1
|
Huang J, Bastos-Arrieta J, Serrano N, Díaz-Cruz JM. Voltammetric Determination of Salbutamol, Sulfamethoxazole, and Trimethoprim as Anthropogenic Impact Indicators Using Commercial Screen-Printed Electrodes. SENSORS (BASEL, SWITZERLAND) 2025; 25:2998. [PMID: 40431793 PMCID: PMC12115316 DOI: 10.3390/s25102998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2025] [Revised: 05/02/2025] [Accepted: 05/06/2025] [Indexed: 05/29/2025]
Abstract
A voltammetric method based on the use of screen-printed carbon electrodes (SPCEs) is presented for the simultaneous determination of salbutamol (SAL), sulfamethoxazole (SMX), and trimethoprim (TMP), with high sensitivity, fast response, and excellent repeatability and reproducibility. Under the optimal voltammetric conditions, the simultaneous analysis showed linear ranges of 0.3-2.5 mg L-1, 0.3-11.1 mg L-1, and 0.5-9.0 mg L-1 for SAL, SMX, and TMP, respectively, and detection limits of 83.8 μg L-1, 88.7 μg L-1, and 139.2 μg L-1, respectively. Additionally, the developed method was successfully validated by the analysis of a spiked river water sample with satisfactory recovery values in the range of 97.0-98.8%. The added value of the presented method relays in combining cost-effective disposable SPCEs with rapid analysis (<30 s), providing portable electrochemical tools for the on-site monitoring of pharmaceutical residues, which is critical for addressing contamination linked to anthropogenic activity.
Collapse
Affiliation(s)
- Jing Huang
- Department of Chemical Engineering and Analytical Chemistry, Universitat de Barcelona (UB), Martí i Franquès 1-11, 08028 Barcelona, Spain; (J.H.); (N.S.)
- Water Research Institute (IdRA), University of Barcelona (UB), Martí i Franquès 1-11, 08028-Barcelona, Spain
| | - Julio Bastos-Arrieta
- Department of Chemical Engineering and Analytical Chemistry, Universitat de Barcelona (UB), Martí i Franquès 1-11, 08028 Barcelona, Spain; (J.H.); (N.S.)
- Water Research Institute (IdRA), University of Barcelona (UB), Martí i Franquès 1-11, 08028-Barcelona, Spain
| | - Núria Serrano
- Department of Chemical Engineering and Analytical Chemistry, Universitat de Barcelona (UB), Martí i Franquès 1-11, 08028 Barcelona, Spain; (J.H.); (N.S.)
- Water Research Institute (IdRA), University of Barcelona (UB), Martí i Franquès 1-11, 08028-Barcelona, Spain
| | - José Manuel Díaz-Cruz
- Department of Chemical Engineering and Analytical Chemistry, Universitat de Barcelona (UB), Martí i Franquès 1-11, 08028 Barcelona, Spain; (J.H.); (N.S.)
- Water Research Institute (IdRA), University of Barcelona (UB), Martí i Franquès 1-11, 08028-Barcelona, Spain
| |
Collapse
|
2
|
Hashemzadeh F, Ariannezhad M, Derakhshandeh SH. Sustainable removal of tetracycline and paracetamol from water using magnetic activated carbon derived from pine fruit waste. Sci Rep 2024; 14:16346. [PMID: 39013965 PMCID: PMC11252413 DOI: 10.1038/s41598-024-65656-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 06/21/2024] [Indexed: 07/18/2024] Open
Abstract
This work presents highly porous magnetic activated carbon nanoparticles (MPFRC-A) derived from pine fruit residue. The MPFRC-A were produced through a three-step process: physical activation (carbonization temperature: 110-550 °C), chemical activation (H2SO4 (0.1 N, 96%)), and co-precipitation. These nanoparticles were then used to remove tetracycline (TC) and paracetamol (PC) from water. Functionalization with Fe3O4 nanoparticles on the surface of the pine fruit residue-derived activated carbon (PFRC-A) resulted in high saturation magnetization, allowing for separation from aqueous solution using an external magnet. The MPFRC-A adsorbent was characterized by Brunauer-Emmett-Teller (BET) analysis, Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), X-ray diffraction (XRD), and Energy-dispersive X-ray spectroscopy (EDX) analyses, In the experimental section, the effects of various factors on the adsorption process were investigated, including pH, contact time, initial pollutant concentrations, adsorbent dosage, and temperature. Based on these investigations, adsorption isotherm models and kinetics were studied and determined. The results showed that MPFRC-A exhibited a large specific surface area (182.5 m2/g) and a high total pore volume (0.33 cm3/g). The maximum adsorption capacity was achieved at pH 6 and 5 for PC and TC drugs with an adsorbent dose of 400 mg and an initial concentration of 20 mg/L at 25 °C. The study revealed that the experimental data were well-fitted by the Langmuir isotherm model (R2 > 0.98), with maximum uptake capacities of 43.75 mg/g for TC and 41.7 mg/g for PC. Outcomes of the adsorption thermodynamics shows non-spontaneity of the reaction and the adsorption process by all adsorbents was endothermic.
