Amrouni N, Benzaoui A, Bouaouina R, Khaldi Y, Adjabi I, Bouglimina O. Contactless Palmprint Recognition Using Binarized Statistical Image Features-Based Multiresolution Analysis.
SENSORS (BASEL, SWITZERLAND) 2022;
22:9814. [PMID:
36560183 PMCID:
PMC9782967 DOI:
10.3390/s22249814]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/03/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
In recent years, palmprint recognition has gained increased interest and has been a focus of significant research as a trustworthy personal identification method. The performance of any palmprint recognition system mainly depends on the effectiveness of the utilized feature extraction approach. In this paper, we propose a three-step approach to address the challenging problem of contactless palmprint recognition: (1) a pre-processing, based on median filtering and contrast limited adaptive histogram equalization (CLAHE), is used to remove potential noise and equalize the images' lighting; (2) a multiresolution analysis is applied to extract binarized statistical image features (BSIF) at several discrete wavelet transform (DWT) resolutions; (3) a classification stage is performed to categorize the extracted features into the corresponding class using a K-nearest neighbors (K-NN)-based classifier. The feature extraction strategy is the main contribution of this work; we used the multiresolution analysis to extract the pertinent information from several image resolutions as an alternative to the classical method based on multi-patch decomposition. The proposed approach was thoroughly assessed using two contactless palmprint databases: the Indian Institute of Technology-Delhi (IITD) and the Chinese Academy of Sciences Institute of Automatisation (CASIA). The results are impressive compared to the current state-of-the-art methods: the Rank-1 recognition rates are 98.77% and 98.10% for the IITD and CASIA databases, respectively.
Collapse