers. The accurate description of this phenomenon requires the reliable sampling of the dimer configurations induced by the interaction with the matrix under stress. These molecular geometries are associated with modified electronic structures that confer novel absorption responses to the dispersed dyes. METHODS In the present contribution, the sampling of these structures is achieved through classical molecular dynamics (MD) simulations including a model element to apply an anisotropic mechanical force. This element allows the microscopic modeling of the chains' and dyes' structural rearrangements under stress. After the sampling, we compare the results of two approaches for the prediction of the optical response: (i) the calculation of a mean response from a statistical average over quantum chemical calculations on the sampled MD structures and (ii) a prediction via a more expensive hybrid scheme allowing the relaxation of the sampled molecular geometries in the presence of the matrix constraints.
Collapse
Affiliation(s)
- Qinfan Wang
- Theoretical Chemistry and Modeling Team, Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences UMR 8060, 75005, Paris, France
| | - Alistar Ottochian
- Theoretical Chemistry and Modeling Team, Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences UMR 8060, 75005, Paris, France
| | - Michele Turelli
- Theoretical Chemistry and Modeling Team, Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences UMR 8060, 75005, Paris, France
| | - Andrea Pucci
- Dipartimento Di Chimica e Chimica Industriale, Università di Pisa, Via Moruzzi 13, 56124, Pisa, Italy
| | - Ilaria Ciofini
- Theoretical Chemistry and Modeling Team, Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences UMR 8060, 75005, Paris, France
| | - Carlo Adamo
- Theoretical Chemistry and Modeling Team, Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences UMR 8060, 75005, Paris, France.
| |
Collapse
|
2
|
Oggioni M, Clough JM, Weder C. Mechanochromic polymer blends made with an excimer-forming telechelic sensor molecule. SOFT MATTER 2024; 20:2126-2131. [PMID: 38349528 PMCID: PMC10900888 DOI: 10.1039/d3sm01489d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 02/05/2024] [Indexed: 02/29/2024]
Abstract
The ability to monitor mechanical stresses and strains in polymers via an optical signal enables the investigation of deformation processes in such materials and is technologically useful for sensing damage and failure in critical components. We show here that this can be achieved by simply blending polymers of interest with a small amount of a mechanochromic luminescent additive (Py-PEB) that can be accessed in one step by end-functionalizing a telechelic poly(ethylene-co-butylene) (PEB) with excimer-forming pyrenes. Py-PEB is poorly miscible with polar polymers, such as poly(ε-caprolactone) and poly(urethane), so that blends undergo microphase separation even at low additive concentrations (0.1-1 wt%), and the emission is excimer-dominated. Upon deformation, the ratio of excimer-to-monomer emission intensity decreases in response to the applied stress or strain. The approach appears to be generalizable, although experiments with poly(isoprene) show that it is not universal and that the (in)solubility of the additive in the polymer must be carefully tuned.
Collapse
Affiliation(s)
- Marta Oggioni
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, Fribourg CH-1700, Switzerland.
| | - Jess M Clough
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, Fribourg CH-1700, Switzerland.
- National Center of Competence in Research Bio-inspired Materials, Chemin des Verdiers 4, Fribourg CH-1700, Switzerland
| | - Christoph Weder
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, Fribourg CH-1700, Switzerland.
- National Center of Competence in Research Bio-inspired Materials, Chemin des Verdiers 4, Fribourg CH-1700, Switzerland
| |
Collapse
|
3
|
Megha, Kaur P, Singh K. Imidazole-based solid-state fluorescence switch: Stimuli-responsive emission, mechanochromism and acidochromism. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 307:123649. [PMID: 37980832 DOI: 10.1016/j.saa.2023.123649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/06/2023] [Accepted: 11/12/2023] [Indexed: 11/21/2023]
Abstract
Stimuli modulated fluorescence properties of imidazole-based molecular probe (E)-2-(5,5-dimethyl-3-(4-(1,4,5-triphenyl-1H-imidazole-2-yl)styryl)cyclohex-2-en-1- ylidene)malononitrile (Ph-ISO) in the solid state is presented. Not only did the probe display aggregation induced emission (AIE) activity with intense solid-state fluorescence emission, but also exhibited several repetitive cycles of reversible mechanochromism as well as acidochromism. The solid-state emission is ascribed to the intermolecular interactions in the highly twisted conformation of Ph-ISOviamultiple C-H---N and C-H---π interactions as confirmed by the single crystal X-ray analysis. The applied mechanical stress in the form of grinding results in the transformation of crystalline state to the amorphous state with a red shifted emission band attributed to attaining more planar conformation vs twisted conformation, with extended molecular conjugation. While reversible mechanochromism makes the probe suitable for rewritable papers, the switchable acidochromism is useful for theon-sitemonitoring of pH differences in biological and environmental media.
Collapse
Affiliation(s)
- Megha
- Department of Chemistry, Centre of Advanced Study, Guru Nanak Dev University, Amritsar 143 005, India
| | - Paramjit Kaur
- Department of Chemistry, Centre of Advanced Study, Guru Nanak Dev University, Amritsar 143 005, India.
| | - Kamaljit Singh
- Department of Chemistry, Centre of Advanced Study, Guru Nanak Dev University, Amritsar 143 005, India.
| |
Collapse
|
4
|
Fei G, Li S, Liu Y, Carney JB, Chen T, Li Y, Gao X, Chen J, Chen P, Yue Y, Bao K, Tang B, Chen G. Structure-activity strategies for mechanically responsive fluorescent materials: a molecular perspective. Chem Commun (Camb) 2023; 60:10-25. [PMID: 38018176 DOI: 10.1039/d3cc04992b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
Mechanical response luminescence (MRL) describes the photophysical properties triggered by mechanical stimulation. Usually, MRL can be regulated by intermolecular interactions, molecular conformation or molecular packing, to achieve the desirable optical properties. Herein, at the molecular level, this review covers the factors that influence mechanically responsive fluorescent materials, involving the single- or multifactorial modulation of aliphatic chains, donor-receptor switch, substituent adjustment, and position isomerism. According to these factors, the structure-activity strategies can be summarized as: (i) the self-recovery of optical properties, from the final to initial state, can be regulated by introducing long alkyl chains to a fluorophore. (ii) The sensitivity of MRL materials can be controlled by modifying the donor-acceptor structure via the changed ICT (intramolecular charge transfer) and intramolecular interaction. (iii) The electronic and steric effects of substituents can affect ICT and intermolecular interactions, thereby resulting in high quantum yield and high-contrast MRL materials via changing the molecular stacking of crystalline states. (iv) Intermolecular interaction is modulated by the position isomerism of the substituents, which results in switched molecular packing for the extended response toward a wide range of stimuli. It is anticipated that the molecular mechanisms of these structure-activity relationships will serve as a significant reference for developing novel, high contrast, recyclable mechanical response luminous materials.
