1
|
Colleran A, Lima C, Xu Y, Millichope A, Murray S, Goodacre R. Using surface-enhanced Raman scattering for simultaneous multiplex detection and quantification of thiols associated to axillary malodour. Analyst 2024; 149:3989-4001. [PMID: 38948950 PMCID: PMC11262063 DOI: 10.1039/d4an00762j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 06/23/2024] [Indexed: 07/02/2024]
Abstract
Axillary malodour is caused by the microbial conversion of human-derived precursors to volatile organic compounds. Thiols strongly contribute to this odour but are hard to detect as they are present at low concentrations. Additionally, thiols are highly volatile and small making sampling and quantification difficult, including by gas chromatography-mass spectrometry. In this study, surface-enhanced Raman scattering (SERS), combined with chemometrics, was utilised to simultaneously quantify four malodourous thiols associated with axillary odour, both in individual and multiplex solutions. Univariate and multivariate methods of partial least squares regression (PLS-R) were used to calculate the limit of detection (LoD) and results compared. Both methods yielded comparable LoD values, with LoDs using PLS-R ranging from 0.0227 ppm to 0.0153 ppm for the thiols studied. These thiols were then examined and quantified simultaneously in 120 mixtures using PLS-R. The resultant models showed high linearity (Q2 values between 0.9712 and 0.9827 for both PLS-1 and PLS-2) and low values of root mean squared error of predictions (0.0359 ppm and 0.0459 ppm for PLS-1 and PLS-2, respectively). To test this approach further, these models were challenged with 15 new blind test samples, collected independently from the initial samples. This test demonstrated that SERS combined with PLS-R could be used to predict the unknown concentrations of these thiols in a mixture. These results display the ability of SERS for the simultaneous multiplex detection and quantification of analytes and its potential for future development for detecting gaseous thiols produced from skin and other body sites.
Collapse
Affiliation(s)
- Amy Colleran
- Centre for Metabolomics Research, Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown St, Liverpool, L69 7ZB, UK.
| | - Cassio Lima
- Centre for Metabolomics Research, Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown St, Liverpool, L69 7ZB, UK.
| | - Yun Xu
- Centre for Metabolomics Research, Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown St, Liverpool, L69 7ZB, UK.
| | - Allen Millichope
- Unilever Research and Development, Port Sunlight, Bebington, CH63 3JW, UK
| | - Stephanie Murray
- Unilever Research and Development, Port Sunlight, Bebington, CH63 3JW, UK
| | - Royston Goodacre
- Centre for Metabolomics Research, Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown St, Liverpool, L69 7ZB, UK.
| |
Collapse
|
2
|
Albini B, Galinetto P, Schiavi S, Giulotto E. Food Safety Issues in the Oltrepò Pavese Area: A SERS Sensing Perspective. SENSORS (BASEL, SWITZERLAND) 2023; 23:9015. [PMID: 38005403 PMCID: PMC10674787 DOI: 10.3390/s23229015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 10/27/2023] [Accepted: 10/30/2023] [Indexed: 11/26/2023]
Abstract
Handly and easy-to-use optical instrumentation is very important for food safety monitoring, as it provides the possibility to assess law and health compliances at every stage of the food chain. In particular, the Surface-enhanced Raman Scattering (SERS) method appears highly promising because the intrinsic drawback of Raman spectroscopy, i.e., the natural weakness of the effect and, in turn, of the signal, is overcome thanks to the peculiar interaction between laser light and plasmonic excitations at the SERS substrate. This fact paved the way for the widespread use of SERS sensing not only for food safety but also for biomedicine, pharmaceutical process analysis, forensic science, cultural heritage and more. However, the current technological maturity of the SERS technique does not find a counterpart in the recognition of SERS as a routine method in compliance protocols. This is mainly due to the very scattered landscape of SERS substrates designed and tailored specifically for the targeted analyte. In fact, a very large variety of SERS substrates were proposed for molecular sensing in different environments and matrices. This review presents the advantages and perspectives of SERS sensing in food safety. The focus of the survey is limited to specific analytes of interest for producers, consumers and stakeholders in Oltrepò Pavese, a definite regional area that is located within the district of Pavia in the northern part of Italy. Our attention has been addressed to (i) glyphosate in rice fields, (ii) histamine in a world-famous local product (wine), (iii) tetracycline, an antibiotic often detected in waste sludges that can be dangerous, for instance in maize crops and (iv) Sudan dyes-used as adulterants-in the production of saffron and other spices, which represent niche crops for Oltrepò. The review aims to highlight the SERS performance for each analyte, with a discussion of the different methods used to prepare SERS substrates and the different reported limits of detection.
