1
|
De Lathauwer ILJ, Nieuwenhuys WW, Hafkamp F, Regis M, Brouwers RWM, Funk M, Kemps HMC. Remote patient monitoring in heart failure: A comprehensive meta-analysis of effective programme components for hospitalization and mortality reduction. Eur J Heart Fail 2025. [PMID: 39834044 DOI: 10.1002/ejhf.3568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 11/12/2024] [Accepted: 12/02/2024] [Indexed: 01/22/2025] Open
Abstract
AIMS Methods of non-invasive remote patient monitoring (RPM) for heart failure (HF) remain diverse. Understanding factors that influence the effectiveness of RPM on HF-related and all-cause hospitalizations, mortality, and emergency department visits is crucial for developing successful RPM interventions. This meta-analysis aims to synthesize and compare existing literature on RPM components that impact HF-related and all-cause hospitalizations, mortality and emergency department visits in HF patients. METHODS AND RESULTS A systematic search of electronic databases (PubMed, EMBASE, CENTRAL) identified randomized controlled trials from January 2012 to June 2023, comparing non-invasive RPM interventions for HF with usual care. A random-effects meta-analysis assessed outcomes, and additional analyses identified effective RPM components. A total of 41 studies with 16 312 patients (mean follow-up: 9.88 ± 6.37 months) were included. RPM was associated with lower mortality risk (pooled odds ratio [OR] 0.81 95% confidence interval [CI] 0.69-0.95; I2 = 0.39) and reduced first HF hospitalization risk (pooled OR 0.78, 95% CI: 0.70-0.87; I2 = 0.21) compared to usual care. RPM interventions with a self-management module (p < 0.001) and education module (p = 0.028) significantly lowered HF-related hospitalizations. Video calls during RPM interventions further reduced HF-related (p = 0.047) and all-cause hospitalizations (p < 0.001). CONCLUSION This meta-analysis confirms the efficacy of RPM in reducing HF-related hospitalizations and mortality. Effective components include self-management, education modules, and video communication. However, heterogeneity among interventions challenges the overall evaluation. Modernizing RPM with advanced technologies like non-invasive sensors, artificial intelligence, and cardiac telerehabilitation could enhance its potential.
Collapse
Affiliation(s)
- Ignace L J De Lathauwer
- Department of Cardiology, Máxima Medical Centre, Veldhoven, The Netherlands
- Department of Industrial Design, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Wessel W Nieuwenhuys
- Department of Industrial Design, Eindhoven University of Technology, Eindhoven, The Netherlands
- Eindhoven MedTech Innovation Center (e/MTIC), Eindhoven, The Netherlands
- Nederlands Hart Netwerk, Eindhoven, The Netherlands
| | | | - Marta Regis
- Department of Mathematics and Computer Science, Statistics, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Rutger W M Brouwers
- Department of Industrial Design, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Mathias Funk
- Department of Industrial Design, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Hareld M C Kemps
- Department of Cardiology, Máxima Medical Centre, Veldhoven, The Netherlands
- Department of Industrial Design, Eindhoven University of Technology, Eindhoven, The Netherlands
| |
Collapse
|
2
|
Arriola-Montenegro J, Mutirangura P, Akram H, Tsangaris A, Koukousaki D, Tschida M, Money J, Kosmopoulos M, Harata M, Hughes A, Toth A, Alexy T. Noninvasive biometric monitoring technologies for patients with heart failure. Heart Fail Rev 2024:10.1007/s10741-024-10441-7. [PMID: 39436486 DOI: 10.1007/s10741-024-10441-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/11/2024] [Indexed: 10/23/2024]
Abstract
Heart failure remains one of the leading causes of mortality and hospitalizations in the US that not only impacts quality of life but also poses a significant public health burden. The majority of affected patients are admitted with signs and symptoms of congestion. Despite the initial enthusiasm, traditional remote monitoring strategies focusing primarily on weight gain failed to improve clinical outcomes. Implantable pulmonary artery pressure sensors provide earlier and actionable data, but most patients would favor forgoing an invasive procedure in favor of an alternative, non-invasive monitoring platform. Several devices utilizing different combinations of multiparameter monitoring to reliably detect congestion have recently been developed and are undergoing testing in the clinical setting. Combining these sensors with the power of artificial intelligence and machine learning has the potential to revolutionize remote patient monitoring and early congestion detection and to facilitate timely interventions by the care team to prevent hospitalization. This manuscript provides an objective review of novel, noninvasive, multiparameter remote monitoring platforms that may be tailored to individual heart failure phenotypes, aiming to improve quality of life and survival.
Collapse
Affiliation(s)
| | | | - Hassan Akram
- Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Adamantios Tsangaris
- Department of Medicine, Division of Cardiology, University of Minnesota, Minneapolis, MN, 55127, USA
| | - Despoina Koukousaki
- Department of Medicine, Division of Cardiology, University of Minnesota, Minneapolis, MN, 55127, USA
| | | | - Joel Money
- Department of Medicine, Division of Cardiology, University of Minnesota, Minneapolis, MN, 55127, USA
| | | | - Mikako Harata
- Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Andrew Hughes
- Department of Medicine, Division of Cardiology, University of Minnesota, Minneapolis, MN, 55127, USA
| | - Andras Toth
- Department of Medical Imaging, University of Pecs, Pecs, Hungary
| | - Tamas Alexy
- Department of Medicine, Division of Cardiology, University of Minnesota, Minneapolis, MN, 55127, USA.
| |
Collapse
|
3
|
Mody R, Nee Sheth AB, Dash D, Mody B, Agrawal A, Monga IS, Rastogi L, Munjal A. Device therapies for heart failure with reduced ejection fraction: a new era. Front Cardiovasc Med 2024; 11:1388232. [PMID: 39494238 PMCID: PMC11527719 DOI: 10.3389/fcvm.2024.1388232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 09/02/2024] [Indexed: 11/05/2024] Open
Abstract
Even with significant advancements in the treatment modalities for patients with heart failure (HF), the rates of morbidity and mortality associated with HF are still high. Various therapeutic interventions, including cardiac resynchronization therapy, Implantable Cardiovascular-Defibrillators, and left ventricular assist devices, are used for HF management. Currently, more research and developments are required to identify different treatment modalities to reduce hospitalization rates and improve the quality of life of patients with HF. In relation to this, various non-valvular catheter-based therapies have been recently developed for managing chronic HF. These devices target the pathophysiological processes involved in HF development including neurohumoral activation, congestion, and left ventricular remodeling. The present review article aimed to discuss the major transcatheter devices used in managing chronic HF. The rationale and current clinical developmental stages of these interventions will also be addressed in this review.
Collapse
Affiliation(s)
- Rohit Mody
- Department of Cardiology, Mody Harvard Cardiac Institute & Research Centre, Krishna Super Specialty Hospital, Bathinda, India
| | - Abha Bajaj Nee Sheth
- Department of Anatomy, Dr Harvansh Singh Judge Institute of Dental Sciences & Hospital, Panjab University, Chandigarh, India
| | - Debabrata Dash
- Department of Cardiology, Aster Hospital, Dubai, United Arab Emirates
| | - Bhavya Mody
- Department of Medicine, Kasturba Medical College, Manipal, India
| | - Ankit Agrawal
- Department of Cardiology, Cleveland Clinic, Cleveland, OH, United States
| | | | - Lakshay Rastogi
- Department of Medicine, Kasturba Medical College, Manipal, India
| | - Amit Munjal
- Department of Cardiology, Dr Asha Memorial Multispecialty Hospital, Fatehabad, India
| |
Collapse
|
4
|
Huang S, Huang X, Liu Z, Yao C, Liu J, He M, Xu X, Zhang T, Wang J, Jiang L, Chen HJ, Xie X. Advances in Multifunctional Electronic Catheters for Precise and Intelligent Diagnosis and Therapy in Minimally Invasive Surgery. ACS NANO 2024; 18:18129-18150. [PMID: 38954632 DOI: 10.1021/acsnano.4c03871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
The advent of catheter-based minimally invasive surgical instruments has provided an effective means of diagnosing and treating human disease. However, conventional medical catheter devices are limited in functionalities, hindering their ability to gather tissue information or perform precise treatment during surgery. Recently, electronic catheters have integrated various sensing and therapeutic technologies through micro/nanoelectronics, expanding their capabilities. As micro/nanoelectronic devices become more miniaturized, flexible, and stable, electronic surgical catheters are evolving from simple tools to multiplexed sensing and theranostics for surgical applications. The review on multifunctional electronic surgical catheters is lacking and thus is not conducive to the reader's comprehensive understanding of the development trend in this field. This review covers the advances in multifunctional electronic catheters for precise and intelligent diagnosis and therapy in minimally invasive surgery. It starts with the summary of clinical minimally invasive surgical instruments, followed by the background of current clinical catheter devices for sensing and therapeutic applications. Next, intelligent electronic catheters with integrated electronic components are reviewed in terms of electronic catheters for diagnosis, therapy, and multifunctional applications. It highlights the present status and development potential of catheter-based minimally invasive surgical devices, while also illustrating several significant challenges that remain to be overcome.
