1
|
Yoshimi Y, Kani S, Aaryashree. A disposable edoxaban sensor chip using carbon paste electrode grafted with molecularly imprinted polymer. J Artif Organs 2024; 27:77-81. [PMID: 37060519 DOI: 10.1007/s10047-023-01392-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 03/12/2023] [Indexed: 04/16/2023]
Abstract
Although direct oral anticoagulants (DOACs) are generally safe and TDM is not required, blood levels of the drug are important information for response decisions in emergency care. In this study, an attempt was made to develop a disposable sensor chip for the rapid detection of edoxaban in blood, a type of DOAC. Molecularly imprinted polymers with edoxaban tosilate as a template and sodium p-styrene sulfonate as a functional monomer were grafted onto the surface of graphite particles, mixed with silicon oil dissolved in ferrocene to form a paste, and filled onto a substrate made of plastic film. Sensor chips were fabricated. The current obtained from this sensor by voltammetry within 150 s depended on the edoxaban concentration. Sensitivity to edoxaban was also confirmed in bovine whole blood. The potential of disposable sensors to rapidly detect edoxaban in whole blood was demonstrated in this study, although selectivity, reproducibility, and sensitivity need to be improved for practical use.
Collapse
Affiliation(s)
- Yasuo Yoshimi
- Department of Applied Chemistry, Shibaura Institute of Technology, 3-7-5 Toyosu Koto-ku, Tokyo, 135-8548, Japan.
| | - Shohei Kani
- Department of Applied Chemistry, Shibaura Institute of Technology, 3-7-5 Toyosu Koto-ku, Tokyo, 135-8548, Japan
| | - Aaryashree
- Department of Applied Chemistry, Shibaura Institute of Technology, 3-7-5 Toyosu Koto-ku, Tokyo, 135-8548, Japan
| |
Collapse
|
2
|
Wang Q, Li S, Chen J, Yang L, Qiu Y, Du Q, Wang C, Teng M, Wang T, Dong Y. A novel strategy for therapeutic drug monitoring: application of biosensors to quantify antimicrobials in biological matrices. J Antimicrob Chemother 2023; 78:2612-2629. [PMID: 37791382 DOI: 10.1093/jac/dkad289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023] Open
Abstract
Over the past few years, therapeutic drug monitoring (TDM) has gained practical significance in antimicrobial precision therapy. Yet two categories of mainstream TDM techniques (chromatographic analysis and immunoassays) that are widely adopted nowadays retain certain inherent limitations. The use of biosensors, an innovative strategy for rapid evaluation of antimicrobial concentrations in biological samples, enables the implementation of point-of-care testing (POCT) and continuous monitoring, which may circumvent the constraints of conventional TDM and provide strong technological support for individualized antimicrobial treatment. This comprehensive review summarizes the investigations that have harnessed biosensors to detect antimicrobial drugs in biological matrices, provides insights into the performance and characteristics of each sensing form, and explores the feasibility of translating them into clinical practice. Furthermore, the future trends and obstacles to achieving POCT and continuous monitoring are discussed. More efforts are necessary to address the four key 'appropriateness' challenges to deploy biosensors in clinical practice, paving the way for personalized antimicrobial stewardship.
Collapse
Affiliation(s)
- Quanfang Wang
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Sihan Li
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Jiaojiao Chen
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Luting Yang
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Yulan Qiu
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Qian Du
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Chuhui Wang
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Mengmeng Teng
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Taotao Wang
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Yalin Dong
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| |
Collapse
|
3
|
Guo Y, Wang S, Li P, Zhang P, Wang W. Rapid Colloidal Gold Immunoassay for Pharmacokinetic Evaluation of Vancomycin in the Cerebrospinal Fluid and Plasma of Beagle Dogs. SENSORS (BASEL, SWITZERLAND) 2023; 23:8978. [PMID: 37960677 PMCID: PMC10649247 DOI: 10.3390/s23218978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/26/2023] [Accepted: 11/02/2023] [Indexed: 11/15/2023]
Abstract
Vancomycin (VAN), a glycopeptide antibiotic, is the preferred therapeutic agent for treating Gram-positive bacteria. Rapid and precise quantification of VAN levels in cerebrospinal fluid (CSF) and plasma is crucial for optimized drug administration, particularly among elderly patients. Herein, we introduce a novel clinical test strip utilizing colloidal gold competitive immunoassay technology for the expedient detection of VAN. This test strip enables the detection of VAN concentrations in clinical samples such as plasma within 10 min and has a limit of detection of 10.3 ng/mL, with an inhibitory concentration 50% (IC50) value of 44.5 ng/mL. Furthermore, we used the test strip for pharmacokinetic analysis of VAN in the CSF and plasma of beagle dogs. Our results provide valuable insights into the fluctuations of the drug concentration in the CSF and plasma over a 24 h period after a single intravenous dose of 12 mg/kg. The test strip results were compared with the results obtained via liquid chromatography-mass spectrometry methods, and the measured VAN concentrations in the CSF and plasma via both of the methods showed excellent agreement.