Collapse
Affiliation(s)
- Guiqiang Fei
- College of Chemistry and Chemical Engineering Shaanxi University of Science & Technology, Xi'an, 710021, China.
| | - Shaoqi Li
- College of Chemistry and Chemical Engineering Shaanxi University of Science & Technology, Xi'an, 710021, China.
| | - Yuxia Liu
- College of Chemistry and Chemical Engineering Shaanxi University of Science & Technology, Xi'an, 710021, China.
| | - Jared B Carney
- Department of Chemistry, Delaware State University, Dover, Delaware 19901, USA.
| | - Tao Chen
- Northwest Institute of Plateau Biology, CAS, No. 23, Qinghai, 810008, China.
| | - Yulin Li
- Northwest Institute of Plateau Biology, CAS, No. 23, Qinghai, 810008, China.
| | - Xiaoyong Gao
- Jiangsu Simba Biological Medicine Co., Ltd. Gaogang Distrct Qidizhihui Park, Taizhou city, China
| | - Ji Chen
- Jiangsu Simba Biological Medicine Co., Ltd. Gaogang Distrct Qidizhihui Park, Taizhou city, China
| | - Pu Chen
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Yanfeng Yue
- Department of Chemistry, Delaware State University, Dover, Delaware 19901, USA.
| | - Kai Bao
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02129, USA.
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, P. R. China.
| | - Guang Chen
- College of Chemistry and Chemical Engineering Shaanxi University of Science & Technology, Xi'an, 710021, China.
| |
Collapse
|
5
|
Güixens-Gallardo P, Brea I, Manrique J, Shohraty F, Garcia-Amorós J, Velasco D. Programming Positive Mechanofluorescence in Liquid Crystalline Elastomers. ACS APPLIED POLYMER MATERIALS 2023; 5:6484-6492. [PMID: 38751730 PMCID: PMC11093412 DOI: 10.1021/acsapm.3c01050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/24/2023] [Indexed: 05/18/2024]
Abstract
Liquid single crystal elastomers (LSCEs) containing organic fluorophores within their polymeric network are attractive materials to detect forces with simple spectroscopic measurements. Hitherto, all mechanoluminescent LSCEs decrease their emission intensity upon mechanical stimulation; that is, they display negative mechanofluorescence. Such behavior is governed by the mechanically induced approximation of the quenching mesogenic units and the fluorophores. In this work, we propose the integration of fluorescent molecular rotors (FMRs), whose luminescence is not quenched by the mesogens, in LSCEs as a valuable strategy to conceive elastomeric materials programmed with exactly the opposite behavior, i.e., their fluorescence increases upon deformation (positive mechanofluorescence). Specifically, carbazole-indolenine dyes are interesting candidates for this purpose since their luminescence depends mainly on the degree of intramolecular rotation allowed by the local environment. On this basis, the uniaxial deformation of an LSCE, along its anisotropic direction, incorporating such FMRs will place the fluorophores in a more restricted medium, leading to the desired enhanced emission at the macroscale.
Collapse
Affiliation(s)
- Pedro Güixens-Gallardo
- Grup
de Materials Orgànics, Departament de Química Inorgànica
i Orgànica (Secció de Química Orgànica), Universitat de Barcelona, Martí i Franquès 1, E-08028 Barcelona, Spain
- Institut
de Nanociència i Nanotecnologia (IN2UB), Universitat de Barcelona, E-08028 Barcelona, Spain
| | - Ignacio Brea
- Grup
de Materials Orgànics, Departament de Química Inorgànica
i Orgànica (Secció de Química Orgànica), Universitat de Barcelona, Martí i Franquès 1, E-08028 Barcelona, Spain
| | - Jordi Manrique
- Grup
de Materials Orgànics, Departament de Química Inorgànica
i Orgànica (Secció de Química Orgànica), Universitat de Barcelona, Martí i Franquès 1, E-08028 Barcelona, Spain
| | - Farhad Shohraty
- Grup
de Materials Orgànics, Departament de Química Inorgànica
i Orgànica (Secció de Química Orgànica), Universitat de Barcelona, Martí i Franquès 1, E-08028 Barcelona, Spain
| | - Jaume Garcia-Amorós
- Grup
de Materials Orgànics, Departament de Química Inorgànica
i Orgànica (Secció de Química Orgànica), Universitat de Barcelona, Martí i Franquès 1, E-08028 Barcelona, Spain
- Institut
de Nanociència i Nanotecnologia (IN2UB), Universitat de Barcelona, E-08028 Barcelona, Spain
| | - Dolores Velasco
- Grup
de Materials Orgànics, Departament de Química Inorgànica
i Orgànica (Secció de Química Orgànica), Universitat de Barcelona, Martí i Franquès 1, E-08028 Barcelona, Spain
- Institut
de Nanociència i Nanotecnologia (IN2UB), Universitat de Barcelona, E-08028 Barcelona, Spain
| |
Collapse
|
6
|
Turelli M, Ciofini I, Wang Q, Ottochian A, Labat F, Adamo C. Organic compounds for solid state luminescence enhancement/aggregation induced emission: a theoretical perspective. Phys Chem Chem Phys 2023; 25:17769-17786. [PMID: 37377211 DOI: 10.1039/d3cp02364h] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
Organic luminophores displaying one or more forms of luminescence enhancement in solid state are extremely promising for the development and performance optimization of functional materials essential to many modern key technologies. Yet, the effort to harness their huge potential is riddled with hurdles that ultimately come down to a limited understanding of the interactions that result in the diverse molecular environments responsible for the macroscopic response. In this context, the benefits of a theoretical framework able to provide mechanistic explanations to observations, supported by quantitative predictions of the phenomenon, are rather apparent. In this perspective, we review some of the established facts and recent developments about the current theoretical understanding of solid-state luminescence enhancement (SLE) with an accent on aggregation-induced emission (AIE). A description of the macroscopic phenomenon and the questions it raises is accompanied by a discussion of the approaches and quantum chemistry methods that are more apt to model these molecular systems with the inclusion of an accurate yet efficient simulation of the local environment. A sketch of a general framework, building from the current available knowledge, is then attempted via the analysis of a few varied SLE/AIE molecular systems from literature. A number of fundamental elements are identified offering the basis for outlining design rules for molecular architectures exhibiting SLE that involve specific structural features with the double role of modulating the optical response of the luminophores and defining the environment they experience in solid state.
