1
|
Teradale AB, Chadchan KS, Ganesh PS, Das SN, Ebenso EE. Synergetic effects of a poly-tartrazine/CTAB modified carbon paste electrode sensor towards simultaneous and interference-free determination of benzenediol isomers. REACT CHEM ENG 2023; 8:3071-3081. [DOI: 10.1039/d3re00318c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Simultaneous and selective detection of dihydroxy benzene isomers by the synergistic effect of CTAB and tartrazine on a carbon paste electrode (poly-TZ/CTAB/MCPE) sensor by CV and DPV techniques.
Collapse
Affiliation(s)
- Amit B. Teradale
- PG Department of Chemistry, BLDEA's S.B. Arts and K.C.P. Science College, Vijayapur, Karnataka, 586103, India
| | - Kailash S. Chadchan
- Department of Chemistry, BLDEA's V. P. Dr. P. G. Halakatti College of Engineering and Technology, Vijayapur-586103, Karnataka, India
| | - Pattan-Siddappa Ganesh
- Advanced Technology Research Center, Korea University of Technology and Education, Cheonan-si, Chungcheongnam-do, 31253, Republic of Korea
| | - Swastika N. Das
- Department of Chemistry, BLDEA's V. P. Dr. P. G. Halakatti College of Engineering and Technology, Vijayapur-586103, Karnataka, India
| | - Eno E. Ebenso
- Centre for Material Science, College of Science, Engineering and Technology, University of South Africa, Johannesburg 1710, South Africa
- Institute of Nanotechnology and Water Sustainability, College of Science, Engineering and Technology, University of South Africa, Johannesburg 1710, South Africa
| |
Collapse
|
2
|
Emerging biosensors to detect aflatoxin M1 in milk and dairy products. Food Chem 2022; 398:133848. [DOI: 10.1016/j.foodchem.2022.133848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 06/17/2022] [Accepted: 07/31/2022] [Indexed: 11/23/2022]
|
3
|
Jahani PM, Beitollahi H, Tajik S. Surface amplification of graphite screen printed electrode using reduced graphene oxide/polypyrrole nanotubes nanocomposite; a powerful electrochemical strategy for determination of sulfite in food samples. Food Chem Toxicol 2022; 167:113274. [PMID: 35843424 DOI: 10.1016/j.fct.2022.113274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/20/2022] [Accepted: 07/02/2022] [Indexed: 10/17/2022]
Abstract
The present research presents synthesis and substantial utilization of a nanocomposite of reduced graphene oxide/polypyrrole nanotubes to modify graphite screen printed electrode (rGO/PPy NTs-GSPE) for detection of sulfite. The nanocomposite preparation was done by hydrothermal protocol, followed by characterization by energy-dispersive X-ray (EDX) and field emission-scanning electron microscopy (FE-SEM). Electrocatalytic sensing of sulfite is carried out using differential pulse voltammetric (DPV), linear sweep voltammetry (LSV), cyclic voltammetric (CV), and Chronoamperometry. Electrochemical behaviors of modified and unmodified electrodes were explored with CV method. In addition, DPV was employed for anodic peak and quantitatively detecting sulfite. The DPV results unveiled a linear response of the sensor to various sulfite contents (0.04-565.0 μM) with a narrow detection limit (0.01 μM) and admirable sensitivity (0.0483 μA/μΜ). The diffusion coefficient (D) for sulfite using rGO/PPy NTs-GSPE, 9.9 × 10-6 cm 2/s was obtained. The sensor was also successful in the sulfite detection in real specimens.
Collapse
Affiliation(s)
| | - Hadi Beitollahi
- Environment Department, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran
| | - Somayeh Tajik
- Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
4
|
Sensitive sensing platform based on NiO and NiO-Ni nanoparticles for electrochemical determination of Metronidazole. Chem Phys 2022. [DOI: 10.1016/j.chemphys.2022.111590] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
5
|
A simple and reliable electroanalytical method employing a disposable commercial electrode for simultaneous determination of lead(II) and mercury(II) in beer. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104564] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
6
|
Yan LJ, Jiang C, Ye AY, He Q, Yao C. A novel colorimetric and ratiometric fluorescence probe based on 'C-CN' for detection of hydrazine and its imaging in living cells and mouse. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 268:120639. [PMID: 34824007 DOI: 10.1016/j.saa.2021.120639] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/31/2021] [Accepted: 11/13/2021] [Indexed: 06/13/2023]
Abstract
Hydrazine plays an important role in chemistry, pharmaceuticals, agriculture and aerospace. However, it is not to be underestimated and has been identified as harmful to the human body. Therefore, it is significant and urgent to develop the detection of hydrazine in vivo and in vitro. Here, the probe TAN was synthesized by using benzothiazole derivatives as the fluorophore and 2,3-diaminomaleonitrile as the identified group to detect hydrazine. The presence of hydrazine resulted in a colorimetric and ratiometric fluorescence response of the probe based on the formation of hydrazone. The detection limit of TAN was 0.31 µM for hydrazine. In addition, the probe TAN was successfully used to visualize hydrazine in living HepG-2 cells and mouse with low cytotoxicity and excellent biocompatibility.
