1
|
Disselhorst-Klug C. What are my muscles up to? The contribution of surface electromyography to clinical decision-making. J Electromyogr Kinesiol 2025; 81:102988. [PMID: 39923431 DOI: 10.1016/j.jelekin.2025.102988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 01/21/2025] [Accepted: 02/04/2025] [Indexed: 02/11/2025] Open
Abstract
Muscles move the body. The varying levels of movement precision needed daily results from a complex interplay within the central nervous system, muscles and sensory feedback, referred to as neuromechanics. This neuromechanical interplay is often impaired in pathology. Although, diagnosis and therapy would benefit from information about the patient's specific neuromechanical control, no procedures have yet been established in clinical practice that allow this information to be fully recorded. Surface electromyography (sEMG) links neuronal input and muscle function and helps to understand how the CNS orchestrates the multitude of possibilities the neuromusculoskeletal system has at its disposal to solve a movement task. This 2024 Basmajian-Lecture-Paper will highlight sEMG applications in physiological and pathological conditions, to illustrate the potential contribution of sEMG to clinical decision-making. Focussing first on infants' motor development, it will contribute to the discussion on how neuromechanics and motor skills develop. Continuing with considerations on motor unit activation in health and disease and describing the difference between physiological and pathological muscle coordination in dynamic conditions, it aims to address the possibilities but also the limitations of sEMG in clinical applications. Finally, the influence of robotic support on neuromechanical control and thus on re-learning of motor skills are discussed.
Collapse
Affiliation(s)
- Catherine Disselhorst-Klug
- Department of Rehabilitation and Prevention Engineering, Institute of Applied Medical Engineering, RWTH Aachen University, Pauwelsstr. 20 52074 Aachen, Germany.
| |
Collapse
|
2
|
Davoudi Kakhki F, Vora H, Moghadam A. Biomechanical Risk Classification in Repetitive Lifting Using Multi-Sensor Electromyography Data, Revised National Institute for Occupational Safety and Health Lifting Equation, and Deep Learning. BIOSENSORS 2025; 15:84. [PMID: 39996986 PMCID: PMC11853325 DOI: 10.3390/bios15020084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 01/07/2025] [Accepted: 01/29/2025] [Indexed: 02/26/2025]
Abstract
Repetitive lifting tasks in occupational settings often result in shoulder injuries, impacting both health and productivity. Accurately assessing the biomechanical risk of these tasks remains a significant challenge in occupational ergonomics, particularly within manufacturing environments. Traditional assessment methods frequently rely on subjective reports and limited observations, which can introduce bias and yield incomplete evaluations. This study addresses these limitations by generating and utilizing a comprehensive dataset containing detailed time-series electromyography (EMG) data from 25 participants. Using high-precision wearable sensors, EMG data were collected from eight muscles as participants performed repetitive lifting tasks. For each task, the lifting index was calculated using the revised National Institute for Occupational Safety and Health (NIOSH) lifting equation (RNLE). Participants completed cycles of both low-risk and high-risk repetitive lifting tasks within a four-minute period, allowing for the assessment of muscle performance under realistic working conditions. This extensive dataset, comprising over 7 million data points sampled at approximately 1259 Hz, was leveraged to develop deep learning models to classify lifting risk. To provide actionable insights for practical occupational ergonomics and risk assessments, statistical features were extracted from the raw EMG data. Three deep learning models, Convolutional Neural Networks (CNNs), Multilayer Perceptron (MLP), and Long Short-Term Memory (LSTM), were employed to analyze the data and predict the occupational lifting risk level. The CNN model achieved the highest performance, with a precision of 98.92% and a recall of 98.57%, proving its effectiveness for real-time risk assessments. These findings underscore the importance of aligning model architectures with data characteristics to optimize risk management. By integrating wearable EMG sensors with deep learning models, this study enables precise, real-time, and dynamic risk assessments, significantly enhancing workplace safety protocols. This approach has the potential to improve safety planning and reduce the incidence and severity of work-related musculoskeletal disorders, ultimately promoting better health and safety outcomes across various occupational settings.
Collapse
Affiliation(s)
- Fatemeh Davoudi Kakhki
- Machine Learning & Safety Analytics Lab, School of Engineering, Santa Clara University, Santa Clara, CA 95053, USA;
- Department of General Engineering, Department of Electrical & Computer Engineering, Santa Clara University, Santa Clara, CA 95053, USA
| | - Hardik Vora
- Machine Learning & Safety Analytics Lab, School of Engineering, Santa Clara University, Santa Clara, CA 95053, USA;
- Department of Computer Science and Engineering, Santa Clara University, Santa Clara, CA 95053, USA
| | - Armin Moghadam
- Department of Technology, College of Engineering, San Jose State University, San Jose, CA 95112, USA;
| |
Collapse
|
3
|
Gizzi L, Felici F. STEM education needs for human movement sciences professionals. Front Neurol 2025; 15:1503022. [PMID: 39866514 PMCID: PMC11757111 DOI: 10.3389/fneur.2024.1503022] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 11/05/2024] [Indexed: 01/28/2025] Open
Affiliation(s)
- Leonardo Gizzi
- Department of Biomechatronics, Fraunhofer Institute for Manufacturing Engineering and Automation, Stuttgart, Germany
| | - Francesco Felici
- Department of Movement, Human, and Health Sciences, Laboratory of Exercise Physiology, University of Rome “Foro Italico”, Rome, Italy
| |
Collapse
|
4
|
Sid'El Moctar SM, Rida I, Boudaoud S. Comprehensive Review of Feature Extraction Techniques for sEMG Signal Classification: From Handcrafted Features to Deep Learning Approaches. Ing Rech Biomed 2024; 45:100866. [DOI: 10.1016/j.irbm.2024.100866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
5
|
Thurston M, Peltoniemi M, Giangrande A, Vujaklija I, Botter A, Kulmala JP, Piitulainen H. High-density EMG reveals atypical spatial activation of the gastrocnemius during walking in adolescents with Cerebral Palsy. J Electromyogr Kinesiol 2024; 79:102934. [PMID: 39378587 DOI: 10.1016/j.jelekin.2024.102934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/06/2024] [Accepted: 09/18/2024] [Indexed: 10/10/2024] Open
Abstract
Children with Cerebral Palsy (CP) exhibit less-selective, simplified muscle activation during gait due to injury of the developing brain. Abnormal motor unit recruitment, altered excitation-inhibition balance, and muscle morphological changes all affect the CP electromyogram. High-density surface electromyography (HDsEMG) has potential to reveal novel manifestations of CP neuromuscular pathology and functional deficits by assessing spatiotemporal details of myoelectric activity. We used HDsEMG to investigate spatial-EMG distribution and temporal-EMG complexity of gastrocnemius medialis (GM) muscle during treadmill walking in 11 adolescents with CP and 11 typically developed (TD) adolescents. Our results reveal more-uniform spatial-EMG amplitude distribution across the GM in adolescents with CP, compared to distal emphasis in TD adolescents. More-uniform spatial-EMG was associated with stronger ankle co-contraction and spasticity. CP adolescents exhibited a non-significant trend towards elevated EMG-temporal complexity. Homogenous spatial distribution and disordered temporal evolution of myoelectric activity in CP suggests less-structured and desynchronized recruitment of GM motor units, in combination with muscle morphological changes. Using HDsEMG, we uncovered novel evidence of atypical spatiotemporal activation during gait in CP, opening paths towards deeper understanding of motor control deficits and better characterization of changes in muscular activation from interventions.