Collapse
Affiliation(s)
- Benedetta Albini
- Dipartimento di Fisica, Università di Pavia, Via Bassi 6, 27100 Pavia, Italy; (B.A.); (P.G.)
| | - Pietro Galinetto
- Dipartimento di Fisica, Università di Pavia, Via Bassi 6, 27100 Pavia, Italy; (B.A.); (P.G.)
| | - Serena Schiavi
- Dipartimento di Chimica, Università di Pavia, Via Taramelli 12, 27100 Pavia, Italy;
| | - Enrico Giulotto
- Dipartimento di Fisica, Università di Pavia, Via Bassi 6, 27100 Pavia, Italy; (B.A.); (P.G.)
| |
Collapse
|
3
|
Akbali B, Boisdon C, Smith BL, Chaisrikhwun B, Wongravee K, Vilaivan T, Lima C, Huang CH, Chen TY, Goodacre R, Maher S. Focusing ion funnel-assisted ambient electrospray enables high-density and uniform deposition of non-spherical gold nanoparticles for highly sensitive surface-enhanced Raman scattering. Analyst 2023; 148:4677-4687. [PMID: 37697928 DOI: 10.1039/d3an01021j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
Surface-enhanced Raman scattering (SERS) is a powerful technique for detecting trace amounts of analytes. However, the performance of SERS substrates depends on many variables including the enhancement factor, morphology, consistency, and interaction with target analytes. In this study, we investigated, for the first time, the use of electrospray deposition (ESD) combined with a novel ambient focusing DC ion funnel to deposit a high density of gold nanoparticles (AuNPs) to generate large-area, uniform substrates for highly sensitive SERS analysis. We found that the combination of ambient ion focusing with ESD facilitated high-density and intact deposition of non-spherical NPs. This also allowed us to take advantage of a polydisperse colloidal solution of AuNPs (consisting of nanospheres and nanorods), as confirmed by finite-difference time domain (FDTD) simulations. Our SERS substrate exhibited excellent capture capacity for model analyte molecules, namely 4-aminothiophenol (4-ATP) and Rhodamine 6G (R6G), with detection limits in the region of 10-11 M and a relative standard deviation of <6% over a large area (∼500 × 500 μm2). Additionally, we assessed the quantitative performance of our SERS substrate using the R6G probe molecule. The results demonstrated excellent linearity (R2 > 0.99) over a wide concentration range (10-4 M to 10-10 M) with a detection limit of 80 pM.
Collapse
Affiliation(s)
- Baris Akbali
- Department of Electrical Engineering and Electronics, University of Liverpool, Brownlow Hill, Liverpool, L69 3GJ, UK.
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Cedric Boisdon
- Department of Electrical Engineering and Electronics, University of Liverpool, Brownlow Hill, Liverpool, L69 3GJ, UK.
| | - Barry L Smith
- Department of Electrical Engineering and Electronics, University of Liverpool, Brownlow Hill, Liverpool, L69 3GJ, UK.
| | - Boonphop Chaisrikhwun
- Program in Petrochemistry and Polymer Science, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Kanet Wongravee
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Tirayut Vilaivan
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Cassio Lima
- Centre for Metabolomics Research, Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Biosciences Building, Crown Street, Liverpool, L69 7ZB, UK
| | - Chen-Han Huang
- Department of Biomedical Engineering, National Central University, Zhongli 10608, Taiwan
| | - Tsan-Yao Chen
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Royston Goodacre
- Centre for Metabolomics Research, Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Biosciences Building, Crown Street, Liverpool, L69 7ZB, UK
| | - Simon Maher
- Department of Electrical Engineering and Electronics, University of Liverpool, Brownlow Hill, Liverpool, L69 3GJ, UK.
| |
Collapse
|
4
|
Joshi R, Adhikari S, Pil Son J, Jang Y, Lee D, Cho BK. Au nanogap SERS substrate for the carbaryl pesticide determination in juice and milk using chemomterics. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 297:122734. [PMID: 37080052 DOI: 10.1016/j.saa.2023.122734] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 04/05/2023] [Accepted: 04/10/2023] [Indexed: 05/03/2023]
Abstract
Conventional spectroscopic methods like IR, and Raman are not very effective at detecting low levels of pesticides or harmful chemicals in food matrices. A quick, highly accurate approach that can identify pesticides present in different food products at lower levels must be developed in order to address this problem and ensure food safety. In this study, a highly sensitive and uniform wafer-scale Au nanogap surface-enhanced Raman spectroscopy (SERS) substrate was used for the quantitative analysis of carbaryl pesticide levels in standard solution, mango juice, and milk samples using chemometrics. Carbaryl was detected up to 3 ppb concentration levels for all three group of samples. However, due to the higher sensitivity, uniformity, and enhancement factors of the SERS substrate used in this investigation, the limit of detection (LOD) values for the standard solution, mango juice, and milk were 0.37 ppb, 0.57 ppb, and 0.15 ppb at 1380 cm-1, 1380 cm-1, and 1364 cm-1 wavenumber ranges. In order to predict different carbaryl concentrations (1, 2, 3, 4, and 5 ppb), the variable importance in projection (VIP) method combined with partial least squares regression (PLSR) and attained the coefficient of determination (R2) values of 0.994, 0.989, and 0.978 along with minimum root mean square error (RMSE) values of 0.112, 0.190, and 0.278 ppb for the prediction datasets. Furthermore, PLS-DA was able to distinguish between pure and adulterated samples with the highest classification accuracy of 100 % for a standard solution, and mango juice and 94.4 % for milk samples. Considering this, we can conclude that the SERS Au Nanogap substrate can rapidly and effectively detect carbaryl pesticides quantitatively and qualitatively in mango juice and milk.