Collapse
Affiliation(s)
- Ling-Juan Yan
- College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Chen Jiang
- College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Ai-Ying Ye
- College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China; Changzhou Vocational Institute of Engineering, Changzhou 213100, China
| | - Qiong He
- Changzhou Vocational Institute of Engineering, Changzhou 213100, China
| | - Cheng Yao
- College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China.
| |
Collapse
|
7
|
Fritea L, Banica F, Costea TO, Moldovan L, Dobjanschi L, Muresan M, Cavalu S. Metal Nanoparticles and Carbon-Based Nanomaterials for Improved Performances of Electrochemical (Bio)Sensors with Biomedical Applications. MATERIALS (BASEL, SWITZERLAND) 2021; 14:6319. [PMID: 34771844 PMCID: PMC8585379 DOI: 10.3390/ma14216319] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/15/2021] [Accepted: 10/20/2021] [Indexed: 12/30/2022]
Abstract
Monitoring human health for early detection of disease conditions or health disorders is of major clinical importance for maintaining a healthy life. Sensors are small devices employed for qualitative and quantitative determination of various analytes by monitoring their properties using a certain transduction method. A "real-time" biosensor includes a biological recognition receptor (such as an antibody, enzyme, nucleic acid or whole cell) and a transducer to convert the biological binding event to a detectable signal, which is read out indicating both the presence and concentration of the analyte molecule. A wide range of specific analytes with biomedical significance at ultralow concentration can be sensitively detected. In nano(bio)sensors, nanoparticles (NPs) are incorporated into the (bio)sensor design by attachment to the suitably modified platforms. For this purpose, metal nanoparticles have many advantageous properties making them useful in the transducer component of the (bio)sensors. Gold, silver and platinum NPs have been the most popular ones, each form of these metallic NPs exhibiting special surface and interface features, which significantly improve the biocompatibility and transduction of the (bio)sensor compared to the same process in the absence of these NPs. This comprehensive review is focused on the main types of NPs used for electrochemical (bio)sensors design, especially screen-printed electrodes, with their specific medical application due to their improved analytical performances and miniaturized form. Other advantages such as supporting real-time decision and rapid manipulation are pointed out. A special attention is paid to carbon-based nanomaterials (especially carbon nanotubes and graphene), used by themselves or decorated with metal nanoparticles, with excellent features such as high surface area, excellent conductivity, effective catalytic properties and biocompatibility, which confer to these hybrid nanocomposites a wide biomedical applicability.
Collapse
Affiliation(s)
- Luminita Fritea
- Faculty of Medicine and Pharmacy, University of Oradea, 10 P-ta 1 Decembrie, 410087 Oradea, Romania; (L.F.); (F.B.); (M.M.); (S.C.)
| | - Florin Banica
- Faculty of Medicine and Pharmacy, University of Oradea, 10 P-ta 1 Decembrie, 410087 Oradea, Romania; (L.F.); (F.B.); (M.M.); (S.C.)
| | - Traian Octavian Costea
- Advanced Materials Research Infrastructure—SMARTMAT, University of Oradea, 1 Universitatii Street, 410087 Oradea, Romania;
| | - Liviu Moldovan
- Faculty of Electrical Engineering and Information Technology, University of Oradea, 1 Universitatii Street, 410087 Oradea, Romania
| | - Luciana Dobjanschi
- Faculty of Medicine and Pharmacy, University of Oradea, 10 P-ta 1 Decembrie, 410087 Oradea, Romania; (L.F.); (F.B.); (M.M.); (S.C.)
| | - Mariana Muresan
- Faculty of Medicine and Pharmacy, University of Oradea, 10 P-ta 1 Decembrie, 410087 Oradea, Romania; (L.F.); (F.B.); (M.M.); (S.C.)
| | - Simona Cavalu
- Faculty of Medicine and Pharmacy, University of Oradea, 10 P-ta 1 Decembrie, 410087 Oradea, Romania; (L.F.); (F.B.); (M.M.); (S.C.)
| |
Collapse
|
8
|
Tajik S, Beitollahi H, Mohammadi SZ, Azimzadeh M, Zhang K, Van Le Q, Yamauchi Y, Jang HW, Shokouhimehr M. Recent developments in electrochemical sensors for detecting hydrazine with different modified electrodes. RSC Adv 2020; 10:30481-30498. [PMID: 35516027 PMCID: PMC9056357 DOI: 10.1039/d0ra03288c] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Accepted: 07/28/2020] [Indexed: 12/13/2022] Open
Abstract
The detection of hydrazine (HZ) is an important application in analytical chemistry. There have been recent advancements in using electrochemical detection for HZ. Electrochemical detection for HZ offers many advantages, e.g., high sensitivity, selectivity, speed, low investment and running cost, and low laboriousness. In addition, these methods are robust, reproducible, user-friendly, and compatible with the concept of green analytical chemistry. This review is devoted to the critical comparison of electrochemical sensors and measuring protocols used for the voltammetric and amperometric detection of the most frequently used HZ in water resources with desirable recovery. Attention is focused on the working electrode and its possible modification which is crucial for further development.
Collapse
Affiliation(s)
- Somayeh Tajik
- Research Center for Tropical and Infectious Diseases, Kerman University of Medical Sciences Kerman Iran
| | - Hadi Beitollahi
- Environment Department, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology Kerman Iran
| | | | - Mostafa Azimzadeh
- Medical Nanotechnology & Tissue Engineering Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences PO Box 89195-999 Yazd Iran
| | - Kaiqiang Zhang
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University Seoul 08826 Republic of Korea
| | - Quyet Van Le
- Institute of Research and Development, Duy Tan University Da Nang 550000 Vietnam
| | - Yusuke Yamauchi
- School of Chemical Engineering, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland Brisbane Queensland 4072 Australia
- International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS) Tsukuba 3050044 Japan
- Department of Plant and Environmental New Resources, Kyung Hee University 1732 Deogyeong-daero, Giheung-gu Yongin-si Gyeonggi-do 446-701 Republic of Korea
| | - Ho Won Jang
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University Seoul 08826 Republic of Korea
| | - Mohammadreza Shokouhimehr
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University Seoul 08826 Republic of Korea
| |
Collapse
|