Collapse
Affiliation(s)
- Maxwell Thurston
- Faculty of Sport and Health Sciences, Neuromuscular Research Center, University of Jyväskylä, Jyväskylä, Finland; Motion Laboratory, New Children's Hospital, Helsinki University Hospital and University of Helsinki, Helsinki, Finland.
| | - Mika Peltoniemi
- Faculty of Sport and Health Sciences, Neuromuscular Research Center, University of Jyväskylä, Jyväskylä, Finland; Motion Laboratory, New Children's Hospital, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Alessandra Giangrande
- Faculty of Sport and Health Sciences, Neuromuscular Research Center, University of Jyväskylä, Jyväskylä, Finland; Laboratory for Engineering of the Neuromuscular System (LISiN), Department of Electronics and Telecommunication, Politecnico di Torino, Turin, Italy; PoliToBIOMed Laboratory, Politecnico di Torino, Turin, Italy
| | - Ivan Vujaklija
- Department of Electrical Engineering and Automation, Aalto University, Espoo, Finland
| | - Alberto Botter
- Laboratory for Engineering of the Neuromuscular System (LISiN), Department of Electronics and Telecommunication, Politecnico di Torino, Turin, Italy; PoliToBIOMed Laboratory, Politecnico di Torino, Turin, Italy
| | - Juha-Pekka Kulmala
- Motion Laboratory, New Children's Hospital, Helsinki University Hospital and University of Helsinki, Helsinki, Finland; School of Health and Social Studies, JAMK University of Applied Sciences, Jyväskylä, Finland
| | - Harri Piitulainen
- Faculty of Sport and Health Sciences, Neuromuscular Research Center, University of Jyväskylä, Jyväskylä, Finland; Motion Laboratory, New Children's Hospital, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| |
Collapse
|
6
|
Basu V, Cheng L, Zheng B. Technologies and Sensors for Artificial Muscles in Rehabilitation. SENSORS (BASEL, SWITZERLAND) 2024; 24:7532. [PMID: 39686069 DOI: 10.3390/s24237532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/12/2024] [Accepted: 11/05/2024] [Indexed: 12/18/2024]
Abstract
Muscles are very important parts of the human body. When there is an injury to a muscle that causes long-term dysfunctionality, sensors and artificial muscles can be used to help alleviate problems. Muscles have complex structures; thus, ultrasound and other types of scans may be needed to determine their parameters and model their shapes. Additionally, the measurement of chemicals in muscles plays a significant role in analyzing their performance and potential diseases in humans. All the above-mentioned components are needed for understanding the structure and function of muscles. The areas studied in this review include artificial muscles and exoskeletons, determining muscle parameters and modelling, assessing musculoskeletal functions, chemicals in muscles, and various applications, including those of wearable sensors. In future studies, we would like to understand the link between the brain and muscles and develop technologies that can assist in augmenting the motor skills of individuals affected by various debilitating conditions.
Collapse
Affiliation(s)
- Vina Basu
- Department of Electrical Engineering, University of Alberta, Edmonton, AB T6G 2B7, Canada
- Department of Surgery, University of Alberta, Edmonton, AB T6G 2B7, Canada
| | - Li Cheng
- Department of Electrical Engineering, University of Alberta, Edmonton, AB T6G 2B7, Canada
| | - Bin Zheng
- Department of Surgery, University of Alberta, Edmonton, AB T6G 2B7, Canada
| |
Collapse
|
7
|
Storniolo JL, Farinelli V, Onesti M, Correale L, Peyré-Tartaruga LA, Esposti R, Cavallari P. Case report: New perspectives on gait initiation strategies from a case of full toes amputation in a professional mountain climber. Front Hum Neurosci 2024; 18:1463249. [PMID: 39391266 PMCID: PMC11464344 DOI: 10.3389/fnhum.2024.1463249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 09/09/2024] [Indexed: 10/12/2024] Open
Abstract
Introduction We studied the postural behaviour of a 52-year-old professional mountain climber who underwent bilateral amputation of all five toes after severe frostbite. Methods Two tasks were examined: static posturography (SP) and gait initiation (GI), both performed barefoot and with prosthetic shoes. During SP, the participant kept the upright stance for 30 s while an optoelectronic system with reflective markers recorded feet position and body sway, and two force plates measured the Center of Pressure (CoP) displacement and Ground Reaction Force (GRF) of each foot. During GI, the participant stood on the force plates for at least 10 s and then spontaneously started walking, while optoelectronic system was used to monitor heel-off events; wireless EMG probes recorded the anticipatory postural adjustments (APAs) in trunk and lower limb muscles. Results Compared to shod condition, during barefoot SP the participant showed a reduced anteroposterior (AP) and mediolateral (ML) extension of the Base of Support (BoS), and the whole-body CoP shifted about 7 mm more anteriorly, approaching the "safer" geometric center of the BoS. Despite this difference, the AP and ML ranges of CoP oscillations were similar in both conditions. In GI, the trunk dorsal muscles showed different APA patterns: when barefoot they were excitatory in the trailing and inhibitory in the leading side while they were bilaterally inhibitory when shod. Discussion In parallel to CoP shift toward a "safer" position in SP, in barefoot GI the body rotation toward the trailing side may reveal a more "cautious" approach; this also shows that different postural strategies may be adopted in GI by one and the same individual.
Collapse
Affiliation(s)
- Jorge L. Storniolo
- Human Physiology Section of the Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milano, Italy
| | - Veronica Farinelli
- Human Physiology Section of the Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milano, Italy
| | - Mattia Onesti
- Human Locomotion Laboratory (LOCOLAB), Department of Public Health, Experimental Medicine and Forensic Sciences, University of Pavia, Pavia, Italy
| | - Luca Correale
- Human Locomotion Laboratory (LOCOLAB), Department of Public Health, Experimental Medicine and Forensic Sciences, University of Pavia, Pavia, Italy
| | - Leonardo A. Peyré-Tartaruga
- Human Locomotion Laboratory (LOCOLAB), Department of Public Health, Experimental Medicine and Forensic Sciences, University of Pavia, Pavia, Italy
- LaBiodin Biodynamics Laboratory, School of Physical Education, Physiotherapy and Dance, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Roberto Esposti
- Human Physiology Section of the Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milano, Italy
| | - Paolo Cavallari
- Human Physiology Section of the Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milano, Italy
- Laboratorio Sperimentale di Fisiopatologia Neuromotoria, IRCCS Istituto Auxologico Italiano, Meda, Italy
| |
Collapse
|
8
|
Guo J, Wang X, Bai R, Zhang Z, Chen H, Xue K, Ma C, Zang D, Yin E, Gao K, Ji B. A Cost-Effective and Easy-to-Fabricate Conductive Velcro Dry Electrode for Durable and High-Performance Biopotential Acquisition. BIOSENSORS 2024; 14:432. [PMID: 39329808 PMCID: PMC11430566 DOI: 10.3390/bios14090432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/02/2024] [Accepted: 09/04/2024] [Indexed: 09/28/2024]
Abstract
Compared with the traditional gel electrode, the dry electrode is being taken more seriously in bioelectrical recording because of its easy preparation, long-lasting ability, and reusability. However, the commonly used dry AgCl electrodes and silver cloth electrodes are generally hard to record through hair due to their flat contact surface. Claw electrodes can contact skin through hair on the head and body, but the internal claw structure is relatively hard and causes discomfort after being worn for a few hours. Here, we report a conductive Velcro electrode (CVE) with an elastic hook hair structure, which can collect biopotential through body hair. The elastic hooks greatly reduce discomfort after long-time wearing and can even be worn all day. The CVE electrode is fabricated by one-step immersion in conductive silver paste based on the cost-effective commercial Velcro, forming a uniform and durable conductive coating on a cluster of hook microstructures. The electrode shows excellent properties, including low impedance (15.88 kΩ @ 10 Hz), high signal-to-noise ratio (16.0 dB), strong water resistance, and mechanical resistance. After washing in laundry detergent, the impedance of CVE is still 16% lower than the commercial AgCl electrodes. To verify the mechanical strength and recovery capability, we conducted cyclic compression experiments. The results show that the displacement change of the electrode hook hair after 50 compression cycles was still less than 1%. This electrode provides a universal acquisition scheme, including effective acquisition of different parts of the body with or without hair. Finally, the gesture recognition from electromyography (EMG) by the CVE electrode was applied with accuracy above 90%. The CVE proposed in this study has great potential and promise in various human-machine interface (HMI) applications that employ surface biopotential signals on the body or head with hair.