Collapse
Affiliation(s)
- Yechang Guo
- School of Integrated Circuits, Peking University, Beijing 100871, China; (Y.G.); (P.L.); (P.Z.)
| | - Shaofeng Wang
- School of Engineering and Technology, China University of Geosciences (Beijing), Beijing 100083, China;
| | - Peiyue Li
- School of Integrated Circuits, Peking University, Beijing 100871, China; (Y.G.); (P.L.); (P.Z.)
| | - Pan Zhang
- School of Integrated Circuits, Peking University, Beijing 100871, China; (Y.G.); (P.L.); (P.Z.)
| | - Wei Wang
- School of Integrated Circuits, Peking University, Beijing 100871, China; (Y.G.); (P.L.); (P.Z.)
- National Key Laboratory of Advanced Micro and Nano Manufacture Technology, Beijing 100871, China
- Beijing Advanced Innovation Center for Integrated Circuits, Beijing 100871, China
| |
Collapse
|
4
|
Aaryashree, Choudhary AK, Yoshimi Y. Disposable Sensor Chips with Molecularly Imprinted Carbon Paste Electrodes for Monitoring Anti-Epileptic Drugs. SENSORS (BASEL, SWITZERLAND) 2023; 23:3271. [PMID: 36991982 PMCID: PMC10059048 DOI: 10.3390/s23063271] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/07/2023] [Accepted: 03/17/2023] [Indexed: 08/12/2023]
Abstract
Epilepsy is a neurological disorder that affects millions of people worldwide. Anti-epileptic drugs (AEDs) are critical for their management. However, the therapeutic window is narrow, and traditional laboratory-based therapeutic drug monitoring (TDM) methods can be time consuming and unsuitable for point-of-care testing. To address this issue, we developed a disposable sensor chip based on molecularly imprinted polymer-modified carbon paste electrodes (MIP-CPs) for the TDM of AEDs such as phenobarbital (PB), carbamazepine (CBZ), and levetiracetam (LEV). In this work, functional monomers (methacrylic acid) and crosslinking monomers (methylene bisacrylamide and ethylene glycol dimethacrylate) were copolymerized in the presence of the AED template and grafted on the graphite particles by simple radical photopolymerization. The grafted particles were mixed with silicon oil, dissolving ferrocene as a redox marker to make the MIP-carbon paste (CP). Disposable sensor chips were fabricated by packing the MIP-CP into the base made of poly (ethylene glycol terephthalate) (PET) film. The sensor's sensitivity was determined using differential pulse voltammetry (DPV), carried out on a single sensor chip for each operation. Linearity was obtained from 0-60 μg/mL in PB and LEV and 0-12 μg/mL in CBZ, covering their respective therapeutic range. The time taken for each measurement was around 2 min. The experiment using whole bovine blood and bovine plasma indicated that the existence of species that interfered had a negligible effect on the test's sensitivity. This disposable MIP sensor provides a promising approach for point-of-care testing and facilitating the management of epilepsy. Compared with existing tests, this sensor offers a faster and more accurate way to monitor AEDs, which is crucial for optimizing therapy and improving patient outcomes. Overall, the proposed disposable sensor chip based on MIP-CPs represents a significant advancement in AED monitoring, with the potential for rapid, accurate, and convenient point-of-care testing.