Collapse
Affiliation(s)
- Farzad Hashemzadeh
- Water and Wastewater Research Center, Water Research Institute, Tehran, Iran.
| | - Maryam Ariannezhad
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan, 6517838683, Iran.
| | - Seyed Hamed Derakhshandeh
- Department of Chemical Engineering, Faculty of Engineering, North Tehran Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
3
|
Jaradat H, Hryniewicz BM, Pašti IA, Valério TL, Al-Hamry A, Marchesi LF, Vidotti M, Kanoun O. Detection of H. pylori outer membrane protein (HopQ) biomarker using electrochemical impedimetric immunosensor with polypyrrole nanotubes and carbon nanotubes nanocomposite on screen-printed carbon electrode. Biosens Bioelectron 2024; 249:115937. [PMID: 38211465 DOI: 10.1016/j.bios.2023.115937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/15/2023] [Accepted: 12/16/2023] [Indexed: 01/13/2024]
Abstract
Helicobacter pylori (H. pylori) is classified as a class I carcinogen that colonizes the human gastrointestinal (GI) tract. The detection at low concentrations is crucial in combatting H. pylori. HopQ protein is located on H. pylori's outer membrane and is expressed at an early stage of contamination, which signifies it as an ideal biomarker. In this study, we presented the development of an electrochemical impedimetric immunosensor for the ultra-sensitive detection of HopQ at low concentrations. The sensor employed polypyrrole nanotubes (PPy-NTs) and carboxylated multi-walled carbon nanotubes (MWCNT-COOH) nanocomposite. PPy-NTs were chosen for their excellent conductivity, biocompatibility, and redox capabilities, simplifying sample preparation by eliminating the need to add redox probes upon measurement. MWCNT-COOH provided covalent binding sites for HopQ antibodies (HopQ-Ab) on the biosensor surface. Characterization of the biosensor was performed using scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), contact angle measurements, and electrochemical impedance spectroscopy (EIS), complemented by numerical semiempirical quantum calculations. The results demonstrated a dynamic linear range of 5 pg/mL to 1.063 ng/mL and an excellent selectivity, with the possibility of excluding interference using EIS data, specifically charge transfer resistance and double-layer capacitance as multivariants for the calibration curve. Using two EIS components, the limit of detection is calculated to be 2.06 pg/mL. The biosensor was tested with a spiked drinking water sample and showed a signal recovery of 105.5% when detecting 300 pg/mL of HopQ. This novel H. pylori biosensor offers reliable, simple, portable, and rapid screening of the bacteria.