Collapse
Affiliation(s)
- Shuang Huang
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering, Sun Yat-Sen University, Shenzhen 518107, China
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Xinshuo Huang
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Zhengjie Liu
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Chuanjie Yao
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Jing Liu
- The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Mengyi He
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Xingyuan Xu
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Tao Zhang
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering, Sun Yat-Sen University, Shenzhen 518107, China
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Ji Wang
- The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Lelun Jiang
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering, Sun Yat-Sen University, Shenzhen 518107, China
| | - Hui-Jiuan Chen
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Xi Xie
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering, Sun Yat-Sen University, Shenzhen 518107, China
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
5
|
Teixeira AR, Barbas de Albuquerque F, Pereira-da-Silva T, Cacela D, Cruz Ferreira R. A rare case of CardioMEMS™ sensor migration. Future Cardiol 2024; 20:453-458. [PMID: 38899747 PMCID: PMC11485755 DOI: 10.1080/14796678.2024.2363717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 05/31/2024] [Indexed: 06/21/2024] Open
Abstract
The CardioMEMS™ system remotely monitors changes in pulmonary artery pressures, which allows for early detection of heart failure worsening. It is a safe and reliable invasive monitoring system. We report a case in which there was a late migration of the device at 6 months of follow-up to the contralateral pulmonary artery. The mechanisms, consequences, and management of device migration are discussed. To our knowledge, there are very few published data on late sensor migration.
Collapse
Affiliation(s)
- Ana Rita Teixeira
- Department of Cardiology, Hospital de Santa Marta, Unidade Local de Saúde de São José, Lisbon, Portugal
| | | | - Tiago Pereira-da-Silva
- Department of Cardiology, Hospital de Santa Marta, Unidade Local de Saúde de São José, Lisbon, Portugal
| | - Duarte Cacela
- Department of Cardiology, Hospital de Santa Marta, Unidade Local de Saúde de São José, Lisbon, Portugal
| | - Rui Cruz Ferreira
- Department of Cardiology, Hospital de Santa Marta, Unidade Local de Saúde de São José, Lisbon, Portugal
| |
Collapse
|
6
|
Ciotola F, Pyxaras S, Rittger H, Buia V. MEMS Technology in Cardiology: Advancements and Applications in Heart Failure Management Focusing on the CardioMEMS Device. SENSORS (BASEL, SWITZERLAND) 2024; 24:2922. [PMID: 38733027 PMCID: PMC11086351 DOI: 10.3390/s24092922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/28/2024] [Accepted: 04/30/2024] [Indexed: 05/13/2024]
Abstract
Heart failure (HF) is a complex clinical syndrome associated with significant morbidity, mortality, and healthcare costs. It is characterized by various structural and/or functional abnormalities of the heart, resulting in elevated intracardiac pressure and/or inadequate cardiac output at rest and/or during exercise. These dysfunctions can originate from a variety of conditions, including coronary artery disease, hypertension, cardiomyopathies, heart valve disorders, arrhythmias, and other lifestyle or systemic factors. Identifying the underlying cause is crucial for detecting reversible or treatable forms of HF. Recent epidemiological studies indicate that there has not been an increase in the incidence of the disease. Instead, patients seem to experience a chronic trajectory marked by frequent hospitalizations and stagnant mortality rates. Managing these patients requires a multidisciplinary approach that focuses on preventing disease progression, controlling symptoms, and preventing acute decompensations. In the outpatient setting, patient self-care plays a vital role in achieving these goals. This involves implementing necessary lifestyle changes and promptly recognizing symptoms/signs such as dyspnea, lower limb edema, or unexpected weight gain over a few days, to alert the healthcare team for evaluation of medication adjustments. Traditional methods of HF monitoring, such as symptom assessment and periodic clinic visits, may not capture subtle changes in hemodynamics. Sensor-based technologies offer a promising solution for remote monitoring of HF patients, enabling early detection of fluid overload and optimization of medical therapy. In this review, we provide an overview of the CardioMEMS device, a novel sensor-based system for pulmonary artery pressure monitoring in HF patients. We discuss the technical aspects, clinical evidence, and future directions of CardioMEMS in HF management.
Collapse
Affiliation(s)
| | | | | | - Veronica Buia
- Medizinische Klinik I, Klinikum Fürth, Academic Teaching Hospital of the Friedrich-Alexander-University Erlangen-Nürnberg, Jakob-Henle Str. 1, 90766 Fürth, Germany; (F.C.); (S.P.); (H.R.)
| |
Collapse
|
7
|
Roubille F, Mercier G, Lancman G, Pasche H, Alami S, Delval C, Bessou A, Vadel J, Rey A, Duret S, Abraham E, Chatellier G, Durand Zaleski I. Weight telemonitoring of heart failure versus standard of care in a real-world setting: Results on mortality and hospitalizations in a 6-month nationwide matched cohort study. Eur J Heart Fail 2024; 26:1201-1214. [PMID: 38450858 DOI: 10.1002/ejhf.3191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 02/22/2024] [Accepted: 02/22/2024] [Indexed: 03/08/2024] Open
Abstract
AIMS Evaluating the benefit of telemonitoring in heart failure (HF) management in real-world settings is crucial for optimizing the healthcare pathway. The aim of this study was to assess the association between a 6-month application of the telemonitoring solution Chronic Care Connect™ (CCC) and mortality, HF hospitalizations, and associated costs compared with standard of care (SOC) in patients with a diagnosis of HF. METHODS AND RESULTS From February 2018 to March 2020, a retrospective cohort study was conducted using the largest healthcare insurance system claims database in France (Système National des Données de Santé) linked to the CCC telemonitoring database of adult patients with an ICD-10-coded diagnosis of HF. Patients from the telemonitoring group were matched with up to two patients from the SOC group based on their high-dimensional propensity score, without replacement, using the nearest-neighbour method. A total of 1358 telemonitored patients were matched to 2456 SOC patients. The cohorts consisted of high-risk patients with median times from last HF hospitalization to index date of 17.0 (interquartile range: 7.0-66.0) days for the telemonitoring group and 27.0 (15.0-70.0) days for the SOC group. After 6 months, telemonitoring was associated with mortality risk reduction (hazard ratio [HR] 0.71, 95% confidence interval [CI] 0.56-0.89), a higher risk of first HF hospitalization (HR 1.81, 95% CI 1.55-2.13), and higher HF healthcare costs (relative cost 1.38, 95% CI 1.26-1.51). Compared with the SOC group, the telemonitoring group experienced a shorter average length of overnight HF hospitalization and fewer emergency visits preceding HF hospitalizations. CONCLUSION The results of this nationwide cohort study highlight a valuable role for telemonitoring solutions such as CCC in the management of high-risk HF patients. However, for telemonitoring solutions based on weight and symptoms, consideration should be given to implement additional methods of assessment to recognize imminent worsening of HF, such as impedance changes, as a way to reduce mortality risk and the need for HF hospitalizations. Further studies are warranted to refine selection of patients who could benefit from a telemonitoring system and to confirm long-term benefits in high-risk and stable HF patients.
Collapse
Affiliation(s)
- François Roubille
- Cardiology Department, Hôpital Lapeyronie, PhyMedExp, University of Montpellier, INSERM, CNRS, CHRU, INI-CRT, Montpellier, France
| | - Grégoire Mercier
- Economic Evaluation Unit (URME), University Hospital of Montpellier, Montpellier, France
- IDESP, Université de Montpellier, INSERM, Montpellier, France
| | | | | | - Sarah Alami
- Air Liquide Santé International, Bagneux, France
| | | | | | | | | | | | | | - Gilles Chatellier
- Department of Statistics Informatics and Public Health, Université Paris-Cité, Paris, France
- Clinical Research Unit, Groupe Hospitalier Paris Saint Joseph, Paris, France
| | - Isabelle Durand Zaleski
- Université de Paris, CRESS, INSERM, INRA, URCEco, AP-HP, Hôpital de l'Hôtel Dieu, Paris, France
- Santé Publique Hôpital Henri Mondor, Créteil, France
| |
Collapse
|
8
|
Scholte NTB, van Ravensberg AE, Edgar R, van den Enden AJM, van Mieghem NMDA, Brugts JJ, Bonnes JL, Bruining N, van der Boon RMA. Photoplethysmography and intracardiac pressures: early insights from a pilot study. EUROPEAN HEART JOURNAL. DIGITAL HEALTH 2024; 5:379-383. [PMID: 38774368 PMCID: PMC11104463 DOI: 10.1093/ehjdh/ztae020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 02/15/2024] [Accepted: 02/25/2024] [Indexed: 05/24/2024]
Abstract
Aims Invasive haemodynamic monitoring of heart failure (HF) is used to detect deterioration in an early phase thereby preventing hospitalizations. However, this invasive approach is costly and presently lacks widespread accessibility. Hence, there is a pressing need to identify an alternative non-invasive method that is reliable and more readily available. In this pilot study, we investigated the relation between wrist-derived photoplethysmography (PPG) signals and the invasively measured pulmonary capillary wedge pressure (PCWP). Methods and results Fourteen patients with aortic valve stenosis who underwent transcatheter aortic valve replacement with concomitant right heart catheterization and PPG measurements were included. Six unique features of the PPG signals [heart rate, heart rate variability, systolic amplitude (SA), diastolic amplitude, crest time (CT), and large artery stiffness index (LASI)] were extracted. These features were used to estimate the continuous PCWP values and the categorized PCWP (low < 12 mmHg vs. high ≥ 12 mmHg). All PPG features resulted in regression models that showed low correlations with the invasively measured PCWP. Classification models resulted in higher performances: the model based on the SA and the model based on the LASI both resulted in an area under the curve (AUC) of 0.86 and the model based on the CT resulted in an AUC of 0.72. Conclusion These results demonstrate the capability to non-invasively classify patients into clinically meaningful categories of PCWP using PPG signals from a wrist-worn wearable device. To enhance and fully explore its potential, the relationship between PPG and PCWP should be further investigated in a larger cohort of HF patients.
