1
|
Satya A, Bhattacharjee A. Developing a biosensing prototype utilising a 7CB liquid crystal for human insulin detection. Phys Chem Chem Phys 2024; 26:29788-29804. [PMID: 39605136 DOI: 10.1039/d4cp03205e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
This paper presents a novel prototype for human insulin detection using a 4-heptyl-4-biphenylcarbonitrile liquid crystal (7CB-LC). Human insulin is essential for regulating blood glucose levels and facilitating the metabolism of carbohydrates, lipids, and proteins. Insufficient insulin can lead to hyperglycemia, where cells cannot utilise glucose effectively for energy production. Prolonged hyperglycemia can affect the nervous and cardiovascular systems. Our work investigates the scope of using 7CB-LC as a prototype for the label-free detection of human insulin. Both temperature and time-dependent studies conducted using a polarising optical microscope (POM) on human insulin in the concentration range from 25 μM to 500 μM showed that human insulin interacting with 7CB-LC produces radial, twisted-radial, pre-radial and bipolar textures. A detection limit of 25 μM was observed since no distinguishable textures were observed below this concentration. An RGB (red, green, and blue) and grey index study showed a positive correlation graph with an R2 value of 0.97279, proving the selectivity of the proposed biosensor. Molecular docking and Raman spectroscopy studies were conducted to learn more about the interaction between insulin and 7CB-LC at the molecular level. Docking studies revealed how the position of the 7CB core and tail ends interacted with amino acid residues of insulin. Raman spectroscopy studies investigated the segmental mobility of different parts of LC and changes occurring in the core and terminal regions due to insulin interactions. Vibrational studies conducted using Raman spectroscopy analysed the change in 7CB-LC parameters such as the peak position (PP), line width (LW) and integrated intensity (II) on interacting with human insulin. This unique prototype technique shows how 7CB-LC can potentially be employed in biosensing to detect human insulin since it provides better visualisation in a label-free detection method.
Collapse
Affiliation(s)
- Athul Satya
- Department of Physics, National Institute of Technology, Bijni Complex, Laitumkhrah, Shillong, Meghalaya 793003, India.
| | - Ayon Bhattacharjee
- Department of Physics, National Institute of Technology, Bijni Complex, Laitumkhrah, Shillong, Meghalaya 793003, India.
| |
Collapse
|
2
|
Węgłowski R, Spadło A, Węgłowska D. Banana DNA derivatives as homeotropic alignment layers in optical devices. SOFT MATTER 2024; 20:8561-8569. [PMID: 39269156 DOI: 10.1039/d4sm00322e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
In this study, deoxyribonucleic acid (DNA) from bananas was extracted and functionalized and used for the first time as a homeotropic alignment layer for liquid crystals (LCs). Our research was aimed at extracting and investigating DNA from bananas via the synthesis and study of DNA complexes with various surfactants to examine the usefulness of such a complex as an alignment layer in electro-optical transducers. We proposed a simple and eco-friendly synthesis of the DNA complexes isolated from bananas with surfactants, so we transformed the DNA isolated from bananas into a functionalized alignment layer. A biopolymer alignment layer like deoxyribonucleic acid (DNA) from a banana complexed with a cationic surfactant is an excellent alternative to a commonly used but toxic polyimide alignment layer. DNA-based materials are promising for photonic applications and biosensors because of their excellent optical and physical properties, biodegradability, and low production cost. The novelty of the research lies in the potential use of these materials as biodegradable biopolymer alignment layers for optical devices instead of conventional polymers, which are usually harmful for the environment.
Collapse
Affiliation(s)
- Rafał Węgłowski
- Faculty of Advanced Technologies and Chemistry, Military University of Technology, 2 Kaliskiego Str., 00-908, Warsaw 49, Poland.
| | - Anna Spadło
- Faculty of Advanced Technologies and Chemistry, Military University of Technology, 2 Kaliskiego Str., 00-908, Warsaw 49, Poland.
| | - Dorota Węgłowska
- Faculty of Advanced Technologies and Chemistry, Military University of Technology, 2 Kaliskiego Str., 00-908, Warsaw 49, Poland.