Collapse
Affiliation(s)
- Aaryashree
- Innovative Global Program, Shibaura Institute of Technology, Toyosu, Koto-City, Tokyo 135-8548, Japan;
| | - Ashish Kumar Choudhary
- Department Applied Chemistry, Shibaura Institute of Technology, Toyosu, Koto-City, Tokyo 135-8548, Japan
| | - Yasuo Yoshimi
- Department Applied Chemistry, Shibaura Institute of Technology, Toyosu, Koto-City, Tokyo 135-8548, Japan
| |
Collapse
|
5
|
Dai Z. Recent Advances in the Development of Portable Electrochemical Sensors for Controlled Substances. SENSORS (BASEL, SWITZERLAND) 2023; 23:3140. [PMID: 36991851 PMCID: PMC10058808 DOI: 10.3390/s23063140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/09/2023] [Accepted: 03/10/2023] [Indexed: 06/19/2023]
Abstract
This review article summarizes recent achievements in developing portable electrochemical sensing systems for the detection and/or quantification of controlled substances with potential on-site applications at the crime scene or other venues and in wastewater-based epidemiology. Electrochemical sensors employing carbon screen-printed electrodes (SPEs), including a wearable glove-based one, and aptamer-based devices, including a miniaturized aptamer-based graphene field effect transistor platform, are some exciting examples. Quite straightforward electrochemical sensing systems and methods for controlled substances have been developed using commercially available carbon SPEs and commercially available miniaturized potentiostats. They offer simplicity, ready availability, and affordability. With further development, they might become ready for deployment in forensic field investigation, especially when fast and informed decisions are to be made. Slightly modified carbon SPEs or SPE-like devices might be able to offer higher specificity and sensitivity while they can still be used on commercially available miniaturized potentiostats or lab-fabricated portable or even wearable devices. Affinity-based portable devices employing aptamers, antibodies, and molecularly imprinted polymers have been developed for more specific and sensitive detection and quantification. With further development of both hardware and software, the future of electrochemical sensors for controlled substances is bright.
Collapse
Affiliation(s)
- Zhaohua Dai
- Forensic Science Program, Department of Chemistry and Physical Sciences, Pace University, New York, NY 10038, USA
| |
Collapse
|
6
|
Afsharara H, Asadian E, Mostafiz B, Banan K, Bigdeli SA, Hatamabadi D, Keshavarz A, Hussain CM, Keçili R, Ghorbani-Bidkorpeh F. Molecularly imprinted polymer-modified carbon paste electrodes (MIP-CPE): A review on sensitive electrochemical sensors for pharmaceutical determinations. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2023.116949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
7
|
Recent Trends in the Development of Carbon-Based Electrodes Modified with Molecularly Imprinted Polymers for Antibiotic Electroanalysis. CHEMOSENSORS 2022. [DOI: 10.3390/chemosensors10070243] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Antibiotics are antibacterial agents applied in human and veterinary medicine. They are also employed to stimulate the growth of food-producing animals. Despite their benefits, the uncontrolled use of antibiotics results in serious problems, and therefore their concentration levels in different foods as well as in environmental samples were regulated. As a consequence, there is an increasing demand for the development of sensitive and selective analytical tools for antibiotic reliable and rapid detection. These requirements are accomplished by the combination of simple, cost-effective and affordable electroanalytical methods with molecularly imprinted polymers (MIPs) with high recognition specificity, based on their “lock and key” working principle, used to modify the electrode surface, which is the “heart” of any electrochemical device. This review presents a comprehensive overview of MIP-modified carbon-based electrodes developed in recent years for antibiotic detection. The MIP preparation and electrode modification procedures, along with the performance characteristics of sensors and analytical methods, as well as the applications for the antibiotics’ quantification from different matrices (pharmaceutical, biological, food and environmental samples), are discussed. The information provided by this review can inspire researchers to go deeper into the field of MIP-modified sensors and to develop efficient means for reliable antibiotic determination.