Collapse
Affiliation(s)
- Hussamaldeen Jaradat
- Professorship of Measurement and Sensor Technology, Faculty of Electrical Engineering and Information Technology, Chemnitz University of Technology, 09126, Chemnitz, Germany.
| | - Bruna M Hryniewicz
- Grupo de Pesquisa em Macromoléculas e Interfaces, Departamento de Química, Universidade Federal do Paraná (UFPR), Curitiba, 81531-980, PR, Brazil.
| | - Igor A Pašti
- University of Belgrade-Faculty of Physical Chemistry, Studentski trg 12-16, 11158, Belgrade, Serbia.
| | - Tatiana L Valério
- Grupo de Pesquisa em Macromoléculas e Interfaces, Departamento de Química, Universidade Federal do Paraná (UFPR), Curitiba, 81531-980, PR, Brazil.
| | - Ammar Al-Hamry
- Professorship of Measurement and Sensor Technology, Faculty of Electrical Engineering and Information Technology, Chemnitz University of Technology, 09126, Chemnitz, Germany.
| | - Luís F Marchesi
- Grupo de Estudos em Espectroscopia de Impedância Eletroquímica (GEIS), Universidade Tecnológica Federal Do Paraná, Rua Dr. Washington Subtil Chueire, 330 - Jd. Carvalho, CEP 84017-220, Ponta Grossa, PR, Brazil.
| | - Marcio Vidotti
- Grupo de Pesquisa em Macromoléculas e Interfaces, Departamento de Química, Universidade Federal do Paraná (UFPR), Curitiba, 81531-980, PR, Brazil.
| | - Olfa Kanoun
- Professorship of Measurement and Sensor Technology, Faculty of Electrical Engineering and Information Technology, Chemnitz University of Technology, 09126, Chemnitz, Germany.
| |
Collapse
|
4
|
Kozak J, Tyszczuk-Rotko K, Keller A, Wójciak M, Sowa I. Activated Screen-Printed Boron-Doped Diamond Electrode for Rapid and Highly Sensitive Determination of Curcumin in Food Products. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6826. [PMID: 37959423 PMCID: PMC10649004 DOI: 10.3390/ma16216826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/18/2023] [Accepted: 10/20/2023] [Indexed: 11/15/2023]
Abstract
Due to a great interest in the beneficial properties of polyphenolic antioxidant curcumin (CCM), sensitive and accurate methods for determining CCM are needed. The purpose of our research was to develop a very simple, fast, and sensitive differential pulse adsorptive stripping voltammetric (DPAdSV) procedure using an electrochemically activated screen-printed boron-doped diamond electrode (aSPBDDE) for the determination of CCM. The activation of the SPBDDE was accomplished in a solution of 0.1 mol/L NaOH by performing five cyclic voltammetric scans in the range of 0-2 V, at ν of 100 mV/s. The changes in surface morphology and the reduction of the charge transfer resistance due to the activation of the electrode resulted in the amplification of the CCM analytical signal on the aSPBDDE. As a result, an extremely sensitive measurement tool was formed, which under optimized conditions (0.025 mol/L PBS of pH = 2.6, Eacc of 0.3 V, tacc of 90 s, ΔEA of 100 mV, ν of 150 mV/s, and tm of 10 ms) allowed us to obtain a limit of detection (LOD) of 5.0 × 10-13 mol/L. The aSPBDDE has proven to be a highly effective tool for the direct determination of CCM in food samples with high accuracy and precision. The results are in agreement with those obtained using ultra-high-performance liquid chromatography coupled with mass spectrometry and electrospray ionization (UHPLC-ESI/MS).