Collapse
Affiliation(s)
- Michele Turelli
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Theoretical Chemistry and Modeling Team, 75005 Paris, France.
| | - Ilaria Ciofini
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Theoretical Chemistry and Modeling Team, 75005 Paris, France.
| | - Qinfan Wang
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Theoretical Chemistry and Modeling Team, 75005 Paris, France.
| | - Alistar Ottochian
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Theoretical Chemistry and Modeling Team, 75005 Paris, France.
| | - Frédéric Labat
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Theoretical Chemistry and Modeling Team, 75005 Paris, France.
| | - Carlo Adamo
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Theoretical Chemistry and Modeling Team, 75005 Paris, France.
- Institut Universitaire de France, 103 Boulevard Saint Michel, F-75005 Paris, France
| |
Collapse
|
7
|
Control of Fluorescence of Organic Dyes in the Solid-State by Supramolecular Interactions. J Fluoresc 2022; 33:799-847. [PMID: 36576681 DOI: 10.1007/s10895-022-03056-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 10/21/2022] [Indexed: 12/29/2022]
Abstract
Fluorescent organic dyes play an essential role in the creation of new "smart" materials. Fragments and functional groups capable of free rotation around single bonds can significantly change the fluorescent organic dye's electronic structure under analyte effects, phase state transitions, or changes in temperature, pressure, and media polarity. Dependencies between steric and electronic structures become highly important in transition from a solution to a solid-state. Such transitions are accompanied by a significant increase in the dye molecular structure's rigidity due to supramolecular associates' formation such as H-bonding, π···π and dipole-dipole interactions. Among those supramolecular effects, H-bonding interactions, first of all, lead to significant molecular packing changes between loose or rigid structures, thus affecting the fluorescent dye's electronic states' energy and configuration, its fluorescent signal's position and intensity. All the functional groups and heteroatoms that are met in the organic dyes seem to be involved in the control of fluorescence via H-bonding: C-H···N, C-H···π, S = O···H-C, P = O···H, C-H···O, NH···N, C - H···C, C - H···Se, N-H···O, C - H···F, C-F···H. Effects of molecular packing of fluorescent organic dyes are successfully used in developing mechano-, piezo-, thermo- fluorochromes materials for their applications in the optical recording of information, sensors, security items, memory elements, organic light-emitting diodes (OLEDs) technologies.
Collapse
|
8
|
Sequential recognition of La3+ and CN− ions using isophthalic dihydrazide derivative via aggregation induced enhanced emission (AIEE): a fluorescence relay enhancement in aqueous medium. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02633-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
9
|
Chen Z, Deng DD, Pu S. Recent advances in aggregation-induced emission (AIE)-active tetraphenylethylene-modified luminophores with mechanochromic luminescence characteristics. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.154096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
10
|
Liu S, Yang Y, Deng DD, Deng XW, Chen Z, Wang XY, Pu S. Highly emissive D-A-π-D type aggregation-induced emission (AIE) or aggregation-induced emission enhancement (AIEE)-active benzothiadiazole derivatives with contrasting mechanofluorochromic features. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 274:121122. [PMID: 35290941 DOI: 10.1016/j.saa.2022.121122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 02/10/2022] [Accepted: 03/06/2022] [Indexed: 06/14/2023]
Abstract
Mechanochromic luminophors with strong solid-state emission are promising candidates for high-contrast mechanochromic luminescence materials. Meanwhile, mechanically responsive luminogenic molecules with tricolor switching are highly desirable but are seldom reported. In this work, three anthracene-based donor-acceptor-π-donor (D-A-π-D) type benzothiadiazole derivatives were designed and synthesized. These luminogens showed remarkable aggregation-induced emission (AIE) or aggregation-induced emission enhancement (AIEE) effect. Furthermore, these luminogens exhibited bright and different solid state fluorescence involving yellow-green, yellow and orange colors, and the fluorescence of their solids could be effectively regulated by mechanical grinding. For luminogen 1, its solid displayed reversible two-color mechanofluorochromic property. As for luminogens 2 and 3, their solids displayed fluorescent colors change from yellow to yellow-green upon slight grinding, and the yellow-green light-emitting solids were converted into orange fluorescent solids after heavy grinding, demonstrating interesting three-color mechanofluorochromism features.
Collapse
Affiliation(s)
- Shanting Liu
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, PR China
| | - Yue Yang
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, PR China
| | - Dian-Dian Deng
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, PR China
| | - Xiao-Wen Deng
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, PR China
| | - Zhao Chen
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, PR China.
| | - Xiao-Yan Wang
- College of Chemical Engineering, Shijiazhuang University, Shijiazhuang 050035, PR China.
| | - Shouzhi Pu
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, PR China; Department of Ecology and Environment, Yuzhang Normal University, Nanchang 330103, PR China.