Collapse
Affiliation(s)
- Jun Guo
- Unmanned System Research Institute, Northwestern Polytechnical University, Xi'an 710072, China
- National Key Laboratory of Unmanned Aerial Vehicle Technology, Integrated Research and Development Platform of Unmanned Aerial Vehicle Technology, Northwestern Polytechnical University, Xi'an 710072, China
- Ministry of Education Key Laboratory of Micro and Nano Systems for Aerospace, School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Xuanqi Wang
- Unmanned System Research Institute, Northwestern Polytechnical University, Xi'an 710072, China
- National Key Laboratory of Unmanned Aerial Vehicle Technology, Integrated Research and Development Platform of Unmanned Aerial Vehicle Technology, Northwestern Polytechnical University, Xi'an 710072, China
- Ministry of Education Key Laboratory of Micro and Nano Systems for Aerospace, School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Ruiyu Bai
- Unmanned System Research Institute, Northwestern Polytechnical University, Xi'an 710072, China
- National Key Laboratory of Unmanned Aerial Vehicle Technology, Integrated Research and Development Platform of Unmanned Aerial Vehicle Technology, Northwestern Polytechnical University, Xi'an 710072, China
- Ministry of Education Key Laboratory of Micro and Nano Systems for Aerospace, School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Zimo Zhang
- Unmanned System Research Institute, Northwestern Polytechnical University, Xi'an 710072, China
- National Key Laboratory of Unmanned Aerial Vehicle Technology, Integrated Research and Development Platform of Unmanned Aerial Vehicle Technology, Northwestern Polytechnical University, Xi'an 710072, China
- Ministry of Education Key Laboratory of Micro and Nano Systems for Aerospace, School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Huazhen Chen
- Unmanned System Research Institute, Northwestern Polytechnical University, Xi'an 710072, China
- National Key Laboratory of Unmanned Aerial Vehicle Technology, Integrated Research and Development Platform of Unmanned Aerial Vehicle Technology, Northwestern Polytechnical University, Xi'an 710072, China
- Ministry of Education Key Laboratory of Micro and Nano Systems for Aerospace, School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Kai Xue
- Unmanned System Research Institute, Northwestern Polytechnical University, Xi'an 710072, China
- National Key Laboratory of Unmanned Aerial Vehicle Technology, Integrated Research and Development Platform of Unmanned Aerial Vehicle Technology, Northwestern Polytechnical University, Xi'an 710072, China
- Ministry of Education Key Laboratory of Micro and Nano Systems for Aerospace, School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Chuang Ma
- Defense Innovation Institute, Academy of Military Sciences (AMS), Beijing 100071, China
- Intelligent Game and Decision Laboratory, Beijing 100071, China
- Tianjin Artificial Intelligence Innovation Center (TAIIC), Tianjin 300450, China
| | - Dawei Zang
- Department of Rehabilitation Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Erwei Yin
- Defense Innovation Institute, Academy of Military Sciences (AMS), Beijing 100071, China
- Intelligent Game and Decision Laboratory, Beijing 100071, China
- Tianjin Artificial Intelligence Innovation Center (TAIIC), Tianjin 300450, China
| | - Kunpeng Gao
- College of Information Science and Technology, Donghua University, Shanghai 201620, China
| | - Bowen Ji
- Unmanned System Research Institute, Northwestern Polytechnical University, Xi'an 710072, China
- National Key Laboratory of Unmanned Aerial Vehicle Technology, Integrated Research and Development Platform of Unmanned Aerial Vehicle Technology, Northwestern Polytechnical University, Xi'an 710072, China
- Ministry of Education Key Laboratory of Micro and Nano Systems for Aerospace, School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| |
Collapse
|
9
|
Yassin MM, Saad MN, Khalifa AM, Said AM. Advancing clinical understanding of surface electromyography biofeedback: bridging research, teaching, and commercial applications. Expert Rev Med Devices 2024; 21:709-726. [PMID: 38967375 DOI: 10.1080/17434440.2024.2376699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 07/02/2024] [Indexed: 07/06/2024]
Abstract
INTRODUCTION Expanding the use of surface electromyography-biofeedback (EMG-BF) devices in different therapeutic settings highlights the gradually evolving role of visualizing muscle activity in the rehabilitation process. This review evaluates their concepts, uses, and trends, combining evidence-based research. AREAS COVERED This review dissects the anatomy of EMG-BF systems, emphasizing their transformative integration with machine-learning (ML) and deep-learning (DL) paradigms. Advances such as the application of sophisticated DL architectures for high-density EMG data interpretation, optimization techniques for heightened DL model performance, and the fusion of EMG with electroencephalogram (EEG) signals have been spotlighted for enhancing biomechanical analyses in rehabilitation. The literature survey also categorizes EMG-BF devices based on functionality and clinical usage, supported by insights from commercial sectors. EXPERT OPINION The current landscape of EMG-BF is rapidly evolving, chiefly propelled by innovations in artificial intelligence (AI). The incorporation of ML and DL into EMG-BF systems augments their accuracy, reliability, and scope, marking a leap in patient care. Despite challenges in model interpretability and signal noise, ongoing research promises to address these complexities, refining biofeedback modalities. The integration of AI not only predicts patient-specific recovery timelines but also tailors therapeutic interventions, heralding a new era of personalized medicine in rehabilitation and emotional detection.
Collapse
Affiliation(s)
- Mazen M Yassin
- School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, China
- Biomedical Engineering Department, Faculty of Engineering, Minia University, Minia, Egypt
- Department of Biomedical Engineering, Helwan University, Cairo, Egypt
| | - Mohamed N Saad
- Biomedical Engineering Department, Faculty of Engineering, Minia University, Minia, Egypt
| | - Ayman M Khalifa
- Department of Biomedical Engineering, Helwan University, Cairo, Egypt
| | - Ashraf M Said
- Biomedical Engineering Program, Electrical Engineering Department, Benha Faculty of Engineering, Benha University, Al Qalyubiyah, Egypt
| |
Collapse
|
10
|
Padovan R, Toninelli N, Longo S, Tornatore G, Esposito F, Cè E, Coratella G. High-Density Electromyography Excitation in Front vs. Back Lat Pull-Down Prime Movers. J Hum Kinet 2024; 91:47-60. [PMID: 38689585 PMCID: PMC11057623 DOI: 10.5114/jhk/185211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 02/22/2024] [Indexed: 05/02/2024] Open
Abstract
The current study compared the spatial excitation of the primary muscles during the lat pull-down exercise with the bar passing in front (front-LPD) or behind the neck (back-LPD) using high-density electromyography. Fourteen resistance trained men performed a front-LPD or a back-LPD within a non-fatiguing set with 8-RM as the external load. The muscle excitation centroid of latissimus dorsi, middle trapezius, pectoralis major, biceps brachii, triceps brachii and posterior deltoid muscles were recorded during the ascending and the descending phase. During the descending phase, the front-LPD showed superior excitation of the latissimus dorsi (ES = 0.97) and the pectoralis major (ES = 1.17), while in the ascending phase, the back-LPD exhibited superior excitation of the latissimus dorsi (ES = 0.63), and the front-LPD showed superior excitation of the biceps brachii (ES = 0.41) and the posterior deltoid (ES = 1.77). During the descending phase, the front-LPD showed a more lateral centroid of the latissimus dorsi (ES = 0.60), the biceps brachii (ES = 0.63) and the triceps brachii (ES = 0.98), while the centroid was more medial for the middle trapezius (ES = 0.58). The centroid of the middle trapezius was also more medial in the front-LPD during the ascending phase (ES = 0.85). The pectoralis major centroid was more cranial in the front-LPD for both the descending (ES = 1.58) and the ascending phase (ES = 0.88). The front-LPD appears to provide overall greater excitation in the prime movers. However, distinct spatial excitation patterns were observed, making exercise suitable for the training routine.