Collapse
Affiliation(s)
- Niels T B Scholte
- Department of Cardiology, Cardiovascular Institute, Erasmus Medical Center, Dr. Molewaterplein 40, 3015 GD, Rotterdam, the Netherlands
| | - Annemiek E van Ravensberg
- Department of Cardiology, Cardiovascular Institute, Erasmus Medical Center, Dr. Molewaterplein 40, 3015 GD, Rotterdam, the Netherlands
| | - Roos Edgar
- Department of Cardiology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Antoon J M van den Enden
- Department of Cardiology, Cardiovascular Institute, Erasmus Medical Center, Dr. Molewaterplein 40, 3015 GD, Rotterdam, the Netherlands
| | - Nicolas M D A van Mieghem
- Department of Cardiology, Cardiovascular Institute, Erasmus Medical Center, Dr. Molewaterplein 40, 3015 GD, Rotterdam, the Netherlands
| | - Jasper J Brugts
- Department of Cardiology, Cardiovascular Institute, Erasmus Medical Center, Dr. Molewaterplein 40, 3015 GD, Rotterdam, the Netherlands
| | - Judith L Bonnes
- Department of Cardiology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Nico Bruining
- Department of Cardiology, Cardiovascular Institute, Erasmus Medical Center, Dr. Molewaterplein 40, 3015 GD, Rotterdam, the Netherlands
| | - Robert M A van der Boon
- Department of Cardiology, Cardiovascular Institute, Erasmus Medical Center, Dr. Molewaterplein 40, 3015 GD, Rotterdam, the Netherlands
| |
Collapse
|
9
|
Piccirillo G, Moscucci F, Mezzadri M, Caltabiano C, Cisaria G, Vizza G, De Santis V, Giuffrè M, Stefano S, Scinicariello C, Carnovale M, Corrao A, Lospinuso I, Sciomer S, Rossi P. Artificial Intelligence Applied to Electrical and Non-Invasive Hemodynamic Markers in Elderly Decompensated Chronic Heart Failure Patients. Biomedicines 2024; 12:716. [PMID: 38672072 PMCID: PMC11048014 DOI: 10.3390/biomedicines12040716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/16/2024] [Accepted: 03/18/2024] [Indexed: 04/28/2024] Open
Abstract
OBJECTIVES The first aim of this study was to assess the predictive power of Tend interval (Te) and non-invasive hemodynamic markers, based on bioimpedance in decompensated chronic heart failure (CHF). The second one was to verify the possible differences in repolarization and hemodynamic data between CHF patients grouped by level of left ventricular ejection fraction (LVEF). Finally, we wanted to check if repolarization and hemodynamic data changed with clinical improvement or worsening in CHF patients. METHODS Two hundred and forty-three decompensated CHF patients were studied by 5 min ECG recordings to determine the mean and standard deviation (TeSD) of Te (first study). In a subgroup of 129 patients (second study), non-invasive hemodynamic and repolarization data were recorded for further evaluation. RESULTS Total in-hospital and cardiovascular mortality rates were respectively 19 and 9%. Te was higher in the deceased than in surviving subjects (Te: 120 ± 28 vs. 100 ± 25 ms) and multivariable logistic regression analysis reported that Te was related to an increase of total (χ2: 35.45, odds ratio: 1.03, 95% confidence limit: 1.02-1.05, p < 0.001) and cardiovascular mortality (χ2: 32.58, odds ratio: 1.04, 95% confidence limit: 1.02-1.06, p < 0.001). Subjects with heart failure with reduced ejection fraction (HFrEF) reported higher levels of repolarization and lower non-invasive systolic hemodynamic data in comparison to those with preserved ejection fraction (HFpEF). In the subgroup, patients with the NT-proBNP reduction after therapy showed a lower rate of Te, heart rate, blood pressures, contractility index, and left ventricular ejection time in comparison with the patients without NT-proBNP reduction. CONCLUSION Electrical signals from ECG and bioimpedance were capable of monitoring the patients with advanced decompensated CHF. These simple, inexpensive, non-invasive, easily repeatable, and transmissible markers could represent a tool to remotely monitor and to intercept the possible worsening of these patients early by machine learning and artificial intelligence tools.
Collapse
Affiliation(s)
- Gianfranco Piccirillo
- Department of Internal and Clinical Medicine, Anesthesiology and Cardiovascular Sciences, Policlinico Umberto I, “Sapienza” University of Rome, 00185 Rome, Italy; (G.P.); (M.M.); (C.C.); (G.C.); (G.V.); (V.D.S.); (M.G.); (S.S.); (C.S.); (M.C.); (A.C.); (S.S.)
| | - Federica Moscucci
- Department of Internal Medicine and Medical Specialties, Policlinico Umberto I, Viale del Policlinico, 155, 00161 Rome, Italy;
| | - Martina Mezzadri
- Department of Internal and Clinical Medicine, Anesthesiology and Cardiovascular Sciences, Policlinico Umberto I, “Sapienza” University of Rome, 00185 Rome, Italy; (G.P.); (M.M.); (C.C.); (G.C.); (G.V.); (V.D.S.); (M.G.); (S.S.); (C.S.); (M.C.); (A.C.); (S.S.)
| | - Cristina Caltabiano
- Department of Internal and Clinical Medicine, Anesthesiology and Cardiovascular Sciences, Policlinico Umberto I, “Sapienza” University of Rome, 00185 Rome, Italy; (G.P.); (M.M.); (C.C.); (G.C.); (G.V.); (V.D.S.); (M.G.); (S.S.); (C.S.); (M.C.); (A.C.); (S.S.)
| | - Giovanni Cisaria
- Department of Internal and Clinical Medicine, Anesthesiology and Cardiovascular Sciences, Policlinico Umberto I, “Sapienza” University of Rome, 00185 Rome, Italy; (G.P.); (M.M.); (C.C.); (G.C.); (G.V.); (V.D.S.); (M.G.); (S.S.); (C.S.); (M.C.); (A.C.); (S.S.)
| | - Guendalina Vizza
- Department of Internal and Clinical Medicine, Anesthesiology and Cardiovascular Sciences, Policlinico Umberto I, “Sapienza” University of Rome, 00185 Rome, Italy; (G.P.); (M.M.); (C.C.); (G.C.); (G.V.); (V.D.S.); (M.G.); (S.S.); (C.S.); (M.C.); (A.C.); (S.S.)
| | - Valerio De Santis
- Department of Internal and Clinical Medicine, Anesthesiology and Cardiovascular Sciences, Policlinico Umberto I, “Sapienza” University of Rome, 00185 Rome, Italy; (G.P.); (M.M.); (C.C.); (G.C.); (G.V.); (V.D.S.); (M.G.); (S.S.); (C.S.); (M.C.); (A.C.); (S.S.)
| | - Marco Giuffrè
- Department of Internal and Clinical Medicine, Anesthesiology and Cardiovascular Sciences, Policlinico Umberto I, “Sapienza” University of Rome, 00185 Rome, Italy; (G.P.); (M.M.); (C.C.); (G.C.); (G.V.); (V.D.S.); (M.G.); (S.S.); (C.S.); (M.C.); (A.C.); (S.S.)
| | - Sara Stefano
- Department of Internal and Clinical Medicine, Anesthesiology and Cardiovascular Sciences, Policlinico Umberto I, “Sapienza” University of Rome, 00185 Rome, Italy; (G.P.); (M.M.); (C.C.); (G.C.); (G.V.); (V.D.S.); (M.G.); (S.S.); (C.S.); (M.C.); (A.C.); (S.S.)
| | - Claudia Scinicariello
- Department of Internal and Clinical Medicine, Anesthesiology and Cardiovascular Sciences, Policlinico Umberto I, “Sapienza” University of Rome, 00185 Rome, Italy; (G.P.); (M.M.); (C.C.); (G.C.); (G.V.); (V.D.S.); (M.G.); (S.S.); (C.S.); (M.C.); (A.C.); (S.S.)