| |
Collapse
|
11
|
Keyvan Rad J, Balzade Z, Mahdavian AR. Spiropyran-based advanced photoswitchable materials: A fascinating pathway to the future stimuli-responsive devices. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C: PHOTOCHEMISTRY REVIEWS 2022. [DOI: 10.1016/j.jphotochemrev.2022.100487] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
12
|
Zhao S, Sun J, Qin Z, Li Y, Yu H, Wang G, Gu X, Pan K. Janus-Structural AIE Nanofiber with White Light Emission and Stimuli-Response. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2201117. [PMID: 35585675 DOI: 10.1002/smll.202201117] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 04/28/2022] [Indexed: 06/15/2023]
Abstract
White-light emitting elastomers (WLEEs) based on stimuli-responsive aggregation-induced emission (AIE) and regulated Förster resonance energy transfer (FRET) have aroused increasing attention due to the demands for wearable optoelectronic devices. Herein, the blue and orange AIEgens with different environmental sensitivities are synthesized and then encapsulated on both sides of nanofibers via side-by-side electrospinning aiming to achieve the Janus WLEEs. After regulating the blue-orange AIEgens ratio, efficient and stable white light emission with a CIE coordinate of about (0.33, 0.31) is achieved at a blue-orange AIEgens mass ratio of 3:1. Besides, the Janus nanofibers (Janus-NFs) also present super stretchability with elongation at the break over 150% and tensile strength close to 7 MPa. The sensitivity of fluorescence for Janus-NFs to its stretching deformation is used to visualize the evolution of the microstructure of nanofibers during stretching. Moreover, the Janus-NFs are also sensitive to HCl and NH3 , of which the fluorescence color would change under HCl and NH3 fuming above 2 and 57 ppm in air, respectively. The promising applications of the white light Janus-NFs in smart fabrics, warning sensors, and anti-counterfeiting packaging are demonstrated. This finding provides an efficient strategy for achieving wearable WLEEs with multiple functionalities, promoting the development of wearable devices.
Collapse
Affiliation(s)
- Shikun Zhao
- Beijing Key Laboratory of Advanced Functional Polymer Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Jiangman Sun
- Beijing Key Laboratory of Advanced Functional Polymer Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Zhen Qin
- Beijing Key Laboratory of Advanced Functional Polymer Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yufeng Li
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Hao Yu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Guan Wang
- Beijing Key Laboratory of Advanced Functional Polymer Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xinggui Gu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Kai Pan
- Beijing Key Laboratory of Advanced Functional Polymer Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
13
|
Weng MT, Elsyed AFN, Yang PC, Mohamed MG, Kuo SW, Lin KS. Fluorescent and thermoresponsive tetraphenylethene-based cross-linked poly(N-isopropylacrylamide)s: Synthesis, thermal/AIE properties, and cell viability. J Taiwan Inst Chem Eng 2022. [DOI: 10.1016/j.jtice.2022.104238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
14
|
Ayala CE, Pérez RL, Mathaga JK, Watson A, Evans T, Warner IM. Fluorescent Ionic Probe for Determination of Mechanical Properties of Healed Poly(ethylene- co-methacrylic acid) Ionomer Films. ACS APPLIED POLYMER MATERIALS 2022; 4:832-841. [PMID: 35178523 PMCID: PMC8845041 DOI: 10.1021/acsapm.1c01325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 01/20/2022] [Indexed: 06/14/2023]
Abstract
In recent years, advanced materials with properties resembling biological systems, particularly artificial muscles, have received intense scrutiny. This is because the interesting conformational shape characteristics of such materials have benefited a variety of technologies, including textiles, 3D printing, and medical devices. Although a multitude of shape memory properties have been studied and developed in recent years, self-healing of these polymers after puncture or rupture has also become a major area of study. Most techniques for detection of such processes are mechanically based and require considerable hands-on monitoring. Thus, a rapid visual detection method for self-healing is highly desirable. Herein, we describe fluorescence studies for rapid detection of self-healing properties of a partially neutralized sodium ionomer poly(ethylene-co-methacrylic acid) (PEMA). In this study, two different fluorophores, parent non-ionic 4,6-dipyrenylpyrimidine and ionic 4,6-dipyrenylpyrimidinium iodide fluorophores, were evaluated as possible sensors of self-healing. Incorporation of these probes via solution blending and compatibility into a PEMA of these fluorophores were evaluated. Thermal characterizations using differential scanning calorimetry were also performed to elucidate physical characteristics of healed sites. Ratiometric fluorescence emission variations were explored within puncture-healed ionomer films and related to Young's modulus properties with good linearity, indicating potential utility of this approach for monitoring elastic modulus properties after healing has occurred. Further statistical analyses of mechanical processes using quadratic discriminant analysis resulted in development of several highly accurate predictive models for determining time since damage healing.
Collapse
Affiliation(s)
- Caitlan E. Ayala
- Department
of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Rocío L. Pérez
- Department
of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
- Department
of Chemistry and Biochemistry, Georgia Southern
University, Statesboro, Georgia 30458, United
States
| | - John K. Mathaga
- Department
of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Aanesa Watson
- Department
of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
- Department
of Chemistry, Fort Valley State University, Fort Valley, Georgia 31030, United States
| | - Tristan Evans
- Department
of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Isiah M. Warner
- Department
of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| |
Collapse
|
15
|
Kim D, Kwon MS, Lee CW. Mechanochromic polymers with a multimodal chromic transition: mechanophore design and transduction mechanism. Polym Chem 2022. [DOI: 10.1039/d2py00435f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review presents the recent progress in multi-chromic polymers embedded with mechanophores concentrating on transduction mechanisms and design concepts.
Collapse
Affiliation(s)
- Daewhan Kim
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Min Sang Kwon
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Chung Whan Lee
- Department of Chemistry, Gachon University, Seongnam 13120, Republic of Korea
| |
Collapse
|
16
|
Sun X, Guo D, Cao Y, Lin F, Huang H, Yang Z, Chen Y, Chi Z. Stretching-enhanced emission behavior of polyurethane composites containing pyrene derivatives. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.124364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
17
|
Kachwal V, Laskar IR. Mechanofluorochromism with Aggregation-Induced Emission (AIE) Characteristics: A Perspective Applying Isotropic and Anisotropic Force. Top Curr Chem (Cham) 2021; 379:28. [PMID: 34105028 DOI: 10.1007/s41061-021-00341-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 05/24/2021] [Indexed: 10/21/2022]
Abstract
Organic mechanofluorochromic (MFC) materials (that change their emission under anisotropic and isotropic pressure) have attracted a great attention in recent years due to their promising applications in sensing pressure, storage devices, security inks, three-dimensional (3D) printing, etc. Stimuli-responsive organic materials with aggregation-induced emission (AIE) characteristics would be an interesting class of materials to enrich the chemistry of MFC compounds. A diamond anvil cell (DAC) is a small tool that is employed to generate high and uniform pressure on materials over a small area. This article discusses the relationship between the chemical structure of AIE compounds and the change in emission properties under anisotropic (mechanical grinding) and isotropic (hydrostatic) pressure. The luminescent properties of such materials depend on the molecular rearrangement in the lattice, conformational changes, excited state transitions and weak intermolecular interactions. Hence, studying the change in luminescent property of these compounds under varying pressure will provide a deeper understanding of the excited-state properties of various emissive compounds with stress. The development of such materials and studies into the effect of pressure on their luminescence properties are summarized.