Collapse
Affiliation(s)
- Jędrzej Kozak
- Faculty of Chemistry, Institute of Chemical Sciences, Maria Curie-Skłodowska University in Lublin, 20-031 Lublin, Poland
| | - Katarzyna Tyszczuk-Rotko
- Faculty of Chemistry, Institute of Chemical Sciences, Maria Curie-Skłodowska University in Lublin, 20-031 Lublin, Poland
| | - Aleksy Keller
- Faculty of Chemistry, Institute of Chemical Sciences, Maria Curie-Skłodowska University in Lublin, 20-031 Lublin, Poland
| | - Magdalena Wójciak
- Department of Analytical Chemistry, Medical University of Lublin, 20-093 Lublin, Poland
| | - Ireneusz Sowa
- Department of Analytical Chemistry, Medical University of Lublin, 20-093 Lublin, Poland
| |
Collapse
|
5
|
Qasim almajidi Y, Althomali RH, Gandla K, Uinarni H, Sharma N, Hussien BM, Alhassan MS, Mireya Romero-Parra R, Singh Bisht Y. Multifunctional immunosensors based on mesoporous silica nanomaterials as efficient sensing platforms in biomedical and food safety analysis: A review of current status and emerging applications. Microchem J 2023; 191:108901. [DOI: 10.1016/j.microc.2023.108901] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
6
|
Jaradat H, Al-Hamry A, Ibbini M, Fourati N, Kanoun O. Novel Sensitive Electrochemical Immunosensor Development for the Selective Detection of HopQ H. pylori Bacteria Biomarker. BIOSENSORS 2023; 13:bios13050527. [PMID: 37232889 DOI: 10.3390/bios13050527] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/04/2023] [Accepted: 05/06/2023] [Indexed: 05/27/2023]
Abstract
Helicobacter pylori (H. pylori) is a highly contagious pathogenic bacterium that can cause gastrointestinal ulcers and may gradually lead to gastric cancer. H. pylori expresses the outer membrane HopQ protein at the earliest stages of infection. Therefore, HopQ is a highly reliable candidate as a biomarker for H. pylori detection in saliva samples. In this work, an H. pylori immunosensor is based on detecting HopQ as an H. pylori biomarker in saliva. The immunosensor was developed by surface modification of screen-printed carbon electrodes (SPCE) with MWCNT-COOH decorated with gold nanoparticles (AuNP) followed by HopQ capture antibody grafting on SPCE/MWCNT/AuNP surface using EDC/S-NHS chemistry. The sensor performance was investigated utilizing various methods, such as cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and scanning electron microscope (SEM) coupled with energy-dispersive X-ray spectroscopy (EDX). H. pylori detection performance in spiked saliva samples was evaluated by square wave voltammetry (SWV). The sensor is suitable for HopQ detection with excellent sensitivity and linearity in the 10 pg/mL-100 ng/mL range, with a 2.0 pg/mL limit of detection (LOD) and an 8.6 pg/mL limit of quantification (LOQ). The sensor was tested in saliva at 10 ng/mL, and recovery of 107.6% was obtained by SWV. From Hill's model, the dissociation constant Kd for HopQ/HopQ antibody interaction is estimated to be 4.60 × 10-10 mg/mL. The fabricated platform shows high selectivity, good stability, reproducibility, and cost-effectiveness for H. pylori early detection due to the proper choice of biomarker, the nanocomposite material utilization to boost the SPCE electrical performance, and the intrinsic selectivity of the antibody-antigen approach. Additionally, we provide insight into possible future aspects that researchers are recommended to focus on.
Collapse
Affiliation(s)
- Hussamaldeen Jaradat
- Measurement and Sensor Technology, Chemnitz University of Technology, 09126 Chemnitz, Germany
| | - Ammar Al-Hamry
- Measurement and Sensor Technology, Chemnitz University of Technology, 09126 Chemnitz, Germany
| | - Mohammed Ibbini
- Department of Biomedical Engineering, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Najla Fourati
- SATIE Laboratory, UMR CNRS 8029, Conservatoire National des Arts et Métiers, 75003 Paris, France
| | - Olfa Kanoun
- Measurement and Sensor Technology, Chemnitz University of Technology, 09126 Chemnitz, Germany
| |
Collapse
|
7
|
Al-nami S, Alorabi AQ, Al-Ahmed ZA, Mogharbel AT, Abumelha HM, Hussein MA, El-Metwaly NM. Superficial and Inkjet Scalable Printed Sensors Integrated with Iron Oxide and Reduced Graphene Oxide for Sensitive Voltammetric Determination of Lurasidone. ACS OMEGA 2023; 8:10449-10458. [PMID: 36969426 PMCID: PMC10034779 DOI: 10.1021/acsomega.3c00040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