Collapse
Affiliation(s)
- Riccardo Padovan
- Department of Biomedical Sciences for Health, Università Degli Studi di Milano, Milan, Italy
| | - Nicholas Toninelli
- Department of Biomedical Sciences for Health, Università Degli Studi di Milano, Milan, Italy
| | - Stefano Longo
- Department of Biomedical Sciences for Health, Università Degli Studi di Milano, Milan, Italy
| | - Gianpaolo Tornatore
- Department of Biomedical Sciences for Health, Università Degli Studi di Milano, Milan, Italy
| | - Fabio Esposito
- Department of Biomedical Sciences for Health, Università Degli Studi di Milano, Milan, Italy
| | - Emiliano Cè
- Department of Biomedical Sciences for Health, Università Degli Studi di Milano, Milan, Italy
| | - Giuseppe Coratella
- Department of Biomedical Sciences for Health, Università Degli Studi di Milano, Milan, Italy
| |
Collapse
|
11
|
Mesin L. Nonlinear spatio-temporal filter to reduce crosstalk in bipolar electromyogram. J Neural Eng 2024; 21:016021. [PMID: 38277703 DOI: 10.1088/1741-2552/ad2334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 01/26/2024] [Indexed: 01/28/2024]
Abstract
Objective.The wide detection volume of surface electromyogram (EMG) makes it prone to crosstalk, i.e. the signal from other muscles than the target one. Removing this perturbation from bipolar recordings is an important open problem for many applications.Approach.An innovative nonlinear spatio-temporal filter is developed to estimate the EMG generated by the target muscle by processing noisy signals from two bipolar channels, placed over the target and the crosstalk muscle, respectively. The filter is trained on some calibration data and then can be applied on new signals. Tests are provided in simulations (considering different thicknesses of the subcutaneous tissue, inter-electrode distances, locations of the EMG channels, force levels) and experiments (from pronator teres and flexor carpi radialis of 8 healthy subjects).Main results.The proposed filter allows to reduce the effect of crosstalk in all investigated conditions, with a statistically significant reduction of its root mean squared of about 20%, both in simulated and experimental data. Its performances are also superior to those of a blind source separation method applied to the same data.Significance.The proposed filter is simple to be applied and feasible in applications in which single bipolar channels are placed over the muscles of interest. It can be useful in many fields, such as in gait analysis, tests of myoelectric fatigue, rehabilitation with EMG biofeedback, clinical studies, prosthesis control.
Collapse
Affiliation(s)
- Luca Mesin
- Mathematical Biology and Physiology, Department of Electronics and Telecommunications, Politecnico di Torino, Corso Duca degli Abruzzi 24, Turin, Italy
| |
Collapse
|
12
|
Merletti R. Metrology in sEMG and movement analysis: the need for training new figures in clinical rehabilitation. FRONTIERS IN REHABILITATION SCIENCES 2024; 5:1353374. [PMID: 38348456 PMCID: PMC10859507 DOI: 10.3389/fresc.2024.1353374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 01/12/2024] [Indexed: 02/15/2024]
Abstract
A new educational curriculum for the next generation of physical and occupational therapists is urgent in order to manage the recent fast advances in sensors, measurement technologies and related instrumentation. This is required by the growing role of STEM in rehabilitation, kinesiology, and sport sciences. Surface EMG technology is used in this work as a representative example of similar problems present in movement analysis, exoskeletons, and many other fields. A review of the most relevant articles and international projects in the field of interfacing physical therapy with measurement technology for quantitative assessment of outcome is presented. It is concluded that a new generation of educators is needed as well as a Ph.D. and/or a clinical doctorate degree in physical therapy, still lacking in many countries. It is urgent to consider knowledge translation since it will take many years before any recommended change in teaching will be accepted and show some effect. A call for a "white paper" on rehabilitation metrology is highly auspicable.
Collapse
Affiliation(s)
- Roberto Merletti
- LISiN, Department of Electronicsand Telecommunications, Politecnico di Torino, Italy
| |
Collapse
|
13
|
Koussou A, Dumas R, Desailly E. A Velocity Stretch Reflex Threshold Based on Muscle-Tendon Unit Peak Acceleration to Detect Possible Occurrences of Spasticity during Gait in Children with Cerebral Palsy. SENSORS (BASEL, SWITZERLAND) 2023; 24:41. [PMID: 38202903 PMCID: PMC10780611 DOI: 10.3390/s24010041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/12/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024]
Abstract
Spasticity might affect gait in children with cerebral palsy. Quantifying its occurrence during locomotion is challenging. One approach is to determine kinematic stretch reflex thresholds, usually on the velocity, during passive assessment and to search for their exceedance during gait. These thresholds are determined through EMG-Onset detection algorithms, which are variable in performance and sensitive to noisy data, and can therefore lack consistency. This study aimed to evaluate the feasibility of determining the velocity stretch reflex threshold from maximal musculotendon acceleration. Eighteen children with CP were recruited and underwent clinical gait analysis and a full instrumented assessment of their soleus, gastrocnemius lateralis, semitendinosus, and rectus femoris spasticity, with EMG, kinematics, and applied forces being measured simultaneously. Using a subject-scaled musculoskeletal model, the acceleration-based stretch reflex velocity thresholds were determined and compared to those based on EMG-Onset determination. Their consistencies according to physiological criteria, i.e., if the timing of the threshold was between the beginning of the stretch and the spastic catch, were evaluated. Finally, two parameters designed to evaluate the occurrence of spasticity during gait, i.e., the proportion of the gait trial time with a gait velocity above the velocity threshold and the number of times the threshold was exceeded, were compared. The proposed method produces velocity stretch reflex thresholds close to the EMG-based ones. For all muscles, no statistical difference was found between the two parameters designed to evaluate the occurrence of spasticity during gait. Contrarily to the EMG-based methods, the proposed method always provides physiologically consistent values, with median electromechanical delays of between 50 and 130 ms. For all subjects, the semitendinosus velocity during gait usually exceeded its stretch reflex threshold, while it was less frequent for the three other muscles. We conclude that a velocity stretch reflex threshold, based on musculotendon acceleration, is a reliable substitute for EMG-based ones.
Collapse
Affiliation(s)
- Axel Koussou
- Pôle Recherche & Innovation, Fondation Ellen Poidatz, 77310 Saint-Fargeau-Ponthierry, France;
- Laboratoire de Biomécanique et Mécanique des Chocs UMR T9406, University Lyon, University Gustave Eiffel, University Claude Bernard Lyon 1, 69622 Lyon, France;
| | - Raphaël Dumas
- Laboratoire de Biomécanique et Mécanique des Chocs UMR T9406, University Lyon, University Gustave Eiffel, University Claude Bernard Lyon 1, 69622 Lyon, France;
| | - Eric Desailly
- Pôle Recherche & Innovation, Fondation Ellen Poidatz, 77310 Saint-Fargeau-Ponthierry, France;
| |
Collapse
|
14
|
van Helden JFL, Alexander E, Cabral HV, Strutton PH, Martinez-Valdes E, Falla D, Chowdhury JR, Chiou SY. Home-based arm cycling exercise improves trunk control in persons with incomplete spinal cord injury: an observational study. Sci Rep 2023; 13:22120. [PMID: 38092831 PMCID: PMC10719287 DOI: 10.1038/s41598-023-49053-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 12/04/2023] [Indexed: 12/17/2023] Open
Abstract
Arm cycling is used for cardiorespiratory rehabilitation but its therapeutic effects on the neural control of the trunk after spinal cord injury (SCI) remain unclear. We investigated the effects of single session of arm cycling on corticospinal excitability, and the feasibility of home-based arm cycling exercise training on volitional control of the erector spinae (ES) in individuals with incomplete SCI. Using transcranial magnetic stimulation, we assessed motor evoked potentials (MEPs) in the ES before and after 30 min of arm cycling in 15 individuals with SCI and 15 able-bodied controls (Experiment 1). Both groups showed increased ES MEP size after the arm cycling. The participants with SCI subsequently underwent a 6-week home-based arm cycling exercise training (Experiment 2). MEP amplitudes and activity of the ES, and movements of the trunk during reaching, self-initiated rapid shoulder flexion, and predicted external perturbation tasks were measured. After the training, individuals with SCI reached further and improved trajectory of the trunk during the rapid shoulder flexion task, accompanied by increased ES activity and MEP amplitudes. Exercise adherence was excellent. We demonstrate preserved corticospinal drive after a single arm cycling session and the effects of home-based arm cycling exercise training on trunk function in individuals with SCI.