Collapse
Affiliation(s)
- Vishal Kachwal
- Department of Chemistry, BITS PILANI, Pilani campus, Pilani, India
| | | |
Collapse
|
18
|
Wang XY, Yin Y, Yin J, Chen Z, Liu SH. Persistent room-temperature phosphorescence or high-contrast phosphorescent mechanochromism: polymorphism-dependent different emission characteristics from a single gold(I) complex. Dalton Trans 2021; 50:7744-7749. [PMID: 33988209 DOI: 10.1039/d1dt00959a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Luminophores with persistent room-temperature phosphorescence (p-RTP) or effective phosphorescent mechanochromism features have significant potential applications in the field of optoelectronic materials. Until now, p-RTP and remarkable phosphorescent mechanochromism phenomena have been observed in some luminescent molecules with different molecular structures. However, separately realizing p-RTP and high-contrast phosphorescent mechanochromism in different polymorphs from a single luminophore is still a valuable and challenging topic. In this work, two polymorphs 1B and 1YG of a new gold(i) complex with blue and yellow-green luminescence, respectively, are reported. Interestingly, 1B exhibits high-contrast phosphorescent mechanochromic behavior, while 1YG exhibits a persistent room-temperature phosphorescence effect. This is the first example of simultaneously obtaining double-purpose crystalline materials with a high-contrast phosphorescent mechanochromism or persistent room-temperature phosphorescence feature from a single luminophore.
Collapse
Affiliation(s)
- Xiao-Yan Wang
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China.
| | - Ya Yin
- Hubei Key Laboratory of Catalysis and Materials Science, College of Chemistry and Material Sciences, South-Central University for Nationalities, Wuhan 430074, PR China
| | - Jun Yin
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China.
| | - Zhao Chen
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China. and Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, PR China.
| | - Sheng Hua Liu
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China. and State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, PR China
| |
Collapse
|
19
|
Jindal S, Anjum G, Maka VK, Moorthy JN. Mechanoluminescence and aggregation-enhanced emission (AEE) of an In-MOF based on a 9,9'-diphenyl-9 H-fluorene tetraacid linker. NANOSCALE 2021; 13:9668-9677. [PMID: 34018528 DOI: 10.1039/d1nr00898f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A water-stable In-MOF, constructed based on a conformationally-flexible tetraacid linker, i.e., 2,7-bis(3,5-dicarboxyphenyl)-9,9'-diphenyl-9H-fluorene, i.e., H4DPF, is shown to exhibit a significantly enhanced solid-state fluorescence quantum yield (φf) of 23% in comparison with that of the linker (φfca. 4%) as a consequence of rigidification of the latter by metalation. Application of external stimulus in the form of grinding of the In-MOF leads to a drastic enhancement by 29%, φf from 23 to 52%. Solid-state absorption and emission spectra show that the absorption in the region of 368-550 nm gets diminished with a concomitant change in the emission maximum with a blue shift upon grinding. Fluorescence enhancement with grinding is correlated with a gradual reduction in the size of the particles, as established by SEM analysis. MOF particle aggregation has been invoked to account for the observed fluorescence enhancement in addition to a subtle conformational change in the structure of the linker upon grinding. Intriguingly, the ground MOF particles exhibit aggregation behaviour in the DMF-water solvent system with the emission further increasing up to 75% for the increase in the water fraction (fw) from 0 to 60%; hydrophobic aggregation of particles evidently leads to a change in the conformation of the linker and particle aggregation-enhanced emission (AEE). De-aggregation of particles ensues for fw = 70-90%, as reflected by a gradual decrease in the emission intensity. It is shown that the suspension of ground In-MOF particles in water permits sensing of metal ions, in particular Al3+ ions, by fluorescence quenching with detection at a sub-ppb level. The observed results comprise first demonstration of both mechanoluminescence and AEE of MOF particles.
Collapse
Affiliation(s)
- Swati Jindal
- Department of Chemistry, Indian Institute of Technology, Kanpur 208016, India.
| | | | | | | |
Collapse
|
20
|
Koo J, Jang J, Lim SI, Oh M, Lee KM, McConney ME, De Sio L, Kim DY, Jeong KU. The transfer and amplification of cyanostilbene molecular function to advanced flexible optical paints through self-crosslinkable side-chain liquid crystal polysiloxanes. MATERIALS HORIZONS 2021; 8:1561-1569. [PMID: 34846464 DOI: 10.1039/d1mh00004g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A self-crosslinkable side-chain liquid crystal polysiloxane containing cyanostilbene (Si-CSM) was newly synthesized for the development of a new generation of flexible optical paints. The photoisomerization of the cyanostilbene moiety at the molecular level was transferred and amplified to the phase transition of Si-CSM, resulting in changes in the macroscopic optical properties of the Si-CSM thin film. The self-crosslinking reaction between Si-H groups in the Si-CSM polymer backbone caused the self-crosslinked Si-CSM thin film to be very elastic and both thermally and chemically stable. Therefore, the self-crosslinked Si-CSM thin film endured stretching and bending deformations under relatively harsh conditions. In addition, the uniaxially oriented and self-crosslinked Si-CSM thin film generated linearly polarized light emission. Polarization-dependent and photopatternable secret coatings were fabricated via a spontaneous self-crosslinking reaction after coating the Si-CSM paint and irradiating ultraviolet (UV) light through a photomask. This newly developed flexible optical Si-CSM paint can be applied in next-generation optical coatings.
Collapse
Affiliation(s)
- Jahyeon Koo
- Department of Polymer-Nano Science and Technology, Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju 54896, Republic of Korea.