| | - Myriam Carnovale
- Department of Internal and Clinical Medicine, Anesthesiology and Cardiovascular Sciences, Policlinico Umberto I, “Sapienza” University of Rome, 00185 Rome, Italy; (G.P.); (M.M.); (C.C.); (G.C.); (G.V.); (V.D.S.); (M.G.); (S.S.); (C.S.); (M.C.); (A.C.); (S.S.)
| | - Andrea Corrao
- Department of Internal and Clinical Medicine, Anesthesiology and Cardiovascular Sciences, Policlinico Umberto I, “Sapienza” University of Rome, 00185 Rome, Italy; (G.P.); (M.M.); (C.C.); (G.C.); (G.V.); (V.D.S.); (M.G.); (S.S.); (C.S.); (M.C.); (A.C.); (S.S.)
| | - Ilaria Lospinuso
- Department of Internal Medicine and Medical Specialties, Policlinico Umberto I, Viale del Policlinico, 155, 00161 Rome, Italy;
| | - Susanna Sciomer
- Department of Internal and Clinical Medicine, Anesthesiology and Cardiovascular Sciences, Policlinico Umberto I, “Sapienza” University of Rome, 00185 Rome, Italy; (G.P.); (M.M.); (C.C.); (G.C.); (G.V.); (V.D.S.); (M.G.); (S.S.); (C.S.); (M.C.); (A.C.); (S.S.)
| | - Pietro Rossi
- Arrhythmology Unit, Fatebenefratelli Hospital, Isola Tiberina-Gemelli Isola, 00186 Rome, Italy;
| |
Collapse
|
10
|
Sorolla-Romero JA, Navarrete-Navarro J, Martinez-Sole J, Garcia HMG, Diez-Gil JL, Martinez-Dolz L, Sanz-Sanchez J. Pharmacological Considerations during Percutaneous Treatment of Heart Failure. Curr Pharm Des 2024; 30:565-577. [PMID: 38477207 DOI: 10.2174/0113816128284131240209113009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 01/25/2024] [Indexed: 03/14/2024]
Abstract
Heart Failure (HF) remains a global health challenge, marked by its widespread prevalence and substantial resource utilization. Although the prognosis has improved in recent decades due to the treatments implemented, it continues to generate high morbidity and mortality in the medium to long term. Interventional cardiology has emerged as a crucial player in HF management, offering a diverse array of percutaneous treatments for both acute and chronic HF. This article aimed to provide a comprehensive review of the role of percutaneous interventions in HF patients, with a primary focus on key features, clinical effectiveness, and safety outcomes. Despite the growing utilization of these interventions, there remain critical gaps in the existing body of evidence. Consequently, the need for high-quality randomized clinical trials and extensive international registries is emphasized to shed light on the specific patient populations and clinical scenarios that stand to benefit most from these innovative devices.
Collapse
Affiliation(s)
- Jose Antonio Sorolla-Romero
- Department of Cardiology, Hospital Universitari i Politècnic La Fe, Avenida Fernando Abril Martorell 116, Valencia, Spain
| | - Javier Navarrete-Navarro
- Department of Cardiology, Hospital Universitari i Politècnic La Fe, Avenida Fernando Abril Martorell 116, Valencia, Spain
| | - Julia Martinez-Sole
- Department of Cardiology, Hospital Universitari i Politècnic La Fe, Avenida Fernando Abril Martorell 116, Valencia, Spain
| | - Hector M Garcia Garcia
- Department of Cardiology, MedStar Washington Hospital Center, 110 Irving St NW, Washington, DC 20010, United States
| | - Jose Luis Diez-Gil
- Department of Cardiology, Hospital Universitari i Politècnic La Fe, Avenida Fernando Abril Martorell 116, Valencia, Spain
| | - Luis Martinez-Dolz
- Department of Cardiology, Hospital Universitari i Politècnic La Fe, Avenida Fernando Abril Martorell 116, Valencia, Spain
| | - Jorge Sanz-Sanchez
- Department of Cardiology, Hospital Universitari i Politècnic La Fe, Avenida Fernando Abril Martorell 116, Valencia, Spain
| |
Collapse
|
11
|
Bertolone DT, Paolisso P, Gallinoro E, Belmonte M, Bermpeis K, De Colle C, Esposito G, Caglioni S, Fabbricatore D, Leone A, Valeriano C, Shumkova M, Storozhenko T, Viscusi MM, Botti G, Verstreken S, Morisco C, Barbato E, Bartunek J, Vanderheyden M. Innovative Device-Based Strategies for Managing Acute Decompensated Heart Failure. Curr Probl Cardiol 2023; 48:102023. [PMID: 37553060 DOI: 10.1016/j.cpcardiol.2023.102023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 08/04/2023] [Indexed: 08/10/2023]
Abstract
Acute decompensated heart failure (ADHF) is a major cause of hospitalizations in older adults, leading to high mortality, morbidity, and healthcare costs. To address the persistent poor outcomes in ADHF, novel device-based approaches targeting specific pathophysiological mechanisms are urgently needed. The recently introduced DRI2P2S classification categorizes these innovative therapies based on their mechanisms. Devices include dilators (increasing venous capacitance), removers (directly removing sodium and water), inotropes (enhancing left ventricular contractility), interstitials (accelerating lymph removal), pushers (increasing renal arterial pressure), pullers (decreasing renal venous pressure), and selective drippers (selective intrarenal drug infusion). Some are tailored for chronic HF, while others focus on the acute setting. Most devices are in early development, necessitating further research to understand mechanisms, assess clinical effectiveness, and ensure safety before routine use in ADHF management. Exploring these innovative device-based strategies may lead to improved outcomes and revolutionize HF treatment in the future.
Collapse
Affiliation(s)
- Dario Tino Bertolone
- Cardiovascular Center Aalst, OLV Hospital, Aalst, Belgium; Department of Advanced Biomedical Sciences, University of Naples, Naples, Italy
| | - Pasquale Paolisso
- Cardiovascular Center Aalst, OLV Hospital, Aalst, Belgium; Department of Advanced Biomedical Sciences, University of Naples, Naples, Italy; Division of University Cardiology, IRCCS Ospedale Galeazzi Sant'Ambrogio, Milan, Italy
| | - Emanuele Gallinoro
- Cardiovascular Center Aalst, OLV Hospital, Aalst, Belgium; Division of University Cardiology, IRCCS Ospedale Galeazzi Sant'Ambrogio, Milan, Italy
| | - Marta Belmonte
- Cardiovascular Center Aalst, OLV Hospital, Aalst, Belgium; Department of Advanced Biomedical Sciences, University of Naples, Naples, Italy
| | | | - Cristina De Colle
- Cardiovascular Center Aalst, OLV Hospital, Aalst, Belgium; Department of Advanced Biomedical Sciences, University of Naples, Naples, Italy
| | - Giuseppe Esposito
- Cardiovascular Center Aalst, OLV Hospital, Aalst, Belgium; Department of Advanced Biomedical Sciences, University of Naples, Naples, Italy
| | | | - Davide Fabbricatore
- Cardiovascular Center Aalst, OLV Hospital, Aalst, Belgium; Department of Advanced Biomedical Sciences, University of Naples, Naples, Italy
| | - Attilio Leone
- Cardiovascular Center Aalst, OLV Hospital, Aalst, Belgium; Department of Advanced Biomedical Sciences, University of Naples, Naples, Italy
| | - Chiara Valeriano
- Cardiovascular Center Aalst, OLV Hospital, Aalst, Belgium; Department of Advanced Biomedical Sciences, University of Naples, Naples, Italy
| | | | | | - Michele Mattia Viscusi
- Cardiovascular Center Aalst, OLV Hospital, Aalst, Belgium; Department of Advanced Biomedical Sciences, University of Naples, Naples, Italy
| | - Giulia Botti
- Cardiovascular Center Aalst, OLV Hospital, Aalst, Belgium
| | | | - Carmine Morisco
- Department of Advanced Biomedical Sciences, University of Naples, Naples, Italy
| | - Emanuele Barbato
- Cardiovascular Center Aalst, OLV Hospital, Aalst, Belgium; Department of Clinical and Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Jozef Bartunek
- Cardiovascular Center Aalst, OLV Hospital, Aalst, Belgium
| | | |
Collapse
|
12
|
Nguyen AH, Hurwitz M, Abraham J, Blumer V, Flanagan MC, Garan AR, Kanwar M, Kataria R, Kennedy JL, Kochar A, Hernandez-Montfort J, Pahuja M, Shah P, Sherwood MW, Tehrani BN, Vallabhajosyula S, Kapur NK, Sinha SS. Medical Management and Device-Based Therapies in Chronic Heart Failure. JOURNAL OF THE SOCIETY FOR CARDIOVASCULAR ANGIOGRAPHY & INTERVENTIONS 2023; 2:101206. [PMID: 39131076 PMCID: PMC11308856 DOI: 10.1016/j.jscai.2023.101206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/03/2023] [Accepted: 10/03/2023] [Indexed: 08/13/2024]
Abstract
Heart failure (HF) remains a major cause of morbidity and mortality worldwide. Major advancements in optimal guideline-directed medical therapy, including novel pharmacological agents, are now available for the treatment of chronic HF including HF with reduced ejection fraction and HF with preserved ejection fraction. Despite these efforts, there are several limitations of medical therapy including but not limited to: delays in implementation and/or initiation; inability to achieve target dosing; tolerability; adherence; and recurrent and chronic costs of care. A significant proportion of patients remain symptomatic with poor HF-related outcomes including rehospitalization, progression of disease, and mortality. Driven by these unmet clinical needs, there has been a significant growth of innovative device-based interventions across all HF phenotypes over the past several decades. This state-of-the-art review will summarize the current landscape of guideline-directed medical therapy for chronic HF, discuss its limitations including barriers to implementation, and review device-based therapies which have established efficacy or demonstrated promise in the management of chronic HF.