The present work demonstrated the fabrication and the electrochemical characterization of novel printed electrochemical sensors integrated with an innovative nanosensing platform based on the synergic electrocatalytic effect of iron oxide nanoparticles (FeONPs) and reduced graphene oxide (rGO) for precise voltammetric determination of the antipsychotic drug lurasidone hydrochloride (LUH). The features of the electrode surface fabricated using the ordinary inkjet printer were characterized by scanning electron microscopy and electrochemical impedance spectroscopy. Among different ink formulations, integration of the printing ink with the ratio 15 mg FeONPs and 20 mg rGO was found to be the most appropriate for sensitive quantification of LUH in biological fluids and pharmaceutical formulations in the presence of LUH degradation products. Under the optimized experimental and electroanalytical parameters, the recorded square-wave voltammograms were correlated to LUH within the linear concentration ranging from 50 to 2150 ng mL-1 with detection limit and limit of quantification values of 15.64 and 47.39 ng mL-1, respectively. Based on the cyclic voltammograms recorded for LUH at different scan rates, the electrode reaction was assumed to be a diffusion reaction mechanism accompanied by the transfer of two electrons/protons through the oxidation of the five-membered ring nitrogen atom as assumed by the molecular orbital calculations carried out on the LUH molecule. The C max of LUH and the efficiency of the fabricated sensors enabled their clinical application for monitoring LUH in human biological fluids and pharmaceutical formulations in the presence of degradants for diverse quality control applications and green chemistry analysis.
Collapse
Affiliation(s)
- Samar
Y. Al-nami
- Department
of Chemistry, Faculty of Science, King Khalid
University, P.O. Box 9004, Abha 61421, Saudi Arabia
| | - Ali Q. Alorabi
- Department
of Chemistry, Faculty of Sciences, Albaha
University, P.O. Box 1988, Albaha 65799, Saudi Arbia
| | - Zehbah A. Al-Ahmed
- Depertment
of Chemistry, College of Sciences and Art, Dhahran Aljounb, King Khalid University, Abha 61421, Saudi
Arabia
| | - Amal T. Mogharbel
- Department
of Chemistry, Faculty of Science, University
of Tabuk, Tabuk 71474, Saudi Arabia
| | - Hana M. Abumelha
- Department
of Chemistry, College of Science, Princess
Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Mohammed A. Hussein
- Biochemistry
Department, Faculty of Applied Medical Sciences, October 6 University, 6th of October
City, Giza 28125, Egypt
| | - Nashwa M. El-Metwaly
- Department
of Chemistry, Faculty of Science, Mansoura
University, El-Gomhoria
Street, Mansoura 35516, Egypt
| |
Collapse
|
8
|
Zhang T, Han J, Zhang H. Rapid saline-alkali sensitivity testing using hydrogel/gold nanoparticles-modified screen-printed electrodes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 862:160814. [PMID: 36509274 DOI: 10.1016/j.scitotenv.2022.160814] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/28/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
Rapid screening of microorganisms with good saline-alkali tolerance is of great significance for the improvement of saline-alkali land. In this study, a novel electrochemical method was developed for the rapid screening of saline-alkali-tolerant bacteria using a hydrogel/gold nanoparticles-modified screen-printed electrode. Monitoring bacterial growth using electrochemical impedance spectroscopy (EIS) and differential pulse voltammetry (DPV) yielded a new method to measure saline-alkali sensitivity. The strains were deposited on agarose hydrogel-AuNPs composite-modified electrodes with saline-alkali treatment control at a concentration of 50 mM. The electrochemical-derived growth curve of each bacterial strain was established to monitor the effect of saline-alkaline conditions on bacterial growth. The results showed that E. coli could grow on the hydrogel-AuNPs composite-modified electrodes without saline and alkali, while the growth of E. coli was inhibited after adding saline and alkali to the modified electrodes. In contrast, Paenibacillus lautus (HC_A) and Lysinibacillus fusiformis (HC_B) were able to grow on electrodes containing saline-alkali hydrogel-AuNPs composite modification. This fast growth curves of the strains derived from electrochemical analysis indicate that the possible time for salinity sensitivity results is <45 min. Compared to the traditional bacterial culture method lasting at least 1-2 days, this method has the clear advantages of rapidity, high efficiency, and low cost.