Collapse
Affiliation(s)
- Joeri F L van Helden
- Centre of Precision Rehabilitation for Spinal Pain (CPR Spine), School of Sport, Exercise and Rehabilitation Sciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Emma Alexander
- The Royal London Hospital, Barts Health NHS Trust, London, UK
| | - Hélio V Cabral
- Department of Clinical and Experimental Sciences, Università degli Studi di Brescia, Brescia, Italy
| | - Paul H Strutton
- Department of Surgery & Cancer, Faculty of Medicine, Imperial College London, London, UK
| | - Eduardo Martinez-Valdes
- Centre of Precision Rehabilitation for Spinal Pain (CPR Spine), School of Sport, Exercise and Rehabilitation Sciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Deborah Falla
- Centre of Precision Rehabilitation for Spinal Pain (CPR Spine), School of Sport, Exercise and Rehabilitation Sciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Joy Roy Chowdhury
- Midland Centre for Spinal Injuries, The Robert Jones and Agnes Hunt Orthopaedic Hospital NHSFT, Oswestry, UK
| | - Shin-Yi Chiou
- Centre of Precision Rehabilitation for Spinal Pain (CPR Spine), School of Sport, Exercise and Rehabilitation Sciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| |
Collapse
|
15
|
Waldon KT, Stout A, Manning K, Gray L, Wilson DG, Kang GE. Dual-Task Interference Effects on Lower-Extremity Muscle Activities during Gait Initiation and Steady-State Gait among Healthy Young Individuals, Measured Using Wireless Electromyography Sensors. SENSORS (BASEL, SWITZERLAND) 2023; 23:8842. [PMID: 37960541 PMCID: PMC10647760 DOI: 10.3390/s23218842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/21/2023] [Accepted: 10/26/2023] [Indexed: 11/15/2023]
Abstract
To maintain a healthy lifestyle, adults rely on their ability to walk while simultaneously managing multiple tasks that challenge their coordination. This study investigates the impact of cognitive dual tasks on lower-limb muscle activities in 21 healthy young adults during both gait initiation and steady-state gait. We utilized wireless electromyography sensors to measure muscle activities, along with a 3D motion capture system and force plates to detect the phases of gait initiation and steady-state gait. The participants were asked to walk at their self-selected pace, and we compared single-task and dual-task conditions. We analyzed mean muscle activation and coactivation in the biceps femoris, vastus lateralis, gastrocnemius, and tibialis anterior muscles. The findings revealed that, during gait initiation with the dual-task condition, there was a decrease in mean muscle activation and an increase in mean muscle coactivation between the swing and stance limbs compared with the single-task condition. In steady-state gait, there was also a decrease in mean muscle activation in the dual-task condition compared with the single-task condition. When participants performed dual-task activities during gait initiation, early indicators of reduced balance capability were observed. Additionally, during dual-task steady-state gait, the knee stabilizer muscles exhibited signs of altered activation, contributing to balance instability.
Collapse
Affiliation(s)
- Ke’Vaughn Tarrel Waldon
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX 75080, USA (A.S.)
| | - Angeloh Stout
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX 75080, USA (A.S.)
| | - Kaitlin Manning
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX 75080, USA (A.S.)
| | - Leslie Gray
- Department of Prosthetics-Orthotics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - David George Wilson
- Department of Prosthetics-Orthotics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Gu Eon Kang
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX 75080, USA (A.S.)
- Department of Plastic Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
16
|
Di Rauso G, Castellucci A, Cavallieri F, Tozzi A, Fioravanti V, Monfrini E, Gessani A, Rossi J, Campanini I, Merlo A, Ronchi D, Napoli M, Pascarella R, Grisanti S, Ferrulli G, Sabadini R, Di Fonzo A, Ghidini A, Valzania F. Speech, Gait, and Vestibular Function in Cerebellar Ataxia with Neuropathy and Vestibular Areflexia Syndrome. Brain Sci 2023; 13:1467. [PMID: 37891834 PMCID: PMC10605709 DOI: 10.3390/brainsci13101467] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 10/10/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
(1) Background: Cerebellar ataxia with neuropathy and vestibular areflexia syndrome (CANVAS) is characterized by late-onset cerebellar ataxia, bilateral vestibulopathy, and sensory neuronopathy mostly due to biallelic RFC1 expansion. (2) Objectives: The aim of this case series is to describe vestibular, gait, and speech alterations in CANVAS via a systematic approach. (3) Methods: All patients (n = 5) underwent a standardized clinical-instrumental examination, including the perceptual and acoustic analysis of speech, instrumental gait, and balance analysis (posturographic data were acquired using a force plate [Kistler, Winterthur, Switzerland] while 3D gait analysis, inclusive of surface electromyography, was acquired using a motion capture system [SMART DX, BTS Bioengineering, Milan, Italy], a wireless electromyograph [FreeEMG, BTS Bioengineering, Milan, Italy]), and vestibular assessment with video-oculography. (4) Results: Five patients were included in the analysis: three females (patients A, B, C) and two males (patients D and E) with a mean age at evaluation of 62 years (SD ± 15.16, range 36-74). The mean age of symptoms' onset was 55.6 years (SD ± 15.04, range 30-68), and patients were clinically and instrumentally evaluated with a mean disease duration of 6.4 years (SD ± 0.54, range 6-7). Video-Frenzel examination documented spontaneous downbeat nystagmus enhanced on bilateral gaze in all patients, except for one presenting with slight downbeat nystagmus in the supine position. All patients exhibited different degrees of symmetrically reduced VOR gain for allsix semicircular canals on the video-head impulse test and an unexpectedly normal ("false negative") VOR suppression, consistent with combined cerebellar dysfunction and bilateral vestibular loss. Posturographic indices were outside their age-matched normative ranges in all patients, while 3D gait analysis highlighted a reduction in ankle dorsiflexion (limited forward rotation of the tibia over the stance foot during the stance phase of gait and fatigue of the dorsiflexor muscles) and variable out-of-phase activity of plantar flexors during the swing phase. Finally, perceptual-acoustic evaluation of speech showed ataxic dysarthria in three patients. Dysdiadochokinesis, rhythm instability, and irregularity were observed in the oral diadochokinesis task. (5) Conclusions: CANVAS is a recently discovered syndrome that is gaining more and more relevance within late-onset ataxias. In this paper, we aimed to contribute to a detailed description of its phenotype.
Collapse
Affiliation(s)
- Giulia Di Rauso
- Department of Biomedical, Metabolic and Neural Science, University of Modena and Reggio Emilia, 41125 Modena, Italy;
- Neurology, Neuroscience Head Neck Department, Azienda Ospedaliero-Universitaria di Modena, 41126 Modena, Italy;
- Neurology Unit, Neuromotor & Rehabilitation Department, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (V.F.); (J.R.); (R.S.); (F.V.)
| | - Andrea Castellucci
- Otolaryngology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.C.); (A.G.)
| | - Francesco Cavallieri
- Neurology Unit, Neuromotor & Rehabilitation Department, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (V.F.); (J.R.); (R.S.); (F.V.)
| | - Andrea Tozzi
- Otorhinolaryngology-Head and Neck Surgery Department, University Hospital of Modena, 41125 Modena, Italy; (A.T.); (G.F.)
| | - Valentina Fioravanti
- Neurology Unit, Neuromotor & Rehabilitation Department, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (V.F.); (J.R.); (R.S.); (F.V.)
| | - Edoardo Monfrini
- Neurology Unit, Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (E.M.); (D.R.); (A.D.F.)
- Dino Ferrari Center, Neuroscience Section, Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy
| | - Annalisa Gessani
- Neurology, Neuroscience Head Neck Department, Azienda Ospedaliero-Universitaria di Modena, 41126 Modena, Italy;
| | - Jessica Rossi
- Neurology Unit, Neuromotor & Rehabilitation Department, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (V.F.); (J.R.); (R.S.); (F.V.)
- Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, 41125 Reggio Emilia, Italy;
| | - Isabella Campanini
- LAM-Motion Analysis Laboratory, Neuromotor and Rehabilitation Department, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (I.C.); (A.M.)
| | - Andrea Merlo
- LAM-Motion Analysis Laboratory, Neuromotor and Rehabilitation Department, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (I.C.); (A.M.)
| | - Dario Ronchi
- Neurology Unit, Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (E.M.); (D.R.); (A.D.F.)