Collapse
Affiliation(s)
- Andrew H. Nguyen
- Inova Schar Heart and Vascular Institute, Inova Fairfax Medical Campus, Falls Church, Virginia
| | - Madelyn Hurwitz
- School of Medicine, University of Virginia, Charlottesville, Virginia
| | - Jacob Abraham
- Center for Cardiovascular Analytics, Research & Data Science, Providence-St. Joseph Health, Portland, Oregon
| | - Vanessa Blumer
- Inova Schar Heart and Vascular Institute, Inova Fairfax Medical Campus, Falls Church, Virginia
| | - M. Casey Flanagan
- Inova Schar Heart and Vascular Institute, Inova Fairfax Medical Campus, Falls Church, Virginia
| | - A. Reshad Garan
- Division of Cardiology, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Manreet Kanwar
- Cardiovascular Institute at Allegheny Health Network, Pittsburgh, Pennsylvania
| | - Rachna Kataria
- Lifespan Cardiovascular Institute, Warren Alpert Medical School of Brown University, Providence, Rhode Island
| | - Jamie L.W. Kennedy
- Inova Schar Heart and Vascular Institute, Inova Fairfax Medical Campus, Falls Church, Virginia
| | - Ajar Kochar
- Division of Cardiology, Brigham & Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | | | - Mohit Pahuja
- Department of Cardiology, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma
| | - Palak Shah
- Inova Schar Heart and Vascular Institute, Inova Fairfax Medical Campus, Falls Church, Virginia
| | - Matthew W. Sherwood
- Inova Schar Heart and Vascular Institute, Inova Fairfax Medical Campus, Falls Church, Virginia
| | - Behnam N. Tehrani
- Inova Schar Heart and Vascular Institute, Inova Fairfax Medical Campus, Falls Church, Virginia
| | - Saraschandra Vallabhajosyula
- Section of Cardiovascular Medicine, Department of Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - Navin K. Kapur
- The CardioVascular Center, Tufts Medical Center, Boston, Massachusetts
| | - Shashank S. Sinha
- Inova Schar Heart and Vascular Institute, Inova Fairfax Medical Campus, Falls Church, Virginia
- School of Medicine, University of Virginia, Charlottesville, Virginia
| |
Collapse
|
13
|
Yogev D, Goldberg T, Arami A, Tejman-Yarden S, Winkler TE, Maoz BM. Current state of the art and future directions for implantable sensors in medical technology: Clinical needs and engineering challenges. APL Bioeng 2023; 7:031506. [PMID: 37781727 PMCID: PMC10539032 DOI: 10.1063/5.0152290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 08/28/2023] [Indexed: 10/03/2023] Open
Abstract
Implantable sensors have revolutionized the way we monitor biophysical and biochemical parameters by enabling real-time closed-loop intervention or therapy. These technologies align with the new era of healthcare known as healthcare 5.0, which encompasses smart disease control and detection, virtual care, intelligent health management, smart monitoring, and decision-making. This review explores the diverse biomedical applications of implantable temperature, mechanical, electrophysiological, optical, and electrochemical sensors. We delve into the engineering principles that serve as the foundation for their development. We also address the challenges faced by researchers and designers in bridging the gap between implantable sensor research and their clinical adoption by emphasizing the importance of careful consideration of clinical requirements and engineering challenges. We highlight the need for future research to explore issues such as long-term performance, biocompatibility, and power sources, as well as the potential for implantable sensors to transform healthcare across multiple disciplines. It is evident that implantable sensors have immense potential in the field of medical technology. However, the gap between research and clinical adoption remains wide, and there are still major obstacles to overcome before they can become a widely adopted part of medical practice.
Collapse
Affiliation(s)
| | | | | | | | | | - Ben M. Maoz
- Authors to whom correspondence should be addressed: and
| |
Collapse
|
14
|
Scholte NTB, Gürgöze MT, Aydin D, Theuns DAMJ, Manintveld OC, Ronner E, Boersma E, de Boer RA, van der Boon RMA, Brugts JJ. Telemonitoring for heart failure: a meta-analysis. Eur Heart J 2023; 44:2911-2926. [PMID: 37216272 PMCID: PMC10424885 DOI: 10.1093/eurheartj/ehad280] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 04/28/2023] [Accepted: 04/29/2023] [Indexed: 05/24/2023] Open
Abstract
AIMS Telemonitoring modalities in heart failure (HF) have been proposed as being essential for future organization and transition of HF care, however, efficacy has not been proven. A comprehensive meta-analysis of studies on home telemonitoring systems (hTMS) in HF and the effect on clinical outcomes are provided. METHODS AND RESULTS A systematic literature search was performed in four bibliographic databases, including randomized trials and observational studies that were published during January 1996-July 2022. A random-effects meta-analysis was carried out comparing hTMS with standard of care. All-cause mortality, first HF hospitalization, and total HF hospitalizations were evaluated as study endpoints. Sixty-five non-invasive hTMS studies and 27 invasive hTMS studies enrolled 36 549 HF patients, with a mean follow-up of 11.5 months. In patients using hTMS compared with standard of care, a significant 16% reduction in all-cause mortality was observed [pooled odds ratio (OR): 0.84, 95% confidence interval (CI): 0.77-0.93, I2: 24%], as well as a significant 19% reduction in first HF hospitalization (OR: 0.81, 95% CI 0.74-0.88, I2: 22%) and a 15% reduction in total HF hospitalizations (pooled incidence rate ratio: 0.85, 95% CI 0.76-0.96, I2: 70%). CONCLUSION These results are an advocacy for the use of hTMS in HF patients to reduce all-cause mortality and HF-related hospitalizations. Still, the methods of hTMS remain diverse, so future research should strive to standardize modes of effective hTMS.
Collapse
Affiliation(s)
- Niels T B Scholte
- Department of Cardiology, Thorax Centre, Erasmus MC, University Medical Centre Rotterdam, Dr. Molewaterplein 40, Rotterdam, South Holland 3015 GD, The Netherlands
| | - Muhammed T Gürgöze
- Department of Cardiology, Thorax Centre, Erasmus MC, University Medical Centre Rotterdam, Dr. Molewaterplein 40, Rotterdam, South Holland 3015 GD, The Netherlands
| | - Dilan Aydin
- Department of Cardiology, Thorax Centre, Erasmus MC, University Medical Centre Rotterdam, Dr. Molewaterplein 40, Rotterdam, South Holland 3015 GD, The Netherlands
| | - Dominic A M J Theuns
- Department of Cardiology, Thorax Centre, Erasmus MC, University Medical Centre Rotterdam, Dr. Molewaterplein 40, Rotterdam, South Holland 3015 GD, The Netherlands
| | - Olivier C Manintveld
- Department of Cardiology, Thorax Centre, Erasmus MC, University Medical Centre Rotterdam, Dr. Molewaterplein 40, Rotterdam, South Holland 3015 GD, The Netherlands
| | - Eelko Ronner
- Department of Cardiology, Reinier de Graaf Hospital, Reinier de Graafweg 5, Delft, South Holland 2625 AD, The Netherlands
| | - Eric Boersma
- Department of Cardiology, Thorax Centre, Erasmus MC, University Medical Centre Rotterdam, Dr. Molewaterplein 40, Rotterdam, South Holland 3015 GD, The Netherlands
| | - Rudolf A de Boer
- Department of Cardiology, Thorax Centre, Erasmus MC, University Medical Centre Rotterdam, Dr. Molewaterplein 40, Rotterdam, South Holland 3015 GD, The Netherlands
| | - Robert M A van der Boon
- Department of Cardiology, Thorax Centre, Erasmus MC, University Medical Centre Rotterdam, Dr. Molewaterplein 40, Rotterdam, South Holland 3015 GD, The Netherlands
| | - Jasper J Brugts
- Department of Cardiology, Thorax Centre, Erasmus MC, University Medical Centre Rotterdam, Dr. Molewaterplein 40, Rotterdam, South Holland 3015 GD, The Netherlands
| |
Collapse
|
15
|
Piccirillo G, Moscucci F, Sciomer S, Magrì D. Chronic Heart Failure Management: Monitoring Patients and Intercepting Exacerbations. Rev Cardiovasc Med 2023; 24:208. [PMID: 39077011 PMCID: PMC11266474 DOI: 10.31083/j.rcm2407208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 01/03/2023] [Accepted: 03/22/2023] [Indexed: 07/31/2024] Open
Abstract
Despite significant progress in the field of therapy and management, chronic heart failure (CHF) still remains one of the most common causes of morbidity and mortality, especially among the elderly in Western countries. In particular, frequent episodes of decompensation and, consequently, repeated hospitalizations represent an unsustainable burden for national health systems and the cause of worsening quality of life. CHF is more prevalent in elderly women, who often have "peculiar" clinical characteristics and a more preserved ejection fraction caused by endothelial dysfunction and micro-vessel damage. At the moment, noninvasive technologies that are able to remotely monitor these patients are not widely available yet, and clinical trials are underway to evaluate invasive remote sensors. Unfortunately, implantable devices for identifying decompensation are not the most practical solution in the majority of of patients with chronic heart failure. In particular, they are hypothesized to have the possibility of monitoring patients by pro-B-type natriuretic peptide, ventricular repolarization variability, and bioimpedance cardiography at the first point of care, but new technology and clinical trials must be planned to address the development and spread of these emergent possibilities.