Collapse
Affiliation(s)
- Ting Zhang
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, MOE Key Laboratory of Molecular Biophysics, Wuhan 430074, China
| | - Juan Han
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, MOE Key Laboratory of Molecular Biophysics, Wuhan 430074, China
| | - Houjin Zhang
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, MOE Key Laboratory of Molecular Biophysics, Wuhan 430074, China.
| |
Collapse
|
9
|
Gerevini L, Cerro G, Bria A, Marrocco C, Ferrigno L, Vitelli M, Ria A, Molinara M. An end-to-end real-time pollutants spilling recognition in wastewater based on the IoT-ready SENSIPLUS platform. JOURNAL OF KING SAUD UNIVERSITY - COMPUTER AND INFORMATION SCIENCES 2023. [DOI: 10.1016/j.jksuci.2022.12.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
10
|
Kozak J, Tyszczuk-Rotko K, Wójciak M, Sowa I, Rotko M. Electrochemically Pretreated Sensor Based on Screen-Printed Carbon Modified with Pb Nanoparticles for Determination of Testosterone. MATERIALS 2022; 15:ma15144948. [PMID: 35888414 PMCID: PMC9320313 DOI: 10.3390/ma15144948] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/12/2022] [Accepted: 07/14/2022] [Indexed: 02/04/2023]
Abstract
Testosterone (TST), despite its good properties, may be harmful to the human organism and the environment. Therefore, monitoring biological fluids and environmental samples is important. An electrochemically pretreated screen-printed carbon sensor modified with Pb nanoparticles (pSPCE/PbNPs) was successfully prepared and used for the determination of TST. The surface morphology and electrochemical properties of unmodified and modified sensors were characterized by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), scanning and transmission electron microscopy (SEM and TEM), and energy-dispersive X-ray spectroscopy (EDS). Selective determinations of TST at the pSPCE/PbNPs were carried out by differential pulse adsorptive stripping voltammetry (DPAdSV, EPb dep.and TST acc. of −1.1 V, t Pb dep.and TST acc. of 120 s, ΔEA of 50 mV, ν of 175 mV s−1, and tm of 5 ms) in a solution containing 0.075 mol L−1 acetate buffer of pH = 4.6 ± 0.1, and 7.5 × 10−5 mol L−1 Pb(NO3)2. The analytical signal obtained at the potential around −1.42 V (vs. silver pseudo-reference electrode) is related to the reduction process of TST adsorbed onto the electrode surface. The use of pSPCE/PbNPs allows obtaining a very low limit of TST detection (2.2 × 10−12 mol L−1) and wide linear ranges of the calibration graph (1.0 × 10−11–1.0 × 10−10, 1.0 × 10−10–2.0 × 10−9, and 2.0 × 10−9–2.0 × 10−8 mol L−1). The pSPCE/PbNPs were successfully applied for the determination of TST in reference material of human urine and wastewater purified in a sewage treatment plant without preliminary preparation.
Collapse
Affiliation(s)
- Jędrzej Kozak
- Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Skłodowska University in Lublin, 20-031 Lublin, Poland; (J.K.); (M.R.)
| | - Katarzyna Tyszczuk-Rotko
- Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Skłodowska University in Lublin, 20-031 Lublin, Poland; (J.K.); (M.R.)
- Correspondence:
| | - Magdalena Wójciak
- Department of Analytical Chemistry, Medical University of Lublin, 20-093 Lublin, Poland; (M.W.); (I.S.)
| | - Ireneusz Sowa
- Department of Analytical Chemistry, Medical University of Lublin, 20-093 Lublin, Poland; (M.W.); (I.S.)
| | - Marek Rotko
- Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Skłodowska University in Lublin, 20-031 Lublin, Poland; (J.K.); (M.R.)