| |
Collapse
|
3
|
Sarvutiene J, Prentice U, Ramanavicius S, Ramanavicius A. Molecular imprinting technology for biomedical applications. Biotechnol Adv 2024; 71:108318. [PMID: 38266935 DOI: 10.1016/j.biotechadv.2024.108318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 01/14/2024] [Accepted: 01/20/2024] [Indexed: 01/26/2024]
Abstract
Molecularly imprinted polymers (MIPs), a type of biomimetic material, have attracted considerable interest owing to their cost-effectiveness, good physiochemical stability, favourable specificity and selectivity for target analytes, and widely used for various biological applications. It was demonstrated that MIPs with significant selectivity towards protein-based targets could be applied in medicine, diagnostics, proteomics, environmental analysis, sensors, various in vivo and/or in vitro applications, drug delivery systems, etc. This review provides an overview of MIPs dedicated to biomedical applications and insights into perspectives on the application of MIPs in newly emerging areas of biotechnology. Many different protocols applied for the synthesis of MIPs are overviewed in this review. The templates used for molecular imprinting vary from the minor glycosylated glycan-based structures, amino acids, and proteins to whole bacteria, which are also overviewed in this review. Economic, environmental, rapid preparation, stability, and reproducibility have been highlighted as significant advantages of MIPs. Particularly, some specialized MIPs, in addition to molecular recognition properties, can have high catalytic activity, which in some cases could be compared with other bio-catalytic systems. Therefore, such MIPs belong to the class of so-called 'artificial enzymes'. The discussion provided in this manuscript furnishes a comparative analysis of different approaches developed, underlining their relative advantages and disadvantages highlighting trends and possible future directions of MIP technology.
Collapse
Affiliation(s)
- Julija Sarvutiene
- Department of Nanotechnology, Center for Physical Sciences and Technology (FTMC), Sauletekio av. 3, Vilnius, Lithuania
| | - Urte Prentice
- Department of Nanotechnology, Center for Physical Sciences and Technology (FTMC), Sauletekio av. 3, Vilnius, Lithuania
| | - Simonas Ramanavicius
- Department of Nanotechnology, Center for Physical Sciences and Technology (FTMC), Sauletekio av. 3, Vilnius, Lithuania
| | - Arunas Ramanavicius
- Department of Nanotechnology, Center for Physical Sciences and Technology (FTMC), Sauletekio av. 3, Vilnius, Lithuania.
| |
Collapse
|
4
|
Strójwąs K, Dąbrowski R, Drzewiński W, Szarek M, Bubnov A, Czerwiński M. The comparison of self-assembling behaviour of phenyl biphenylcarboxylate and biphenyl benzoate compounds with the different length and shape of chiral terminal chain. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
5
|
Molecularly imprinted polymer-based electrochemical sensors for food contaminants determination. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
6
|
Ramanavicius S, Ramanavicius A. Development of molecularly imprinted polymer based phase boundaries for sensors design (review). Adv Colloid Interface Sci 2022; 305:102693. [PMID: 35609398 DOI: 10.1016/j.cis.2022.102693] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 04/15/2022] [Accepted: 05/04/2022] [Indexed: 12/18/2022]
Abstract
Achievements in polymer chemistry enables to design artificial phase boundaries modified by imprints of selected molecules and some larger structures. These structures seem very useful for the design of new materials suitable for affinity chromatography and sensors. In this review, we are overviewing the synthesis of molecularly imprinted polymers (MIPs) and the applicability of these MIPs in the design of affinity sensors. Such MIP-based layers or particles can be used as analyte-recognizing parts for sensors and in some cases they can replace very expensive compounds (e.g.: antibodies, receptors etc.), which are recognizing analyte. Many different polymers can be used for the formation of MIPs, but conducing polymers shows the most attractive capabilities for molecular-imprinting by various chemical compounds. Therefore, the application of conducting polymers (e.g.: polypyrrole, polyaniline, polythiophene, poly(3,4-ethylenedioxythiophene), and ortho-phenylenediamine) seems very promising. Polypyrrole is one of the most suitable for the development of MIP-based structures with molecular imprints by analytes of various molecular weights. Overoxiation of polypyrrole enables to increase the selectivity of polypyrrole-based MIPs. Methods used for the synthesis of conducting polymer based MIPs are overviewed. Some methods, which are applied for the transduction of analytical signal, are discussed, and challenges and new trends in MIP-technology are foreseen.