Collapse
Affiliation(s)
- Gianfranco Piccirillo
- Dipartimento di Scienze Cliniche, Internistiche, Anestesiologiche e Cardiovascolari, Policlinico Umberto I, “Sapienza'' University of Rome, 00161 Rome, Italy
| | - Federica Moscucci
- Department of Internal Medicine and Medical Specialties, Policlinico Umberto I, 00161 Rome, Italy
| | - Susanna Sciomer
- Dipartimento di Scienze Cliniche, Internistiche, Anestesiologiche e Cardiovascolari, Policlinico Umberto I, “Sapienza'' University of Rome, 00161 Rome, Italy
| | - Damiano Magrì
- Dipartimento di Medicina Clinica e Molecolare, S. Andrea Hospital, “Sapienza'' University of Rome, 00189 Rome, Italy
| |
Collapse
|
16
|
Gleich B, Schmale I, Nielsen T, Rahmer J. Miniature magneto-mechanical resonators for wireless tracking and sensing. Science 2023; 380:966-971. [PMID: 37262171 DOI: 10.1126/science.adf5451] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 05/03/2023] [Indexed: 06/03/2023]
Abstract
Sensor miniaturization enables applications such as minimally invasive medical procedures or patient monitoring by providing process feedback in situ. Ideally, miniature sensors should be wireless, inexpensive, and allow for remote detection over sufficient distance by an affordable detection system. We analyze the signal strength of wireless sensors theoretically and derive a simple design of high-signal resonant magneto-mechanical sensors featuring volumes below 1 cubic millimeter. As examples, we demonstrate real-time tracking of position and attitude of a flying bee, navigation of a biopsy needle, tracking of a free-flowing marker, and sensing of pressure and temperature, all in unshielded environments. The achieved sensor size, measurement accuracy, and workspace of ~25 centimeters show the potential for a low-cost wireless tracking and sensing platform for medical and nonmedical applications.
Collapse
|
17
|
Clephas PRD, Aydin D, Radhoe SP, Brugts JJ. Recent Advances in Remote Pulmonary Artery Pressure Monitoring for Patients with Chronic Heart Failure: Current Evidence and Future Perspectives. SENSORS (BASEL, SWITZERLAND) 2023; 23:1364. [PMID: 36772403 PMCID: PMC9921931 DOI: 10.3390/s23031364] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/20/2023] [Accepted: 01/24/2023] [Indexed: 05/27/2023]
Abstract
Chronic heart failure (HF) is associated with high hospital admission rates and has an enormous burden on hospital resources worldwide. Ideally, detection of worsening HF in an early phase would allow physicians to intervene timely and proactively in order to prevent HF-related hospitalizations, a concept better known as remote hemodynamic monitoring. After years of research, remote monitoring of pulmonary artery pressures (PAP) has emerged as the most successful technique for ambulatory hemodynamic monitoring in HF patients to date. Currently, the CardioMEMS and Cordella HF systems have been tested for pulmonary artery pressure monitoring and the body of evidence has been growing rapidly over the past years. However, several ongoing studies are aiming to fill the gap in evidence that is still very clinically relevant, especially for the European setting. In this comprehensive review, we provide an overview of all available evidence for PAP monitoring as well as a detailed discussion of currently ongoing studies and future perspectives for this promising technique that is likely to impact HF care worldwide.
Collapse
Affiliation(s)
| | | | - Sumant P. Radhoe
- Department of Cardiology, Thorax Center, Erasmus University Medical Center, 3015GD Rotterdam, The Netherlands
| | | |
Collapse
|
18
|
Piccirillo G, Moscucci F, Corrao A, Carnovale M, Di Diego I, Lospinuso I, Caltabiano C, Mezzadri M, Rossi P, Magrì D. Noninvasive Hemodynamic Monitoring in Advanced Heart Failure Patients: New Approach for Target Treatments. Biomedicines 2022; 10:biomedicines10102407. [PMID: 36289669 PMCID: PMC9599112 DOI: 10.3390/biomedicines10102407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/21/2022] [Accepted: 09/21/2022] [Indexed: 11/24/2022] Open
Abstract
Using bio-impedance to deduce some hemodynamic parameters combined with some short-term ECG temporal dispersion intervals, and measuring myocardial depolarization, intraventricular conduction, and repolarization. A total of 65 in-hospital patients (M/F:35/30) were enrolled, 39 with HFrEF and 26 HFpEF, in New York Heart Association (NYHA) class IV. Stroke volume (SVI), cardiac indexes (CI), left ventricular ejection fraction (LVEFBIO), end diastolic volume (LV-EDV), and other systolic and diastolic parameters were noninvasively obtained at enrollment and at hospital discharge. At the same time, QR, QRS, QT, ST, Tpeak-Tend (Te) interval mean, and standard deviation (SD) from 5 min ECG recordings were obtained. At baseline, HFrEF patients reported significantly lower SVI (p < 0.05), CI (p < 0.05), and LVEF (p < 0.001) than HFpEF patients; moreover, HFrEF patients also showed increased LV-EDV (p < 0.05), QR, QRS, QT, ST, and Te means (p < 0.05) and standard deviations (p < 0.05) in comparison to HFpEF subjects. Multivariable logistic regression analysis reported a significant correlation between hospital mortality and Te mean (odds ratio: 1.03, 95% confidence limit: 1.01−1.06, p: 0.01). Fifty-seven percent of patients were considered responders to optimal medical therapy and, at discharge, they had significantly reduced NT-proBNP, (p < 0.001), heart rate (p < 0.05), and TeSD (p < 0.001). LVEF, obtained by transthoracic echocardiography, and LVEFBIO were significantly related (r: 0.781, p < 0.001), but these two parameters showed a low agreement limit. Noninvasive hemodynamic and ECG-derived parameters were useful to highlight the difference between HFrEF and HFpEF and between responders and nonresponders to the optimal medical therapy. Short-period bioimpedance and electrocardiographic data should be deeply evaluated to determine possible advantages in the therapeutic and prognostic approach in severe CHF.