Collapse
|
8
|
Regasa MB, Nyokong T. Design and fabrication of electrochemical sensor based on molecularly imprinted polymer loaded onto silver nanoparticles for the detection of 17-β-Estradiol. J Mol Recognit 2022; 35:e2978. [PMID: 35633278 DOI: 10.1002/jmr.2978] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 11/09/2022]
Abstract
In this research report, we prepared an electrochemical sensor based on the molecularly imprinted poly(p-aminophenol) supported by silver nanoparticles capped with 2-mercaptobenzoxazole (AgNP) for the selective and sensitive detection of endocrine disrupting 17β-estradiol (E2). The electropolymerization of the functional monomer prepared the proposed MIP composite-based sensor in the presence of E2 as a template. The recognition materials were characterized using Fourier transform infrared, cyclic voltammetry (CV), square wave voltammetry (SWV), scanning electron microscopy, energy-dispersive X-ray spectroscopy and x-ray powder diffraction techniques. The electrochemical measurements were performed by employing both CV and SWV methods. We did the optimization of critical parameters affecting the sensor performances through the experimental design and verification. The developed sensor showed a linear range from 10 pM to 100 nM with the calculated quantification and detection limits of 1.86 pM and 6.19 pM, respectively. The incorporation of AgNP with high electrical conductivity into the MIP matrix enhanced the sensor's performance. Furthermore, the sensor was applied to determine E2 in real water samples without any sample preconcentration steps to achieve the percent recovery of 91.87-98.36% and acceptable reusability and storage stability performances. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Melkamu Biyana Regasa
- Institute for Nanotechnology Innovation, Rhodes University, Makhanda, South Africa.,Chemistry Department, College of Natural and Computational Sciences, Wollega University, Nekemte, Ethiopia
| | - Tebello Nyokong
- Chemistry Department, College of Natural and Computational Sciences, Wollega University, Nekemte, Ethiopia
| |
Collapse
|
9
|
Aaryashree, Ohishi T, Yoshimi Y. A Disposable Sensor Chip Using a Paste Electrode with Surface-Imprinted Graphite Particles for Rapid and Reagentless Monitoring of Theophylline. Molecules 2022; 27:2456. [PMID: 35458653 PMCID: PMC9032138 DOI: 10.3390/molecules27082456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/04/2022] [Accepted: 04/06/2022] [Indexed: 11/25/2022] Open
Abstract
This work focuses on a carbon-based imprinted polymer composite, employed as a molecular recognition and sensing interface in fabricating a disposable electrochemical sensor. The carbon-paste electrode was made of a molecularly imprinted polymer comprising a copolymer of methacrylic acid as the functional monomer and blended crosslinking monomers of N,N'-methylenebisacrylamide, and ethylene glycol dimethacrylate, with theophylline as the template. The analytical properties of the proposed theophylline sensor were investigated, and the findings revealed an increase in differential pulse voltammetric current compared to the non-imprinted electrode. Under optimized conditions, the sensor has shown high sensitivity, high selectivity, lower detection limit (2.5 µg/mL), and satisfactory long-term stability. Further, the sensor was tested in whole bovine blood and validated without any matrix effect and cross-reactivity. Additionally, chronoamperometry of the sensor chip supported a rapid determination of THO with a short response time of 3 s. This carbon-paste electrode is highly specific for theophylline and may be applied as a drug sensor for clinical use.