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Jejurkar VP, Sourabh KT, Yashwantrao G, Mone NS, Maliekal PJ, Badani P, Satpute S, Saha S. Troger's Base Derived Butterfly Shaped Contorted AIEgens for Dead Bacterial Cell‐Imaging. ChemistrySelect 2021. [DOI: 10.1002/slct.202004481] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Valmik P. Jejurkar
- Department of Speciality Chemicals Technology Institute of Chemical Technology (ICT) Mumbai 400019 India
| | - K. T. Sourabh
- Department of Chemical Engineering Institute of Chemical Technology (ICT) Mumbai 400019 India
| | - Gauravi Yashwantrao
- Department of Speciality Chemicals Technology Institute of Chemical Technology (ICT) Mumbai 400019 India
| | - Nishigandha S. Mone
- Department of Microbiology Savitribai Phule Pune University Pune, (SPPU) India
| | | | - Purav Badani
- Department of Chemistry University of Mumbai Mumbai India
| | - Surekha Satpute
- Department of Microbiology Savitribai Phule Pune University Pune, (SPPU) India
| | - Satyajit Saha
- Department of Speciality Chemicals Technology Institute of Chemical Technology (ICT) Mumbai 400019 India
| |
Collapse
|
22
|
Rodrigues ACB, Seixas de Melo JS. Aggregation-Induced Emission: From Small Molecules to Polymers-Historical Background, Mechanisms and Photophysics. Top Curr Chem (Cham) 2021; 379:15. [PMID: 33725207 DOI: 10.1007/s41061-021-00327-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 02/12/2021] [Indexed: 12/26/2022]
Abstract
The enhancement of photoluminescence through formation of molecular aggregates in organic oligomers and conjugated organic polymers is reviewed. A historical contextualization of aggregation-induced emission (AIE) phenomena is presented. This includes the loose bolt or free rotor effect and J-aggregation phenomena, and discusses their characteristic features, including structures and mechanisms. The basis of both effects is examined in key molecules, with a particular emphasis on the AIE effect occurring in conjugated organic polymers with a polythiophene (PT) skeleton with triphenylethylene (TPE) units. Rigidification of the excited state structure is one of the defining conditions required to obtain AIE, and thus, by changing from a flexible ground state to rigid (quinoidal-like) structures, oligo and PTs are among the most promising emerging molecules alongside with the more extensively used TPE derivatives. Molecular structures moving away from the domination of aggregation-caused quenching to AIE are presented. Future perspectives for the rational design of AIEgen structures are discussed.
Collapse
Affiliation(s)
- Ana Clara B Rodrigues
- Department of Chemistry, Coimbra Chemistry Centre, University of Coimbra, 3004-535, Coimbra, Portugal
| | - J Sérgio Seixas de Melo
- Department of Chemistry, Coimbra Chemistry Centre, University of Coimbra, 3004-535, Coimbra, Portugal.
| |
Collapse
|
23
|
Pugachev AD, Mukhanov EL, Ozhogin IV, Kozlenko AS, Metelitsa AV, Lukyanov BS. Isomerization and changes of the properties of spiropyrans by mechanical stress: advances and outlook. Chem Heterocycl Compd (N Y) 2021. [DOI: 10.1007/s10593-021-02881-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
24
|
Alam P, Leung NL, Zhang J, Kwok RT, Lam JW, Tang BZ. AIE-based luminescence probes for metal ion detection. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213693] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
25
|
Xie M, Chen XR, Wu K, Lu Z, Wang K, Li N, Wei RJ, Zhan SZ, Ning GH, Zou B, Li D. Pressure-induced phosphorescence enhancement and piezochromism of a carbazole-based cyclic trinuclear Cu(i) complex. Chem Sci 2021; 12:4425-4431. [PMID: 34163707 PMCID: PMC8179561 DOI: 10.1039/d0sc07058k] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 01/27/2021] [Indexed: 02/05/2023] Open
Abstract
Interest in piezochromic luminescence has increased in recent decades, even though it is mostly limited to pure organic compounds and fluorescence. In this work, a Cu3Pz3 (Cu3, Pz: pyrazolate) cyclic trinuclear complex (CTC) with two different crystalline polymorphs, namely 1a and 1b, was synthesized. The CTC consists of two functional moieties: carbazole (Cz) chromophore and Cu3 units. In crystals of 1a, discrete Cz-Cu3-Cu3-Cz stacking was found, showing abnormal pressure-induced phosphorescence enhancement (PIPE), which was 12 times stronger at 2.23 GPa compared to under ambient conditions. This novel observation is ascribed to cooperation between heavy-atom effects (i.e., from Cu atoms) and metal-ligand charge-transfer promotion. The infinite π-π stacking of Cz motifs was observed in 1b and it exhibited good piezochromism as the pressure increased. This work demonstrates a new concept in the design of piezochromic materials to achieve PIPE via combining organic chromophores and metal-organic phosphorescence emitters.
Collapse
Affiliation(s)
- Mo Xie
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University Guangzhou Guangdong 510632 People's Republic of China
| | - Xiao-Ru Chen
- Department of Chemistry, Shantou University Shantou Guangdong 515063 People's Republic of China
| | - Kun Wu
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University Guangzhou Guangdong 510632 People's Republic of China
| | - Zhou Lu
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University Guangzhou Guangdong 510632 People's Republic of China
| | - Kai Wang
- State Key Laboratory of Superhard Materials, Jilin University Changchun 130012 People's Republic of China
| | - Nan Li
- State Key Laboratory of Superhard Materials, Jilin University Changchun 130012 People's Republic of China
| | - Rong-Jia Wei
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University Guangzhou Guangdong 510632 People's Republic of China
| | - Shun-Ze Zhan
- Department of Chemistry, Shantou University Shantou Guangdong 515063 People's Republic of China
| | - Guo-Hong Ning
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University Guangzhou Guangdong 510632 People's Republic of China
| | - Bo Zou
- State Key Laboratory of Superhard Materials, Jilin University Changchun 130012 People's Republic of China
| | - Dan Li
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University Guangzhou Guangdong 510632 People's Republic of China
| |
Collapse
|
26
|
Kimura S, Sugita T, Nakamura K, Kobayashi N. An improvement in the coloration properties of Ag deposition-based plasmonic EC devices by precise control of shape and density of deposited Ag nanoparticles. NANOSCALE 2020; 12:23975-23983. [PMID: 33125013 DOI: 10.1039/d0nr05196a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Ag nanoparticles exhibit various colors depending on their localized surface plasmon resonance (LSPR). Based on this phenomenon, Ag deposition-based electrochromic devices can represent various optical states in a single device such as the three primary colors (cyan, magenta, and yellow), silver mirror, black and transparent. A control of the morphology of Ag nanoparticles can lead to dramatic changes in color, as their size and shape influence the LSPR band. In this research, we focused on the diffusion rate of Ag+ ions when Ag nanoparticles are electrochemically deposited. Consequently, well-isolated Ag nanoparticles were obtained due to the slow growth rate by using an electrolyte with a low concentration of Ag+ ions, resulting in an improvement in the color quality of cyan and magenta. Additionally, spherical Ag nanoparticles were deposited in the same device by optimizing their voltage application conditions, which represented yellow and green colors. In particular, green coloration is a unique phenomenon because it can appear by the combination of two absorption peaks of LSPR. As a result of investigating the finite-difference time-domain method, it was observed that the LSPR band in the long wavelength region was originated from the effects of the connection between Ag particles.