- Dino Ferrari Center, Neuroscience Section, Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy
| | - Manuela Napoli
- Neuroradiology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (M.N.); (R.P.)
| | - Rosario Pascarella
- Neuroradiology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (M.N.); (R.P.)
| | - Sara Grisanti
- Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, 41125 Reggio Emilia, Italy;
| | - Giuseppe Ferrulli
- Otorhinolaryngology-Head and Neck Surgery Department, University Hospital of Modena, 41125 Modena, Italy; (A.T.); (G.F.)
| | - Rossella Sabadini
- Neurology Unit, Neuromotor & Rehabilitation Department, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (V.F.); (J.R.); (R.S.); (F.V.)
| | - Alessio Di Fonzo
- Neurology Unit, Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (E.M.); (D.R.); (A.D.F.)
| | - Angelo Ghidini
- Otolaryngology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.C.); (A.G.)
| | - Franco Valzania
- Neurology Unit, Neuromotor & Rehabilitation Department, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (V.F.); (J.R.); (R.S.); (F.V.)
| |
Collapse
|
17
|
Campanini I, Bò MC, Bassi MC, Damiano B, Scaltriti S, Lusuardi M, Merlo A. Outcome measures for assessing the effectiveness of physiotherapy interventions on equinus foot deformity in post-stroke patients with triceps surae spasticity: A scoping review. PLoS One 2023; 18:e0287220. [PMID: 37824499 PMCID: PMC10569611 DOI: 10.1371/journal.pone.0287220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 06/01/2023] [Indexed: 10/14/2023] Open
Abstract
OBJECTIVE Equinus foot deformity (EFD) is the most common deviation after stroke. Several physiotherapy interventions have been suggested to treat it. However, studies evaluating the efficacy of these treatments vary widely in terms of assessment modalities, type of data analysis, and nomenclature. This scoping review aimed to map current available evidence on outcome measures and the modalities employed to assess the effectiveness of physiotherapy programs for the reduction of triceps surae (TS) spasticity and EFD in patients with stroke. METHODS Scoping review methodological frameworks have been used. Three databases were investigated. Primary literature addressing TS spasticity in adult patients with stroke using physiotherapy interventions was included. Findings were systematically summarized in tables according to the intervention used, intervention dosage, control group, clinical, and instrumental outcome measures. RESULTS Of the 642 retrieved studies, 53 papers were included. TS spasticity was assessed by manual maneuvers performed by clinicians (mainly using the Ashworth Scale), functional tests, mechanical evaluation through robotic devices, or instrumental analysis and imaging (such as the torque-angle ratio, the H-reflex, and ultrasound images). A thorough critical appraisal of the construct validity of the scales and of the statistics employed was provided, particularly focusing on the choice of parametric and non-parametric approaches when using ordinal scales. Finally, the complexity surrounding the concept of "spasticity" and the possibility of assessing the several underlying active and passive causes of EFD, with a consequent bespoke treatment for each of them, was discussed. CONCLUSION This scoping review provides a comprehensive description of all outcome measures and assessment modalities used in literature to assess the effectiveness of physiotherapy treatments, when used for the reduction of TS spasticity and EFD in patients with stroke. Clinicians and researchers can find an easy-to-consult summary that can support both their clinical and research activities.
Collapse
Affiliation(s)
- Isabella Campanini
- Neuromotor and Rehabilitation Department, LAM–Motion Analysis Laboratory, San Sebastiano Hospital, Azienda USL-IRCCS di Reggio Emilia, Correggio (Reggio Emilia), Correggio, Italy
| | - Maria Chiara Bò
- Neuromotor and Rehabilitation Department, LAM–Motion Analysis Laboratory, San Sebastiano Hospital, Azienda USL-IRCCS di Reggio Emilia, Correggio (Reggio Emilia), Correggio, Italy
- Merlo Bioengineering, Parma, Italy
| | | | - Benedetta Damiano
- Neuromotor and Rehabilitation Department, LAM–Motion Analysis Laboratory, San Sebastiano Hospital, Azienda USL-IRCCS di Reggio Emilia, Correggio (Reggio Emilia), Correggio, Italy
| | - Sara Scaltriti
- Neuromotor and Rehabilitation Department, LAM–Motion Analysis Laboratory, San Sebastiano Hospital, Azienda USL-IRCCS di Reggio Emilia, Correggio (Reggio Emilia), Correggio, Italy
| | - Mirco Lusuardi
- Neuromotor and Rehabilitation Department, Azienda USL-IRCCS Reggio Emilia, Correggio, Italy
| | - Andrea Merlo
- Neuromotor and Rehabilitation Department, LAM–Motion Analysis Laboratory, San Sebastiano Hospital, Azienda USL-IRCCS di Reggio Emilia, Correggio (Reggio Emilia), Correggio, Italy
- Merlo Bioengineering, Parma, Italy
| |
Collapse
|
18
|
Rua R, Bondi D, Santangelo C, Pignatelli P, Pietrangelo T, Fulle S, Fanelli V, Verratti V. Electromyographic signature of isometric squat in the highest refuge in Europe. Eur J Transl Myol 2023; 33:11637. [PMID: 37700736 PMCID: PMC10583152 DOI: 10.4081/ejtm.2023.11637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 09/12/2023] [Indexed: 09/14/2023] Open
Abstract
Reports of electromyography during hypoxic exercise are contrasting, due to protocol and muscle diversity. This work aimed to investigate alterations in muscle activation and myoelectrical fatigue during exercise at high-altitude in those muscles primarily involved in trekking. Twelve young adults balanced by gender and age were tested at low (1,667 m) and high (4,554 m, "Capanna Margherita", Italy) altitude, during an isometric squat lasting 60 seconds. High-density surface electromyography was performed from the quadriceps of right limb. The root mean square (RMS), median frequency with its slope, and muscle fiber conduction velocity (MFCV) were computed. Neither males nor females showed changes in median frequency (Med: 36.13 vs 35.63 Hz) and its slope (Med: -9 vs -12 degree) in response to high-altitude trekking, despite a great inter-individual heterogeneity, nor differences were found for MFCV. RMS was not significantly equivalent, with greater values at low altitude (0.385 ± 0.104 mV) than high altitude (0.346 ± 0.090 mV). Unexpected results can be due either to a postural compensation of the whole body compensating for a relatively greater effort or to the inability to support muscle activation after repeated physical efforts. Interesting results may emerge by measuring simultaneously electromyography, muscle oxygenation and kinematics comparing trekking at normoxia vs hypoxia.
Collapse
Affiliation(s)
- Riccardo Rua
- Department of Surgical Science, Anaesthesia and Critical Care, University of Turin, Torino.
| | - Danilo Bondi
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" of Chieti - Pescara, Chieti.
| | - Carmen Santangelo
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" of Chieti - Pescara, Chieti.
| | - Pamela Pignatelli
- Department of Medical, Oral and Biotechnological Sciences, University "G. d'Annunzio" of Chieti-Pescara, Chieti.
| | - Tiziana Pietrangelo
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" of Chieti - Pescara, Chieti.
| | - Stefania Fulle
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" of Chieti - Pescara, Chieti.
| | - Vito Fanelli
- Department of Surgical Science, Anaesthesia and Critical Care, University of Turin, Torino.
| | - Vittore Verratti
- Department of Psychological, Health and Territorial Sciences, University "G. d'Annunzio" of Chieti-Pescara, Chieti.
| |
Collapse
|
19
|
Avila ER, Williams SE, Disselhorst-Klug C. Advances in EMG measurement techniques, analysis procedures, and the impact of muscle mechanics on future requirements for the methodology. J Biomech 2023; 156:111687. [PMID: 37339541 DOI: 10.1016/j.jbiomech.2023.111687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 06/11/2023] [Indexed: 06/22/2023]
Abstract
Muscular coordination enables locomotion and interaction with the environment. For more than 50 years electromyography (EMG) has provided insights into the central nervous system control of individual muscles or muscle groups, enabling both fine and gross motor functions. This information is available either at individual motor units (Mus) level or on a more global level from the coordination of different muscles or muscle groups. In particular, non-invasive EMG methods such as surface EMG (sEMG) or, more recently, spatial mapping methods (High-Density EMG - HDsEMG) have found their place in research into biomechanics, sport and exercise, ergonomics, rehabilitation, diagnostics, and increasingly for the control of technical devices. With further technical advances and a growing understanding of the relationship between EMG and movement task execution, it is expected that with time, especially non-invasive EMG methods will become increasingly important in movement sciences. However, while the total number of publications per year on non-invasive EMG methods is growing exponentially, the number of publications on this topic in journals with a scope in movement sciences has stagnated in the last decade. This review paper contextualizes non-invasive EMG development over the last 50 years, highlighting methodological progress. Changes in research topics related to non-invasive EMG were identified. Today non-invasive EMG procedures are increasingly used to control technical devices, where muscle mechanics have a minor influence. In movement science, however, the effect of muscle mechanics on the EMG signal cannot be neglected. This explains why non-invasive EMG's relevance in movement sciences has not developed as expected.