Collapse
Affiliation(s)
- Aaryashree
- Innovative Global Program, Shibaura Institute of Technology, Tokyo 135-8548, Japan;
- Department of Applied Chemistry, Shibaura Institute of Technology, Tokyo 135-8548, Japan;
| | - Tomoji Ohishi
- Department of Applied Chemistry, Shibaura Institute of Technology, Tokyo 135-8548, Japan;
| | - Yasuo Yoshimi
- Department of Applied Chemistry, Shibaura Institute of Technology, Tokyo 135-8548, Japan;
- The Japanese Association of Bio-Intelligence for Well-Being, Saitama 337-8570, Japan
| |
Collapse
|
10
|
Pillai S, Upadhyay A, Sayson D, Nguyen BH, Tran SD. Advances in Medical Wearable Biosensors: Design, Fabrication and Materials Strategies in Healthcare Monitoring. Molecules 2021; 27:165. [PMID: 35011400 PMCID: PMC8746599 DOI: 10.3390/molecules27010165] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/19/2021] [Accepted: 12/23/2021] [Indexed: 12/15/2022] Open
Abstract
In the past decade, wearable biosensors have radically changed our outlook on contemporary medical healthcare monitoring systems. These smart, multiplexed devices allow us to quantify dynamic biological signals in real time through highly sensitive, miniaturized sensing platforms, thereby decentralizing the concept of regular clinical check-ups and diagnosis towards more versatile, remote, and personalized healthcare monitoring. This paradigm shift in healthcare delivery can be attributed to the development of nanomaterials and improvements made to non-invasive biosignal detection systems alongside integrated approaches for multifaceted data acquisition and interpretation. The discovery of new biomarkers and the use of bioaffinity recognition elements like aptamers and peptide arrays combined with the use of newly developed, flexible, and conductive materials that interact with skin surfaces has led to the widespread application of biosensors in the biomedical field. This review focuses on the recent advances made in wearable technology for remote healthcare monitoring. It classifies their development and application in terms of electrochemical, mechanical, and optical modes of transduction and type of material used and discusses the shortcomings accompanying their large-scale fabrication and commercialization. A brief note on the most widely used materials and their improvements in wearable sensor development is outlined along with instructions for the future of medical wearables.
Collapse
Affiliation(s)
- Sangeeth Pillai
- McGill Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dentistry, McGill University, 3640 University Street, Montreal, QC H3A 0C7, Canada; (S.P.); (A.U.); (D.S.)
| | - Akshaya Upadhyay
- McGill Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dentistry, McGill University, 3640 University Street, Montreal, QC H3A 0C7, Canada; (S.P.); (A.U.); (D.S.)
| | - Darren Sayson
- McGill Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dentistry, McGill University, 3640 University Street, Montreal, QC H3A 0C7, Canada; (S.P.); (A.U.); (D.S.)
| | - Bich Hong Nguyen
- Department of Pediatrics, CHU Sainte Justine Hospital, Montreal, QC H3T 1C5, Canada;
| | - Simon D. Tran
- McGill Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dentistry, McGill University, 3640 University Street, Montreal, QC H3A 0C7, Canada; (S.P.); (A.U.); (D.S.)
| |
Collapse
|
11
|
Reagentless Sensing of Vancomycin Using an Indium Tin Oxide Electrode Grafted with Molecularly Imprinted Polymer including Ferrocenyl Group. SENSORS 2021; 21:s21248338. [PMID: 34960432 PMCID: PMC8706183 DOI: 10.3390/s21248338] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/03/2021] [Accepted: 12/10/2021] [Indexed: 11/17/2022]
Abstract
Vancomycin (VCM) is a first-line antimicrobial agent against methicillin-resistant Staphylococcus aureus, a cause of nosocomial infections. Therapeutic drug monitoring is strongly recommended for VCM-based chemotherapy. The authors attempted to develop a simple VCM sensor based on molecularly imprinted polymer (MIP), which can be used with simple operations. Methacrylic acid (MAA), acrylamide, methylenebisacrylamide, and allylamine carboxypropionate-3-ferrocene (ACPF) were copolymerized in the presence of VCM and grafted from the surface of indium-tin oxide (ITO) to obtain MIP-coated electrodes. The MIP-grafted ITO electrode was used for differential pulse voltammetry (DPV) measurements in a buffer solution containing VCM or whole bovine blood. The obtained current depends on the VCM concentration with high linearity. The dynamic range covered the therapeutic range (20–40 μg/mL) of the VCM but was almost insensitive to teicoplanin, which has a similar structure to VCM. The ITO electrodes grafted by the same procedure except for omitting either VCM or APCF were not sensitive to VCM. The sensitivity of the MIP electrodes to VCM in whole blood and buffered saline, but the background current in blood was higher than that in saline. This high background current was also seen in the deproteinized plasma. Thus, the current is probably originated from the oxidation of low molecular weight reducing agents in the blood. The MIP-grafted ITO electrode using ACPF as a functional monomer would be a promising highly selective sensor for real-time monitoring of VCM with proper correction of the background current.
Collapse
|
12
|
Crapnell RD, Banks CE. Electroanalytical overview: The electroanalytical detection of theophylline. TALANTA OPEN 2021. [DOI: 10.1016/j.talo.2021.100037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|