Collapse
|
7
|
Ramanavicius S, Samukaite-Bubniene U, Ratautaite V, Bechelany M, Ramanavicius A. Electrochemical Molecularly Imprinted Polymer Based Sensors for Pharmaceutical and Biomedical Applications (Review). J Pharm Biomed Anal 2022; 215:114739. [DOI: 10.1016/j.jpba.2022.114739] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 03/19/2022] [Accepted: 03/23/2022] [Indexed: 12/23/2022]
|
8
|
Ramanavičius S, Morkvėnaitė-Vilkončienė I, Samukaitė-Bubnienė U, Ratautaitė V, Plikusienė I, Viter R, Ramanavičius A. Electrochemically Deposited Molecularly Imprinted Polymer-Based Sensors. SENSORS (BASEL, SWITZERLAND) 2022; 22:1282. [PMID: 35162027 PMCID: PMC8838766 DOI: 10.3390/s22031282] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/26/2022] [Accepted: 02/02/2022] [Indexed: 12/10/2022]
Abstract
This review is dedicated to the development of molecularly imprinted polymers (MIPs) and the application of MIPs in sensor design. MIP-based biological recognition parts can replace receptors or antibodies, which are rather expensive. Conducting polymers show unique properties that are applicable in sensor design. Therefore, MIP-based conducting polymers, including polypyrrole, polythiophene, poly(3,4-ethylenedioxythiophene), polyaniline and ortho-phenylenediamine are frequently applied in sensor design. Some other materials that can be molecularly imprinted are also overviewed in this review. Among many imprintable materials conducting polymer, polypyrrole is one of the most suitable for molecular imprinting of various targets ranging from small organics up to rather large proteins. Some attention in this review is dedicated to overview methods applied to design MIP-based sensing structures. Some attention is dedicated to the physicochemical methods applied for the transduction of analytical signals. Expected new trends and horizons in the application of MIP-based structures are also discussed.
Collapse
Affiliation(s)
- Simonas Ramanavičius
- Department of Electrochemical Material Science, State Research Institute Center for Physical Sciences and Technology (FTMC), Sauletekio av. 3, LT-10257 Vilnius, Lithuania;
- Department of Physical Chemistry, Faculty of Chemistry and Geosciences, Institute of Chemistry, Vilnius University, Naugarduko 24, LT-03225 Vilnius, Lithuania; (U.S.-B.); (V.R.); (I.P.); (R.V.)
| | - Inga Morkvėnaitė-Vilkončienė
- Department of Mechatronics, Robotics, and Digital Manufacturing, Vilnius Gediminas Technical University, J. Basanaviciaus 28, LT-03224 Vilnius, Lithuania;
- Laboratory of Electrochemical Energy Conversion, State Research Institute Centre for Physical Sciences and Technology (FTMC), Sauletekio av. 3, LT-10257 Vilnius, Lithuania
| | - Urtė Samukaitė-Bubnienė
- Department of Physical Chemistry, Faculty of Chemistry and Geosciences, Institute of Chemistry, Vilnius University, Naugarduko 24, LT-03225 Vilnius, Lithuania; (U.S.-B.); (V.R.); (I.P.); (R.V.)
- Department of Mechatronics, Robotics, and Digital Manufacturing, Vilnius Gediminas Technical University, J. Basanaviciaus 28, LT-03224 Vilnius, Lithuania;
- Laboratory of Nanotechnology, State Research Institute Center for Physical Sciences and Technology (FTMC), Sauletekio av. 3, LT-10257 Vilnius, Lithuania
| | - Vilma Ratautaitė
- Department of Physical Chemistry, Faculty of Chemistry and Geosciences, Institute of Chemistry, Vilnius University, Naugarduko 24, LT-03225 Vilnius, Lithuania; (U.S.-B.); (V.R.); (I.P.); (R.V.)
- Laboratory of Nanotechnology, State Research Institute Center for Physical Sciences and Technology (FTMC), Sauletekio av. 3, LT-10257 Vilnius, Lithuania
| | - Ieva Plikusienė
- Department of Physical Chemistry, Faculty of Chemistry and Geosciences, Institute of Chemistry, Vilnius University, Naugarduko 24, LT-03225 Vilnius, Lithuania; (U.S.-B.); (V.R.); (I.P.); (R.V.)
- Laboratory of Nanotechnology, State Research Institute Center for Physical Sciences and Technology (FTMC), Sauletekio av. 3, LT-10257 Vilnius, Lithuania
| | - Roman Viter
- Department of Physical Chemistry, Faculty of Chemistry and Geosciences, Institute of Chemistry, Vilnius University, Naugarduko 24, LT-03225 Vilnius, Lithuania; (U.S.-B.); (V.R.); (I.P.); (R.V.)