Collapse
Affiliation(s)
- Elisa Romero Avila
- Department of Rehabilitation and Prevention Engineering, Institute of Applied Medical Engineering, RWTH Aachen University, Germany
| | - Sybele E Williams
- Department of Rehabilitation and Prevention Engineering, Institute of Applied Medical Engineering, RWTH Aachen University, Germany
| | - Catherine Disselhorst-Klug
- Department of Rehabilitation and Prevention Engineering, Institute of Applied Medical Engineering, RWTH Aachen University, Germany.
| |
Collapse
|
20
|
Huang C, Lu Z, Chen M, Klein CS, Zhang Y, Li S, Zhou P. Muscle innervation zone estimation from monopolar high-density M-waves using principal component analysis and radon transform. Front Physiol 2023; 14:1137146. [PMID: 37008017 PMCID: PMC10050562 DOI: 10.3389/fphys.2023.1137146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 02/27/2023] [Indexed: 03/17/2023] Open
Abstract
This study examined methods for estimating the innervation zone (IZ) of a muscle using recorded monopolar high density M waves. Two IZ estimation methods based on principal component analysis (PCA) and Radon transform (RT) were examined. Experimental M waves, acquired from the biceps brachii muscles of nine healthy subjects were used as testing data sets. The performance of the two methods was evaluated by comparing their IZ estimations with manual IZ detection by experienced human operators. Compared with manual detection, the agreement rate of the estimated IZs was 83% and 63% for PCA and RT based methods, respectively, both using monopolar high density M waves. In contrast, the agreement rate was 56% for cross correlation analysis using bipolar high density M waves. The mean difference in estimated IZ location between manual detection and the tested method was 0.12 ± 0.28 inter-electrode-distance (IED) for PCA, 0.33 ± 0.41 IED for RT and 0.39 ± 0.74 IED for cross correlation-based methods. The results indicate that the PCA based method was able to automatically detect muscle IZs from monopolar M waves. Thus, PCA provides an alternative approach to estimate IZ location of voluntary or electrically-evoked muscle contractions, and may have particular value for IZ detection in patients with impaired voluntary muscle activation.
Collapse
Affiliation(s)
- Chengjun Huang
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
| | - Zhiyuan Lu
- School of Rehabilitation Science and Engineering, University of Health and Rehabilitation Sciences, Qingdao, Shandong, China
- *Correspondence: Zhiyuan Lu, ; Ping Zhou,
| | - Maoqi Chen
- School of Rehabilitation Science and Engineering, University of Health and Rehabilitation Sciences, Qingdao, Shandong, China
| | - Cliff S. Klein
- Guangdong Work Injury Rehabilitation Center, Guangzhou, Guangdong, China
| | - Yingchun Zhang
- Department of Biomedical Engineering, University of Houston, Houston, TX, United States
| | - Sheng Li
- Department of Physical Medicine and Rehabilitation, University of Texas Health Science Center at Houston, Houston, TX, United States
- TIRR Memorial Hermann Hospital, Houston, TX, United States
| | - Ping Zhou
- School of Rehabilitation Science and Engineering, University of Health and Rehabilitation Sciences, Qingdao, Shandong, China
- *Correspondence: Zhiyuan Lu, ; Ping Zhou,
| |
Collapse
|
21
|
Sato W, Kochiyama T. Crosstalk in Facial EMG and Its Reduction Using ICA. SENSORS (BASEL, SWITZERLAND) 2023; 23:2720. [PMID: 36904924 PMCID: PMC10007323 DOI: 10.3390/s23052720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/24/2023] [Accepted: 02/28/2023] [Indexed: 06/18/2023]
Abstract
There is ample evidence that electromyography (EMG) signals from the corrugator supercilii and zygomatic major muscles can provide valuable information for the assessment of subjective emotional experiences. Although previous research suggested that facial EMG data could be affected by crosstalk from adjacent facial muscles, it remains unproven whether such crosstalk occurs and, if so, how it can be reduced. To investigate this, we instructed participants (n = 29) to perform the facial actions of frowning, smiling, chewing, and speaking, in isolation and combination. During these actions, we measured facial EMG signals from the corrugator supercilii, zygomatic major, masseter, and suprahyoid muscles. We performed an independent component analysis (ICA) of the EMG data and removed crosstalk components. Speaking and chewing induced EMG activity in the masseter and suprahyoid muscles, as well as the zygomatic major muscle. The ICA-reconstructed EMG signals reduced the effects of speaking and chewing on zygomatic major activity, compared with the original signals. These data suggest that: (1) mouth actions could induce crosstalk in zygomatic major EMG signals, and (2) ICA can reduce the effects of such crosstalk.
Collapse
Affiliation(s)
- Wataru Sato
- Psychological Process Research Team, Guardian Robot Project, RIKEN, 2-2-2 Hikaridai, Seika-cho, Soraku-gun, Kyoto 619-0288, Japan
- Field Science Education and Research Center, Kyoto University, Oiwake-cho, Kitashirakawa, Kyoto 606-8502, Japan
| | - Takanori Kochiyama
- Brain Activity Imaging Center, ATR-Promotions, 2-2-2 Hikaridai, Seika-cho, Soraku-gun, Kyoto 619-0288, Japan
| |
Collapse
|
22
|
Merlo A, Campanini I. Automatic Identification of Involuntary Muscle Activity in Subacute Patients with Upper Motor Neuron Lesion at Rest-A Validation Study. SENSORS (BASEL, SWITZERLAND) 2023; 23:866. [PMID: 36679664 PMCID: PMC9866882 DOI: 10.3390/s23020866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/28/2022] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
Sustained involuntary muscle activity (IMA) is a highly disabling phenomenon that arises in the acute phase of an upper motor neuron lesion (UMNL). Wearable probes for long-lasting surface EMG (sEMG) recordings have been recently recommended to detect IMA insurgence and to quantify its evolution over time, in conjunction with a complex algorithm for IMA automatic identification and classification. In this study, we computed sensitivity (Se), specificity (Sp), and overall accuracy (Acc) of this algorithm by comparing it with the classification provided by two expert assessors. Based on sample size estimation, 6020 10 s-long sEMG epochs were classified by both the algorithm and the assessors. Epochs were randomly extracted from long-lasting sEMG signals collected in-field from 14 biceps brachii (BB) muscles of 10 patients (5F, age range 50-71 years) hospitalized in an acute rehabilitation ward following a stroke or a post-anoxic coma and complete upper limb (UL) paralysis. Among the 14 BB muscles assessed, Se was 85.6% (83.6-87.4%); Sp was 89.7% (88.6-90.7%), and overall Acc was 88.5% (87.6-89.4%) and ranged between 78.6% and 98.7%. The presence of IMA was detected correctly in all patients. These results support the algorithm's use for in-field IMA assessment based on data acquired with wearable sensors. The assessment and monitoring of IMA in acute and subacute patients with UMNL could improve the quality of care needed by triggering early treatments to lessen long-term complications.