Collapse
Affiliation(s)
- Gianfranco Piccirillo
- Department of Internal and Clinical Medicine, Anesthesiology and Cardiovascular Sciences, Policlinico Umberto I, “Sapienza” University of Rome, Viale del Policlinico n. 155, 00186 Rome, Italy
| | - Federica Moscucci
- Department of Internal and Clinical Medicine, Anesthesiology and Cardiovascular Sciences, Policlinico Umberto I, “Sapienza” University of Rome, Viale del Policlinico n. 155, 00186 Rome, Italy
- Correspondence: ; Tel.: +39-06-4997-0118
| | - Andrea Corrao
- Department of Internal and Clinical Medicine, Anesthesiology and Cardiovascular Sciences, Policlinico Umberto I, “Sapienza” University of Rome, Viale del Policlinico n. 155, 00186 Rome, Italy
| | - Myriam Carnovale
- Department of Internal and Clinical Medicine, Anesthesiology and Cardiovascular Sciences, Policlinico Umberto I, “Sapienza” University of Rome, Viale del Policlinico n. 155, 00186 Rome, Italy
| | - Ilaria Di Diego
- Department of Internal and Clinical Medicine, Anesthesiology and Cardiovascular Sciences, Policlinico Umberto I, “Sapienza” University of Rome, Viale del Policlinico n. 155, 00186 Rome, Italy
| | - Ilaria Lospinuso
- Department of Internal and Clinical Medicine, Anesthesiology and Cardiovascular Sciences, Policlinico Umberto I, “Sapienza” University of Rome, Viale del Policlinico n. 155, 00186 Rome, Italy
| | - Cristina Caltabiano
- Department of Internal and Clinical Medicine, Anesthesiology and Cardiovascular Sciences, Policlinico Umberto I, “Sapienza” University of Rome, Viale del Policlinico n. 155, 00186 Rome, Italy
| | - Martina Mezzadri
- Department of Internal and Clinical Medicine, Anesthesiology and Cardiovascular Sciences, Policlinico Umberto I, “Sapienza” University of Rome, Viale del Policlinico n. 155, 00186 Rome, Italy
| | - Pietro Rossi
- Arrhytmology Unit, Cardiology Division, S. Giovanni Calibita, Isola Tiberina, 00186 Rome, Italy
| | - Damiano Magrì
- Department of Clinical and Molecular Medicine, S. Andrea Hospital, “Sapienza” University of Rome, 00186 Rome, Italy
| |
Collapse
|
19
|
Miyagi C, Kuroda T, Karimov JH, Fukamachi K. Novel approaches for left atrial pressure relief: Device-based monitoring and management in heart failure. Front Cardiovasc Med 2022; 9:910957. [PMID: 36035901 PMCID: PMC9403239 DOI: 10.3389/fcvm.2022.910957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 07/26/2022] [Indexed: 11/18/2022] Open
Abstract
The importance of the left atrium (LA) has been emphasized in recent years as the features of heart failure (HF), especially with regard to variability in patient and pathology phenotypes, continue to be uncovered. Of note, among the population with HF with preserved ejection fraction (HFpEF), pressure or size of the LA have become a target for advanced monitoring and a therapeutic approach. In the case of diastolic dysfunction or pulmonary hypertension, which are often observed in patients with HFpEF, a conventional approach with clinical symptoms and physical signs of decompensation turned out to have a poor correlation with LA pressure. Therefore, to optimize HF treatment for these populations, several devices that are applied directly to the LA have been developed. First, two LA pressure (LAP) sensors (Heart POD and V-LAP Device) were developed and may enable patient self-management remotely with LAP-guided and physician-directed style. Second, there are device-based approaches that aim to decompress the LA directly. These include: (1) interatrial shunt devices; (2) left ventricular assist devices with LA cannulation; and (3) the left atrial assist device. While these novel device-based therapies are not yet commercially available, there is expected to be a rise in the proposition and adoption of a wider range of choices for monitoring or treating LA using device-based options, based on LA dimensional reduction and optimization of the clinically significant pressure relief. Further development and evaluation are necessary to establish a more favorable management strategy for HF.
Collapse
Affiliation(s)
- Chihiro Miyagi
- Department of Biomedical Engineering, Cleveland Clinic, Lerner Research Institute, Cleveland, OH, United States
| | - Taiyo Kuroda
- Department of Biomedical Engineering, Cleveland Clinic, Lerner Research Institute, Cleveland, OH, United States
| | - Jamshid H. Karimov
- Department of Biomedical Engineering, Cleveland Clinic, Lerner Research Institute, Cleveland, OH, United States
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, United States
| | - Kiyotaka Fukamachi
- Department of Biomedical Engineering, Cleveland Clinic, Lerner Research Institute, Cleveland, OH, United States
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, United States
- *Correspondence: Kiyotaka Fukamachi
| |
Collapse
|
20
|
Ferreira D. Telemonitoring in heart failure: The rise of the insidables. Rev Port Cardiol 2022; 41:391-393. [DOI: 10.1016/j.repc.2022.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
21
|
Kotalczyk A, Imberti JF, Lip GYH, Wright DJ. Telemedical Monitoring Based on Implantable Devices-the Evolution Beyond the CardioMEMS™ Technology. Curr Heart Fail Rep 2022; 19:7-14. [PMID: 35174451 PMCID: PMC8853059 DOI: 10.1007/s11897-021-00537-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/22/2021] [Indexed: 12/11/2022]
Abstract
PURPOSE OF THE REVIEW We aimed to provide an overview of telemedical monitoring and its impact on outcomes among heart failure (HF) patients. RECENT FINDINGS Most HF readmissions may be prevented if clinical parameters are strictly controlled via telemedical monitoring. Predictive algorithms for patients with cardiovascular implantable electronic devices (e.g., Triage-HF Plus by Medtronic or HeartLogic by Boston Scientific) were developed to identify patients at significantly increased risk of HF events. However, randomized control trial-based data are heterogeneous regarding the advantages of telemedical monitoring in HF patients. The likelihood of adverse clinical outcomes increases when pulmonary artery pressure (PAP) rises, usually days to weeks before clinical manifestations of HF. A wireless monitoring system (CardioMEMS™) detecting changes in PAP was proposed for HF patients. CardioMEMS™ transmits data to the healthcare provider and allows to institute timely intensification of HF therapies. CardioMEMS™-guided pharmacotherapy reduced a risk of HF-related hospitalization (hazard ratio [HR]: 0.72; 95% confidence interval (CI) 0.60-0-0.85; p < 0.01). Relevant developments and innovations of telemedical care may improve clinical outcomes among HF patients. The use of CardioMEMS™ was found to be safe and cost-effective by reducing the rates of HF hospitalizations.
Collapse
Affiliation(s)
- Agnieszka Kotalczyk
- Liverpool Centre for Cardiovascular Science, University of Liverpool and Liverpool Heart & Chest Hospital, Liverpool, UK
- Department of Cardiology, Congenital Heart Diseases and Electrotherapy, Medical University of Silesia, Silesian Centre for Heart Diseases, Zabrze, Poland
| | - Jacopo F Imberti
- Liverpool Centre for Cardiovascular Science, University of Liverpool and Liverpool Heart & Chest Hospital, Liverpool, UK
- Cardiology Division, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Policlinico Di Modena, Modena, Italy
| | - Gregory Y H Lip
- Liverpool Centre for Cardiovascular Science, University of Liverpool and Liverpool Heart & Chest Hospital, Liverpool, UK
- Department of Cardiology, Congenital Heart Diseases and Electrotherapy, Medical University of Silesia, Silesian Centre for Heart Diseases, Zabrze, Poland
- Aalborg Thrombosis Research Unit, Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - David Justin Wright
- Liverpool Centre for Cardiovascular Science, University of Liverpool and Liverpool Heart & Chest Hospital, Liverpool, UK.
- Liverpool Heart & Chest Hospital, Liverpool, UK.
| |
Collapse
|
22
|
Implantable devices for heart failure monitoring. Prog Cardiovasc Dis 2021; 69:47-53. [PMID: 34838788 DOI: 10.1016/j.pcad.2021.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 11/21/2021] [Indexed: 11/22/2022]
Abstract
Heart failure (HF) is associated with considerable morbidity and mortality. The increasing prevalence of HF and inpatient HF hospitalization has a considerable burden on healthcare cost and utilization. The recognition that hemodynamic changes in pulmonary artery pressure (PAP) and left atrial pressure precede the signs and symptoms of HF has led to interest in hemodynamic guided HF therapy as an approach to allow earlier intervention during a heart failure decompensation. Remote patient monitoring (RPM) utilizing telecommunication, cardiac implantable electronic device parameters and implantable hemodynamic monitors (IHM) have largely failed to demonstrate favorable outcomes in multicenter trials. However, one positive randomized clinical trial testing the CardioMEMS device (followed by Food and Drug Administration approval) has generated renewed interest in PAP monitoring in the HF population to decrease hospitalization and improve quality of life. The COVID-19 pandemic has also stirred a resurgence in the utilization of telehealth to which RPM using IHM may be complementary. The cost effectiveness of these monitors continues to be a matter of debate. Future iterations of devices aim to be smaller, less burdensome for the patient, less dependent on patient compliance, and less cumbersome for health care providers with the integration of artificial intelligence coupled with sophisticated data management and interpretation tools. Currently, use of IHM may be considered in advanced heart failure patients with the support of structured programs.
Collapse
|
23
|
Radhoe SP, Brugts JJ. CardioMEMS™: a tool for remote hemodynamic monitoring of chronic heart failure patients. Future Cardiol 2021; 18:173-183. [PMID: 34697954 DOI: 10.2217/fca-2021-0076] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Remote monitoring is becoming increasingly important for management of chronic heart failure patients. Recently, hemodynamic monitoring by measuring intracardiac filling pressures has been gaining attention. It is believed that hemodynamic congestion precedes clinical congestion by several weeks and that remote hemodynamic monitoring therefore enables clinicians to intervene in an early stage and prevent heart failure hospitalizations. The CardioMEMS HF system (Abbott, CA, USA) is a sensor capable of measuring pulmonary artery pressures as a surrogate of left ventricular filling pressures. Clinical evidence for CardioMEMS has been convincing in terms of efficacy and safety. This article provides detailed information on the CardioMEMS HF system and summarizes all available evidence of this promising technique.