Collapse
Affiliation(s)
- Shunsuke Kimura
- Graduate School of Engineering, Chiba University, 1-33, Yayoi-cho, Inage-ku, Chiba, 263-8522, Japan.
| | | | | | | |
Collapse
|
27
|
Micheletti C, Minei P, Carlotti M, Mattoli V, Muniz-Miranda F, Perfetto A, Ciofini I, Adamo C, Ruggeri G, Pucci A. Mechanochromic LLDPE Films Doped with NIR Reflective Paliogen Black. Macromol Rapid Commun 2020; 42:e2000426. [PMID: 33089579 DOI: 10.1002/marc.202000426] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 09/11/2020] [Indexed: 11/10/2022]
Abstract
The perylene bisimide derivative Paliogen Black (P-black) is proposed as a new chromogenic probe that shows visible (vis) and near-infrared (NIR) responses after mechanical solicitations of host linear low-density polyethylene (LLDPE) films. P-black is reported to display strong absorption in the vis spectrum and unusual reflective and cooling features in the NIR region. Uniaxial deformation of the 2.5, 5, and 10 wt% P-black/LLDPE films yields a dichroic absorption under polarized light with color variations attributed by the computational analysis to the distinct anisotropic behavior of the transition dipole moments of P-black chromophores. When LLDPE films are deformed, P-black aggregates reduce their size from ≈30-40 µm to ≈5-10 µm that, in turn, causes reflectivity losses of about 30-40% at the maximum elongation. This gives rise to warming of 5-6 °C of the locally oriented film placed in contact with a black substrate under the illumination with an IR lamp for 5 s. These features combined with the high sensitivity of the vis-NIR response toward mechanical solicitations render P-black as a new solution to detect uniaxial deformations of plastic films through both optical and thermal outputs.
Collapse
Affiliation(s)
- Cosimo Micheletti
- Department of Chemistry and Industrial Chemistry, Università di Pisa, Via Giuseppe Moruzzi 13, Pisa, 56124, Italy
| | - Pierpaolo Minei
- Department of Chemistry and Industrial Chemistry, Università di Pisa, Via Giuseppe Moruzzi 13, Pisa, 56124, Italy
| | - Marco Carlotti
- Center for Micro-BioRobotics @SSSA, Italian Institute of Technology, Viale Rinaldo Piaggio 34, Pontedera, 56025, Italy
| | - Virgilio Mattoli
- Center for Micro-BioRobotics @SSSA, Italian Institute of Technology, Viale Rinaldo Piaggio 34, Pontedera, 56025, Italy
| | - Francesco Muniz-Miranda
- PSL University, École Nationale Supérieure de Chimie de Paris, CNRS, Institute of Chemistry for Life and Health Sciences (i-CLeHS), FRE2027, 11, Rue Pierre et Marie Curie, Paris, F-75005, France
| | - Anna Perfetto
- PSL University, École Nationale Supérieure de Chimie de Paris, CNRS, Institute of Chemistry for Life and Health Sciences (i-CLeHS), FRE2027, 11, Rue Pierre et Marie Curie, Paris, F-75005, France
| | - Ilaria Ciofini
- PSL University, École Nationale Supérieure de Chimie de Paris, CNRS, Institute of Chemistry for Life and Health Sciences (i-CLeHS), FRE2027, 11, Rue Pierre et Marie Curie, Paris, F-75005, France
| | - Carlo Adamo
- PSL University, École Nationale Supérieure de Chimie de Paris, CNRS, Institute of Chemistry for Life and Health Sciences (i-CLeHS), FRE2027, 11, Rue Pierre et Marie Curie, Paris, F-75005, France
| | - Giacomo Ruggeri
- Department of Chemistry and Industrial Chemistry, Università di Pisa, Via Giuseppe Moruzzi 13, Pisa, 56124, Italy
| | - Andrea Pucci
- Department of Chemistry and Industrial Chemistry, Università di Pisa, Via Giuseppe Moruzzi 13, Pisa, 56124, Italy
| |
Collapse
|
28
|
Al-Qatatsheh A, Morsi Y, Zavabeti A, Zolfagharian A, Salim N, Z. Kouzani A, Mosadegh B, Gharaie S. Blood Pressure Sensors: Materials, Fabrication Methods, Performance Evaluations and Future Perspectives. SENSORS (BASEL, SWITZERLAND) 2020; 20:E4484. [PMID: 32796604 PMCID: PMC7474433 DOI: 10.3390/s20164484] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/31/2020] [Accepted: 08/04/2020] [Indexed: 12/14/2022]
Abstract
Advancements in materials science and fabrication techniques have contributed to the significant growing attention to a wide variety of sensors for digital healthcare. While the progress in this area is tremendously impressive, few wearable sensors with the capability of real-time blood pressure monitoring are approved for clinical use. One of the key obstacles in the further development of wearable sensors for medical applications is the lack of comprehensive technical evaluation of sensor materials against the expected clinical performance. Here, we present an extensive review and critical analysis of various materials applied in the design and fabrication of wearable sensors. In our unique transdisciplinary approach, we studied the fundamentals of blood pressure and examined its measuring modalities while focusing on their clinical use and sensing principles to identify material functionalities. Then, we carefully reviewed various categories of functional materials utilized in sensor building blocks allowing for comparative analysis of the performance of a wide range of materials throughout the sensor operational-life cycle. Not only this provides essential data to enhance the materials' properties and optimize their performance, but also, it highlights new perspectives and provides suggestions to develop the next generation pressure sensors for clinical use.