Collapse
Affiliation(s)
- Andrea Merlo
- LAM-Motion Analysis Laboratory, S. Sebastiano Hospital, Neuromotor and Rehabilitation Department, Azienda USL-IRCCS di Reggio Emilia, Via Circondaria 29, 42015 Correggio, Italy
- Merlo Bioengineering, 43121 Parma, Italy
| | - Isabella Campanini
- LAM-Motion Analysis Laboratory, S. Sebastiano Hospital, Neuromotor and Rehabilitation Department, Azienda USL-IRCCS di Reggio Emilia, Via Circondaria 29, 42015 Correggio, Italy
| |
Collapse
|
23
|
Ershad F, Houston M, Patel S, Contreras L, Koirala B, Lu Y, Rao Z, Liu Y, Dias N, Haces-Garcia A, Zhu W, Zhang Y, Yu C. Customizable, reconfigurable, and anatomically coordinated large-area, high-density electromyography from drawn-on-skin electrode arrays. PNAS NEXUS 2023; 2:pgac291. [PMID: 36712933 PMCID: PMC9837666 DOI: 10.1093/pnasnexus/pgac291] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 12/09/2022] [Indexed: 06/18/2023]
Abstract
Accurate anatomical matching for patient-specific electromyographic (EMG) mapping is crucial yet technically challenging in various medical disciplines. The fixed electrode construction of multielectrode arrays (MEAs) makes it nearly impossible to match an individual's unique muscle anatomy. This mismatch between the MEAs and target muscles leads to missing relevant muscle activity, highly redundant data, complicated electrode placement optimization, and inaccuracies in classification algorithms. Here, we present customizable and reconfigurable drawn-on-skin (DoS) MEAs as the first demonstration of high-density EMG mapping from in situ-fabricated electrodes with tunable configurations adapted to subject-specific muscle anatomy. The DoS MEAs show uniform electrical properties and can map EMG activity with high fidelity under skin deformation-induced motion, which stems from the unique and robust skin-electrode interface. They can be used to localize innervation zones (IZs), detect motor unit propagation, and capture EMG signals with consistent quality during large muscle movements. Reconfiguring the electrode arrangement of DoS MEAs to match and extend the coverage of the forearm flexors enables localization of the muscle activity and prevents missed information such as IZs. In addition, DoS MEAs customized to the specific anatomy of subjects produce highly informative data, leading to accurate finger gesture detection and prosthetic control compared with conventional technology.
Collapse
Affiliation(s)
- Faheem Ershad
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, 16801, USA
- Department of Biomedical Engineering, University of Houston, Houston, TX, 77204, USA
| | - Michael Houston
- Department of Biomedical Engineering, University of Houston, Houston, TX, 77204, USA
| | - Shubham Patel
- Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, PA, 16801, USA
- Department of Mechanical Engineering, University of Houston, Houston, TX, 77204, USA
| | - Luis Contreras
- Department of Biomedical Engineering, University of Houston, Houston, TX, 77204, USA
| | - Bikram Koirala
- Department of Mechanical Engineering, University of Houston, Houston, TX, 77204, USA
- Department of Engineering Technology, University of Houston, Houston, TX, 77204, USA
| | - Yuntao Lu
- Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, PA, 16801, USA
- Materials Science and Engineering Program, University of Houston, Houston, TX, 77204, USA
| | - Zhoulyu Rao
- Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, PA, 16801, USA
- Materials Science and Engineering Program, University of Houston, Houston, TX, 77204, USA
| | - Yang Liu
- Department of Biomedical Engineering, University of Houston, Houston, TX, 77204, USA
| | - Nicholas Dias
- Department of Biomedical Engineering, University of Houston, Houston, TX, 77204, USA
| | - Arturo Haces-Garcia
- Department of Engineering Technology, University of Houston, Houston, TX, 77204, USA
- Department of Electrical and Computer Engineering, University of Houston, Houston, TX, 77204, USA
| | - Weihang Zhu
- Department of Mechanical Engineering, University of Houston, Houston, TX, 77204, USA
- Department of Engineering Technology, University of Houston, Houston, TX, 77204, USA
| | - Yingchun Zhang
- Department of Biomedical Engineering, University of Houston, Houston, TX, 77204, USA
| | | |
Collapse
|
24
|
Merletti R, Temporiti F, Gatti R, Gupta S, Sandrini G, Serrao M. Translation of surface electromyography to clinical and motor rehabilitation applications: The need for new clinical figures. Transl Neurosci 2023; 14:20220279. [PMID: 36941919 PMCID: PMC10024349 DOI: 10.1515/tnsci-2022-0279] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 02/19/2023] [Accepted: 02/20/2023] [Indexed: 03/16/2023] Open
Abstract
Advanced sensors/electrodes and signal processing techniques provide powerful tools to analyze surface electromyographic signals (sEMG) and their features, to decompose sEMG into the constituent motor unit action potential trains, and to identify synergies, neural muscle drive, and EEG-sEMG coherence. However, despite thousands of articles, dozens of textbooks, tutorials, consensus papers, and European and International efforts, the translation of this knowledge into clinical activities and assessment procedures has been very slow, likely because of lack of clinical studies and competent operators in the field. Understanding and using sEMG-based hardware and software tools requires a level of knowledge of signal processing and interpretation concepts that is multidisciplinary and is not provided by most academic curricula in physiotherapy, movement sciences, neurophysiology, rehabilitation, sport, and occupational medicine. The chasm existing between the available knowledge and its clinical applications in this field is discussed as well as the need for new clinical figures. The need for updating the training of physiotherapists, neurophysiology technicians, and clinical technologists is discussed as well as the required competences of trainers and trainees. Indications and examples are suggested and provide a basis for addressing the problem. Two teaching examples are provided in the Supplementary Material.
Collapse
Affiliation(s)
- Roberto Merletti
- LISiN, Department of Electronics andTelecommunications, Politecnico di Torino, Torino, 10138, Italy
| | - Federico Temporiti
- Physiotherapy Unit, Humanitas Clinical and Research Center - IRCCS, Rozzano, Milano, 20089, Italy
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milano, 20090, Italy
| | - Roberto Gatti
- Physiotherapy Unit, Humanitas Clinical and Research Center - IRCCS, Rozzano, Milano, 20089, Italy
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milano, 20090, Italy
| | - Sanjeev Gupta
- Faculty of Allied Health Sciences, Manav Rachna International Institute of Research and Studies, Faridabad, Haryana, 121004, India
| | - Giorgio Sandrini
- Department of Brain and Behavior Sciences, University of Pavia, Pavia, 27100, Italy
| | - Mariano Serrao
- Department of Medical and Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, 04100, Italy
| |
Collapse
|
25
|
Gabriel DA. Teaching Essential EMG Theory to Kinesiologists and Physical Therapists Using Analogies Visual Descriptions, and Qualitative Analysis of Biophysical Concepts. SENSORS (BASEL, SWITZERLAND) 2022; 22:6555. [PMID: 36081014 PMCID: PMC9460425 DOI: 10.3390/s22176555] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/24/2022] [Accepted: 08/28/2022] [Indexed: 06/15/2023]
Abstract
Electromyography (EMG) is a multidisciplinary field that brings together allied health (kinesiology and physical therapy) and the engineering sciences (biomedical and electrical). Since the physical sciences are used in the measurement of a biological process, the presentation of the theoretical foundations of EMG is most conveniently conducted using math and physics. However, given the multidisciplinary nature of EMG, a course will most likely include students from diverse backgrounds, with varying levels of math and physics. This is a pedagogical paper that outlines an approach for teaching foundational concepts in EMG to kinesiologists and physical therapists that uses a combination of analogies, visual descriptions, and qualitative analysis of biophysical concepts to develop an intuitive understanding for those who are new to surface EMG. The approach focuses on muscle fiber action potentials (MFAPs), motor unit action potentials (MUAPs), and compound muscle action potentials (CMAPs) because changes in these waveforms are much easier to identify and describe in comparison to the surface EMG interference pattern (IP).
Collapse
Affiliation(s)
- David A Gabriel
- Electromyographic Kinesiology Laboratory, Faculty of Applied Health Sciences, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, ON L2S 3A1, Canada
| |
Collapse
|