- Institute of Atomic Physics and Spectroscopy, University of Latvia, Jelgavas Street 3, LV-1004 Riga, Latvia
| | - Arūnas Ramanavičius
- Department of Physical Chemistry, Faculty of Chemistry and Geosciences, Institute of Chemistry, Vilnius University, Naugarduko 24, LT-03225 Vilnius, Lithuania; (U.S.-B.); (V.R.); (I.P.); (R.V.)
- Laboratory of Nanotechnology, State Research Institute Center for Physical Sciences and Technology (FTMC), Sauletekio av. 3, LT-10257 Vilnius, Lithuania
| |
Collapse
|
9
|
Editorial to the Special Issue SELSA: "Sensors for Environmental and Life Science Applications". SENSORS 2021; 21:s21165353. [PMID: 34450795 PMCID: PMC8399639 DOI: 10.3390/s21165353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 08/05/2021] [Indexed: 11/24/2022]
|
10
|
Yang Z, Zhang Y, Ren J, Zhang Q, Zhang B. Cobalt-Iron Double Ion-Bovine Serum Albumin Chelation-Assisted Thermo-Sensitive Surface-Imprinted Nanocage with High Specificity. ACS APPLIED MATERIALS & INTERFACES 2021; 13:34829-34842. [PMID: 34264633 DOI: 10.1021/acsami.1c06583] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
To develop multifunctional protein imprinted materials, a cobalt-iron double ion-BSA directional chelation-assisted thermo-sensitive surface-imprinted hollow nanocage (Co-Fe@CBMA-MIPs) with excellent specificity is developed on the surface of ZIF-67@Co-Fe in this study by synergizing the advantages of surface imprinting, metal ion chelation, anti-protein adsorption segments, and thermo-sensitive components. Beyond previous research, well-designed multifunctional protein-imprinted materials possess high binding capacity, fast adsorption kinetics, and outstanding selectivity. When the adsorption is carried out at 32 °C, the adsorption capacity of Co-Fe@CBMA-MIPs for BSA reaches 520.35 mg/g within 50 min. The imprinting factor is 8.55. The selectivity factors of Co-Fe@CBMA-MIPs for HSA, Bhb, OVA, and Lyz are 3.72, 6.09, 4.10, and 8.41, respectively. More significantly, Co-Fe@CBMA-MIPs could specifically recognize BSA from mixed proteins and actual samples and exhibit excellent repeated use stability. Based on the above advantages, the development of this research provides an effective means to improve the recognition specificity of molecularly imprinted polymers.
Collapse
Affiliation(s)
- Zuoting Yang
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710129, P. R. China
- Xi'an Key Laboratory of Functional Organic Porous Materials, Northwestern Polytechnical University, Xi'an 710072, P. R. China
| | - Yunfei Zhang
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710129, P. R. China
| | - Jianquan Ren
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710129, P. R. China
| | - Qiuyu Zhang
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710129, P. R. China
- Xi'an Key Laboratory of Functional Organic Porous Materials, Northwestern Polytechnical University, Xi'an 710072, P. R. China
| | - Baoliang Zhang
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710129, P. R. China
- Shaanxi Engineering and Research Center for Functional Polymers on Adsorption and Separation, Sunresins New Materials Co. Ltd., Xi'an 710072, China
| |
Collapse
|
11
|
Czerwiński M, de Blas MG, Bennis N, Herman J, Dmochowska E, Otón JM. Polymer stabilized highly tilted antiferroelectric liquid crystals - the influence of monomer structure and phase sequence of base mixtures. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.114869] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
12
|
Ramanavicius S, Jagminas A, Ramanavicius A. Advances in Molecularly Imprinted Polymers Based Affinity Sensors (Review). Polymers (Basel) 2021; 13:974. [PMID: 33810074 PMCID: PMC8004762 DOI: 10.3390/polym13060974] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 03/03/2021] [Accepted: 03/16/2021] [Indexed: 12/12/2022] Open
Abstract
Recent challenges in biomedical diagnostics show that the development of rapid affinity sensors is very important issue. Therefore, in this review we are aiming to outline the most important directions of affinity sensors where polymer-based semiconducting materials are applied. Progress in formation and development of such materials is overviewed and discussed. Some applicability aspects of conducting polymers in the design of affinity sensors are presented. The main attention is focused on bioanalytical application of conducting polymers such as polypyrrole, polyaniline, polythiophene and poly(3,4-ethylenedioxythiophene) ortho-phenylenediamine. In addition, some other polymers and inorganic materials that are suitable for molecular imprinting technology are also overviewed. Polymerization techniques, which are the most suitable for the development of composite structures suitable for affinity sensors are presented. Analytical signal transduction methods applied in affinity sensors based on polymer-based semiconducting materials are discussed. In this review the most attention is focused on the development and application of molecularly imprinted polymer-based structures, which can replace antibodies, receptors, and many others expensive affinity reagents. The applicability of electrochromic polymers in affinity sensor design is envisaged. Sufficient biocompatibility of some conducting polymers enables to apply them as "stealth coatings" in the future implantable affinity-sensors. Some new perspectives and trends in analytical application of polymer-based semiconducting materials are highlighted.