Collapse
Affiliation(s)
- Ahmed Al-Qatatsheh
- Faculty of Science, Engineering, and Technology (FSET), Swinburne University of Technology, Melbourne VIC 3122, Australia; (Y.M.); (N.S.)
| | - Yosry Morsi
- Faculty of Science, Engineering, and Technology (FSET), Swinburne University of Technology, Melbourne VIC 3122, Australia; (Y.M.); (N.S.)
| | - Ali Zavabeti
- Department of Chemical Engineering, The University of Melbourne, Parkville VIC 3010, Australia;
| | - Ali Zolfagharian
- Faculty of Science, Engineering and Built Environment, School of Engineering, Deakin University, Waurn Ponds VIC 3216, Australia; (A.Z.); (A.Z.K.)
| | - Nisa Salim
- Faculty of Science, Engineering, and Technology (FSET), Swinburne University of Technology, Melbourne VIC 3122, Australia; (Y.M.); (N.S.)
| | - Abbas Z. Kouzani
- Faculty of Science, Engineering and Built Environment, School of Engineering, Deakin University, Waurn Ponds VIC 3216, Australia; (A.Z.); (A.Z.K.)
| | - Bobak Mosadegh
- Dalio Institute of Cardiovascular Imaging, Weill Cornell Medicine, New York, NY 10065, USA;
| | - Saleh Gharaie
- Faculty of Science, Engineering and Built Environment, School of Engineering, Deakin University, Waurn Ponds VIC 3216, Australia; (A.Z.); (A.Z.K.)
| |
Collapse
|
29
|
Han T, Liu L, Wang D, Yang J, Tang BZ. Mechanochromic Fluorescent Polymers Enabled by AIE Processes. Macromol Rapid Commun 2020; 42:e2000311. [PMID: 32648346 DOI: 10.1002/marc.202000311] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 06/28/2020] [Indexed: 02/06/2023]
Abstract
Polymeric materials are susceptible to the chain re-conformation, reorientation, slippage, and bond cleavage upon mechanical stimuli, which are likely to further grow into macro-damages and eventually lead to the compromise or loss of materials performance. Therefore, it is of great academic importance and practical significance to sensitively detect the local mechanical states in polymers and monitor the dynamic variations in polymer structures and properties under external forces. Mechanochromic fluorescent polymers (MFP) are a class of smart materials by utilizing sensitive fluorescent motifs to detect polymer chain events upon mechanical stimuli. Taking advantage of the unique aggregation-induced emission (AIE) effect, a variety of MFP systems that can self-report their mechanical states and mechano-induced structural and property changes through fluorescence signals have been developed. In this feature article, an overview of the recent progress on MFP systems enabled by AIE process is presented. The main design principles, including physically doping dispersed or microencapsulated AIE luminogens (AIEgens) into polymer matrix, chemically linking AIEgens in polymer backbones, and utilizing the clusterization-triggered emission of polymers containing nonconventional luminogens, are discussed with representative examples. Perspectives on the existing challenges and problems in this field are also discussed to guide future development.
Collapse
Affiliation(s)
- Ting Han
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Lijie Liu
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.,Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Dong Wang
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Jinglei Yang
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Ben Zhong Tang
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China.,Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| |
Collapse
|
30
|
Stimuli-Sensitive Aggregation-Induced Emission of Organogelators Containing Mesogenic Au(I) Complexes. CRYSTALS 2020. [DOI: 10.3390/cryst10050388] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
As the luminescence from conventional organic luminophores is typically quenched in constrained environments, the aggregation-induced emission (AIE) phenomenon is of interest for the development of materials that exhibit strong luminescence in condensed phases. Herein, new bismesogenic Au complexes were developed as organogelators and their photophysical properties, including their AIE characteristics, were investigated in organogels and crystals. The crystals of the gold complexes exhibited room-temperature phosphorescence with relatively high quantum yields. Moreover, the gold complexes also showed photoluminescence in the organogels and we demonstrated that the reversible switching of the luminescence intensity was induced by the sol-gel phase transition. The intense photoluminescence in the crystal and gel was induced by the restricted internal motion of the luminophore in the molecular aggregates. However, in the sol, the network structure of the organogel was destroyed and the nonradiative deactivation of the excited states was enhanced. As a result, we can conclude that the switching of the luminescence intensity was induced by changes in the aggregated structures of the molecules. The developed Au-complex-based gelators are excellent candidates for the realization of stimuli-responsive soft and smart luminescent materials.
Collapse
|
31
|
Calvino C, Henriet E, Muff LF, Schrettl S, Weder C. Mechanochromic Polymers Based on Microencapsulated Solvatochromic Dyes. Macromol Rapid Commun 2020; 41:e1900654. [PMID: 32134544 DOI: 10.1002/marc.201900654] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 02/07/2020] [Indexed: 12/19/2022]
Abstract
The development of polymers with built-in sensors that provide readily perceptible optical warning signs of mechanical events has received considerable interest. A simple and versatile concept to bestow polymers with mechanochromic behavior is the incorporation of dye-filled microcapsules. Such capsules release their cargo when their shell is damaged, and the dye is subsequently activated through a chemical or physical change that causes a chromogenic response. Here, we report the preparation of fluorescent poly(urea-formaldehyde) microcapsules containing solutions of a solvatochromic cyanostilbene dye and their integration in different polymers. When objects made from such composites are damaged, the dye solution is released from the containers, diffuses into the matrix, and the solvent evaporates. As a result, the polarity around the dye molecules changes, and this leads to a change of the fluorescence color. Alternatively, the dye is blended into the polymer matrix, microcapsules are loaded with a solvent, and the release of the latter triggers the color change. Both mechanisms afford ratiometric signals because the capsules that remain intact or dye molecules that are not exposed to the solvent can be used as a built-in reference; therefore, a quantitative assessment of the damage inflicted on the material is a priori possible.
Collapse
Affiliation(s)
- Céline Calvino
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, Fribourg, CH-1700, Switzerland.,Pritzker School of Molecular Engineering, University of Chicago, 5640 S. Ellis Ave., Chicago, IL, 60637, USA
| | - Emma Henriet
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, Fribourg, CH-1700, Switzerland.,Université de Technologie Belfort-Montbéliard, Rue de Leupe, Sevenans, 90400, France
| | - Livius F Muff
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, Fribourg, CH-1700, Switzerland
| | - Stephen Schrettl
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, Fribourg, CH-1700, Switzerland
| | - Christoph Weder
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, Fribourg, CH-1700, Switzerland
| |
Collapse
|