| |
Collapse
|
11
|
Matvieiev O, Šelešovská R, Vojs M, Marton M, Michniak P, Hrdlička V, Hatala M, Janíková L, Chýlková J, Skopalová J, Cankař P, Navrátil T. Novel Screen-Printed Sensor with Chemically Deposited Boron-Doped Diamond Electrode: Preparation, Characterization, and Application. BIOSENSORS 2022; 12:bios12040241. [PMID: 35448301 PMCID: PMC9027657 DOI: 10.3390/bios12040241] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/08/2022] [Accepted: 04/11/2022] [Indexed: 05/27/2023]
Abstract
New screen-printed sensor with a boron-doped diamond working electrode (SP/BDDE) was fabricated using a large-area linear antenna microwave chemical deposition vapor system (LA-MWCVD) with a novel precursor composition. It combines the advantages of disposable printed sensors, such as tailored design, low cost, and easy mass production, with excellent electrochemical properties of BDDE, including a wide available potential window, low background currents, chemical resistance, and resistance to passivation. The newly prepared SP/BDDEs were characterized by scanning electron microscopy (SEM) and Raman spectroscopy. Their electrochemical properties were investigated by cyclic voltammetry and electrochemical impedance spectroscopy using inner sphere ([Fe(CN)6]4-/3-) and outer sphere ([Ru(NH3)6]2+/3+) redox probes. Moreover, the applicability of these new sensors was verified by analysis of the anti-inflammatory drug lornoxicam in model and pharmaceutical samples. Using optimized differential pulse voltammetry in Britton-Robinson buffer of pH 3, detection limits for lornoxicam were 9 × 10-8 mol L-1. The oxidation mechanism of lornoxicam was investigated using bulk electrolysis and online electrochemical cell with mass spectrometry; nine distinct reaction steps and corresponding products and intermediates were identified.
Collapse
Affiliation(s)
- Oleksandr Matvieiev
- Institute of Environmental and Chemical Engineering, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 532 10 Pardubice, Czech Republic; (O.M.); (L.J.); (J.C.)
| | - Renáta Šelešovská
- Institute of Environmental and Chemical Engineering, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 532 10 Pardubice, Czech Republic; (O.M.); (L.J.); (J.C.)
| | - Marian Vojs
- Institute of Electronics and Photonics, Faculty of Electrical Engineering and Information Technology, Slovak University of Technology in Bratislava, Ilkovičova 3, 812 19 Bratislava, Slovakia; (M.V.); (M.M.); (P.M.)
| | - Marián Marton
- Institute of Electronics and Photonics, Faculty of Electrical Engineering and Information Technology, Slovak University of Technology in Bratislava, Ilkovičova 3, 812 19 Bratislava, Slovakia; (M.V.); (M.M.); (P.M.)
| | - Pavol Michniak
- Institute of Electronics and Photonics, Faculty of Electrical Engineering and Information Technology, Slovak University of Technology in Bratislava, Ilkovičova 3, 812 19 Bratislava, Slovakia; (M.V.); (M.M.); (P.M.)
| | - Vojtěch Hrdlička
- J. Heyrovsky Institute of Physical Chemistry of the Academy of Sciences of the Czech Republic, Dolejškova 3, 182 23 Prague, Czech Republic;
| | - Michal Hatala
- Department of Graphic Arts Technology and Applied Photochemistry, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, 812 37 Bratislava, Slovakia;
| | - Lenka Janíková
- Institute of Environmental and Chemical Engineering, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 532 10 Pardubice, Czech Republic; (O.M.); (L.J.); (J.C.)
| | - Jaromíra Chýlková
- Institute of Environmental and Chemical Engineering, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 532 10 Pardubice, Czech Republic; (O.M.); (L.J.); (J.C.)
| | - Jana Skopalová
- Department of Analytical Chemistry, Faculty of Science, Palacký University in Olomouc, 17. listopadu 1192/12, 779 00 Olomouc, Czech Republic;
| | - Petr Cankař
- Department of Organic Chemistry, Faculty of Science, Palacký University in Olomouc, 17. listopadu 1192/12, 779 00 Olomouc, Czech Republic;
| | - Tomáš Navrátil
- J. Heyrovsky Institute of Physical Chemistry of the Academy of Sciences of the Czech Republic, Dolejškova 3, 182 23 Prague, Czech Republic;
| |
Collapse
|