Collapse
Affiliation(s)
- Simonas Ramanavicius
- Department of Electrochemical Material Science, State Research Institute Center for Physical Sciences and Technology (FTMC), Sauletekio av. 3, LT-10257 Vilnius, Lithuania; (S.R.); (A.J.)
- Department of Physical Chemistry, Faculty of Chemistry and Geosciences, Institute of Chemistry, Vilnius University, Naugarduko 24, LT-03225 Vilnius, Lithuania
| | - Arunas Jagminas
- Department of Electrochemical Material Science, State Research Institute Center for Physical Sciences and Technology (FTMC), Sauletekio av. 3, LT-10257 Vilnius, Lithuania; (S.R.); (A.J.)
| | - Arunas Ramanavicius
- Department of Physical Chemistry, Faculty of Chemistry and Geosciences, Institute of Chemistry, Vilnius University, Naugarduko 24, LT-03225 Vilnius, Lithuania
| |
Collapse
|
13
|
Di Giulio T, Mazzotta E, Malitesta C. Molecularly Imprinted Polyscopoletin for the Electrochemical Detection of the Chronic Disease Marker Lysozyme. BIOSENSORS 2020; 11:3. [PMID: 33374794 PMCID: PMC7823763 DOI: 10.3390/bios11010003] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/14/2020] [Accepted: 12/19/2020] [Indexed: 12/11/2022]
Abstract
Herein we report the electropolymerization of a scopoletin based molecularly imprinted polymer (MIP) for the detection of lysozyme (Lyz), an enzymatic marker of several diseases in mammalian species. Two different approaches have been used for the imprinting of lysozyme based, respectively, on the use of a monomer-template mixture and on the covalent immobilization of the enzyme prior to polymer synthesis. In the latter case, a multi-step protocol has been exploited with preliminary functionalization of gold electrode with amino groups, via 4-aminothiophenol, followed by reaction with glutaraldehyde, to provide a suitable linker for lysozyme. Each step of surface electrode modification has been followed by cyclic voltammetry and electrochemical impedance spectroscopy, which has been also employed to test the electrochemical responses of the developed MIP. The sensors show good selectivity to Lyz and detect the enzyme at concentrations up to 292 mg/L (20 μM), but with different performances, depending on the used imprinting approach. An imprinting factor equal to 7.1 and 2.5 and a limit of detection of 0.9 mg/L (62 nM) and 2.1 mg/L (141 nM) have been estimated for MIPs prepared with and without enzyme immobilization, respectively. Competitive rebinding experiment results show that this sensing material is selective for Lyz determination. Tests were performed using synthetic saliva to evaluate the potential application of the sensors in real matrices for clinical purposes.
Collapse
Affiliation(s)
| | - Elisabetta Mazzotta
- Laboratorio di Chimica Analitica, Dipartimento di Scienze e Tecnologie Biologie e Ambientali, Università del Salento, 73100 Lecce, Italy; (T.D.G.); (C.M.)
| | | |
Collapse
|
14
|
Advances in Random Fiber Lasers and Their Sensing Application. SENSORS 2020; 20:s20216122. [PMID: 33126426 PMCID: PMC7663712 DOI: 10.3390/s20216122] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/24/2020] [Accepted: 10/26/2020] [Indexed: 12/25/2022]
Abstract
Compared with conventional laser, random laser (RL) has no resonant cavity, reducing the requirement of cavity design. In recent years, the random fiber laser (RFL), a novel kind of RL, has made great progress in theories and experiments. The RFL has a simpler structure, a more flexible design, and higher reliability. It has valuable applications for earth sciences, biological life sciences, and national defense security, due to these unique properties. This paper reviews the development of RFLs in the last decade, including their configurations based on various optical fibers and their output properties, especially the method of control. Moreover, we also introduce their applications in the optical fiber sensing system, which is a very important and practical orientation to study. Finally, this paper presents the prospects of RFLs.
Collapse
|