Collapse
Affiliation(s)
- Sumant P Radhoe
- Erasmus MC, University Medical Center Rotterdam, Thorax Center, Department of Cardiology, Rotterdam, The Netherlands
| | - Jasper J Brugts
- Erasmus MC, University Medical Center Rotterdam, Thorax Center, Department of Cardiology, Rotterdam, The Netherlands
| |
Collapse
|
24
|
One small wearable, one giant leap for patient safety? J Clin Monit Comput 2021; 36:1-4. [PMID: 34665392 PMCID: PMC8525066 DOI: 10.1007/s10877-021-00767-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 10/12/2021] [Indexed: 01/15/2023]
|
25
|
Nachman D, Rahamim E, Kolben Y, Mengesha B, Elbaz-Greener G, Amir O, Asleh R. In Search of Clinical Impact: Advanced Monitoring Technologies in Daily Heart Failure Care. J Clin Med 2021; 10:jcm10204692. [PMID: 34682813 PMCID: PMC8537939 DOI: 10.3390/jcm10204692] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/08/2021] [Accepted: 10/08/2021] [Indexed: 01/19/2023] Open
Abstract
Despite significant advances in the management of heart failure (HF), further improvement in the outcome of this chronic and progressive disease is still considered a major unmet need. Recurrent hospitalizations due to decompensated HF frequently occur, resulting in increased morbidity and mortality rates. Past attempts at early detection of clinical deterioration were mainly based on monitoring of signs and symptoms of HF exacerbation, which have mostly given disappointing results. Extensive research of the pathophysiology of HF decompensation has indicated that hemodynamic alterations start days prior to clinical manifestation. Novel technologies aim to monitor these minute hemodynamic changes, allowing time for therapeutic interventions to prevent hemodynamic derangement and HF exacerbation. The latest noticeable advancements include assessment of lung fluid volume, wearable devices with integrated sensors, and microelectromechanical systems-based implantable devices for continuous measurement of cardiac filling pressures. This manuscript will review the rationale for monitoring HF patients and discuss previous and ongoing attempts to develop clinically meaningful monitoring devices to improve daily HF health care, with particular emphasis on the recent advances and clinical trials relevant to this evolving field.
Collapse
Affiliation(s)
- Dean Nachman
- Hadassah Medical Center, Faculty of Medicine, Heart Institute, Hebrew University of Jerusalem, Jerusalem 91120, Israel; (E.R.); (B.M.); (G.E.-G.); (O.A.)
- Correspondence: (D.N.); (R.A.); Tel.: +972-2-6757657 (D.N.); +972-2-6775266 (R.A.)
| | - Eldad Rahamim
- Hadassah Medical Center, Faculty of Medicine, Heart Institute, Hebrew University of Jerusalem, Jerusalem 91120, Israel; (E.R.); (B.M.); (G.E.-G.); (O.A.)
| | - Yotam Kolben
- Hadassah Medical Center, Department of Medicine, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel;
| | - Bethlehem Mengesha
- Hadassah Medical Center, Faculty of Medicine, Heart Institute, Hebrew University of Jerusalem, Jerusalem 91120, Israel; (E.R.); (B.M.); (G.E.-G.); (O.A.)
| | - Gabby Elbaz-Greener
- Hadassah Medical Center, Faculty of Medicine, Heart Institute, Hebrew University of Jerusalem, Jerusalem 91120, Israel; (E.R.); (B.M.); (G.E.-G.); (O.A.)
| | - Offer Amir
- Hadassah Medical Center, Faculty of Medicine, Heart Institute, Hebrew University of Jerusalem, Jerusalem 91120, Israel; (E.R.); (B.M.); (G.E.-G.); (O.A.)
- Azrieli Faculty of Medicine, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Rabea Asleh
- Hadassah Medical Center, Faculty of Medicine, Heart Institute, Hebrew University of Jerusalem, Jerusalem 91120, Israel; (E.R.); (B.M.); (G.E.-G.); (O.A.)
- Correspondence: (D.N.); (R.A.); Tel.: +972-2-6757657 (D.N.); +972-2-6775266 (R.A.)
| |
Collapse
|
26
|
Zisis G, Halabi A, Huynh Q, Neil C, Carrington M, Marwick TH. Use of novel non-invasive techniques and biomarkers to guide outpatient management of fluid overload and reduce hospital readmission: systematic review and meta-analysis. ESC Heart Fail 2021; 8:4228-4242. [PMID: 34296530 PMCID: PMC8497362 DOI: 10.1002/ehf2.13510] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 06/02/2021] [Accepted: 06/23/2021] [Indexed: 12/03/2022] Open
Abstract
Aims Fluid congestion is a leading cause of hospital admission, readmission, and mortality in heart failure (HF). We performed a systematic review and meta‐analysis to determine the effectiveness of an advanced fluid management programme (AFMP). The AFMP was defined as an intervention providing tailored diuretic therapy guided by intravascular volume assessment, in hospitalized patients or after discharge. The AFMP group was compared with patients who received standard care treatment. The aim of this systematic review and meta‐analysis was to determine the effectiveness of an AFMP in improving patient outcomes. Methods and results A systematic review of randomized controlled trials, case–control studies, and crossover studies using the terms ‘heart failure’, ‘fluid management’, and ‘readmission’ was conducted in PubMed, CINAHL, and Scopus up until November 2020. Studies reporting the association of an AFMP on readmission and/or mortality were included in our meta‐analyses. Risk of bias was assessed in non‐randomized studies using the Newcastle–Ottawa Scale. From 232 retrieved studies, 12 were included in the data synthesis. The 6040 patients in the included studies had a mean age of 72 ± 4 years and mean left ventricular ejection fraction of 39 ± 8%, there were slightly more men (n = 3022) than women, and the follow‐up period was a mean of 4.8 ± 3.1 months. Readmission data were available in 5362 patients; of these, 1629 were readmitted. Mortality data were available in 5787 patients; of these, 584 died. HF patients who had an AFMP in hospital and/or after discharge had lower odds of all‐cause readmission (odds ratio—OR 0.64 [95% confidence interval—CI 0.44, 0.92], P = 0.02) with moderate heterogeneity (I2 = 46.5) and lower odds of all‐cause mortality (OR 0.82 [95% CI 0.69, 0.98], P = 0.03) with low heterogeneity (I2 = 0). The use of an AFMP was equally effective in reducing readmission and mortality regardless of age and follow‐up duration. Effective pre‐discharge diuresis was associated with significantly lower readmission odds (OR 0.43 [95% CI 0.26, 0.71], P = 0.001) compared with a fluid management plan as part of post‐discharge follow‐up. Conclusions An effective AFMP is associated with improving readmission and mortality in HF. Our results encourage attainment of optimal volume status at discharge and prescription of optimal diuretic dose. Ongoing support to maintain euvolaemia and effective collaboration between healthcare teams, along with effective patient education and engagement, may help to reduce adverse outcomes in HF patients.
Collapse
Affiliation(s)
- Georgios Zisis
- Baker Heart and Diabetes Institute, 75 Commercial Road, Melbourne, Victoria, 3004, Australia.,Baker Department of Cardiometabolic Health, University of Melbourne, Melbourne, Victoria, Australia.,Faculty of Medicine, Nursing and Health Sciences, University of Melbourne, Melbourne, Victoria, Australia.,Western Health, Melbourne, Victoria, Australia
| | - Amera Halabi
- Baker Heart and Diabetes Institute, 75 Commercial Road, Melbourne, Victoria, 3004, Australia.,School of Public Health and Preventative Medicine, Monash University, Melbourne, Victoria, Australia
| | - Quan Huynh
- Baker Heart and Diabetes Institute, 75 Commercial Road, Melbourne, Victoria, 3004, Australia.,Baker Department of Cardiometabolic Health, University of Melbourne, Melbourne, Victoria, Australia
| | - Christopher Neil
- Baker Heart and Diabetes Institute, 75 Commercial Road, Melbourne, Victoria, 3004, Australia.,Faculty of Medicine, Nursing and Health Sciences, University of Melbourne, Melbourne, Victoria, Australia.,Western Health, Melbourne, Victoria, Australia
| | - Melinda Carrington
- Baker Heart and Diabetes Institute, 75 Commercial Road, Melbourne, Victoria, 3004, Australia.,Baker Department of Cardiometabolic Health, University of Melbourne, Melbourne, Victoria, Australia
| | - Thomas H Marwick
- Baker Heart and Diabetes Institute, 75 Commercial Road, Melbourne, Victoria, 3004, Australia.,Baker Department of Cardiometabolic Health, University of Melbourne, Melbourne, Victoria, Australia.,Faculty of Medicine, Nursing and Health Sciences, University of Melbourne, Melbourne, Victoria, Australia.,Western Health, Melbourne, Victoria, Australia.,School of Public Health and Preventative Medicine, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
27
|
Breda JR. Comment on: Safety and feasibility of hemodynamic pulmonary artery pressure monitoring using the CardioMEMS device in LVAD management. J Card Surg 2021; 36:3281-3282. [PMID: 34159644 DOI: 10.1111/jocs.15762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/15/2021] [Accepted: 06/15/2021] [Indexed: 11/29/2022]
Affiliation(s)
- João Roberto Breda
- Division of Thoracic Transplant, Miami Transplant Institute, Miami, Florida, USA
| |
Collapse
|