Collapse
Affiliation(s)
- Rahul Joshi
- Department of Biosystems Machinery Engineering, Chungnam National University, 99 Daehak-to, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Samir Adhikari
- Institute of Quantum Systems, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jong Pil Son
- Department of Physics, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Yudong Jang
- Institute of Quantum Systems, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Donghan Lee
- Institute of Quantum Systems, Chungnam National University, Daejeon 34134, Republic of Korea; Department of Physics, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Byoung-Kwan Cho
- Department of Biosystems Machinery Engineering, Chungnam National University, 99 Daehak-to, Yuseong-gu, Daejeon 34134, Republic of Korea; Department of Smart Agricultural Systems, College of Agricultural and Life Science, Chungnam National University, 99 Daehak-to, Yuseong-gu, Daejeon 34134, Republic of Korea.
| |
Collapse
|
5
|
AlMasoud N, Alomar TS, Xu Y, Lima C, Goodacre R. Rapid detection and quantification of paracetamol and its major metabolites using surface enhanced Raman scattering. Analyst 2023; 148:1805-1814. [PMID: 36938623 DOI: 10.1039/d3an00249g] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
Abstract
Paracetamol (also known as acetaminophen) is an over-the-counter (OTC) drug that is commonly used as an analgesic for mild pain, headache, cold and flu. While in the short term it is a safe and effective medicine, it is sometimes used for attempted suicides particularly in young adults. In such circumstances it is important for rapid diagnosis of overdoses as antidotes can be given to limit liver damage from one of its primary metabolites N-acetyl-p-benzoquinone imine (NAPQI). Unfortunately, the demand for rapid and sensitive analytical techniques to accurately monitor the abuse of OTC drugs has significantly risen. Ideally these techniques would be highly specific, sensitive, reproducible, portable and rapid. In addition, an ideal point of care (PoC) test would enable quantitative detection of drugs and their metabolites present in body fluids. While Raman spectroscopy meets these specifications, there is a need for enhancement of the signal because the Raman effect is weak. In this study, we developed a surface-enhanced Raman scattering (SERS) methodology in conjunction with chemometrics to quantify the amount of paracetamol and its main primary metabolites (viz., paracetamol sulfate, p-acetamidophenyl β-D-glucuronide and NAPQI) in water and artificial urine. The enhancement of the SERS signals was achieved by mixing the drug or xenometabolites with a gold nanoparticle followed by aggregation with 0.045 M NaCl. We found that the SERS data could be collected directly, due to immediate analyte association with the Au surface and colloid aggregation. Accurate and precise measurements were generated, with a limit of detection (LoD) of paracetamol in water and artificial urine at 7.18 × 10-6 M and 2.11 × 10-5 M, respectively, which is well below the limit needed for overdose and indeed normal levels of paracetamol in serum after taking 1 g orally. The predictive values obtained from the analysis of paracetamol in water and artificial urine were also excellent, with the coefficient of determination (Q2) being 0.995 and 0.996, respectively (1 suggests a perfect model). It was noteworthy that when artificial urine was spiked with paracetamol, no aggregating agent was required due to the salt rich medium, which led to spontaneous aggregation. Moreover, for the xenometabolites of paracetamol excellent LoDs were obtained and these ranged from 2.6 × 10-4 M to 5 × 10-5 M with paracetamol sulfate and NAPQI having Q2 values of 0.934 and 0.892 and for p-acetamidophenyl β-D-glucuronide this was slightly lower at 0.6437.
Collapse
Affiliation(s)
- Najla AlMasoud
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia.,Centre for Metabolomics Research, Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK.
| | - Taghrid S Alomar
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia.,Centre for Metabolomics Research, Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK.
| | - Yun Xu
- Centre for Metabolomics Research, Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK.
| | - Cassio Lima
- Centre for Metabolomics Research, Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK.
| | - Royston Goodacre
- Centre for Metabolomics Research, Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK.
| |
Collapse
|
6
|
Al-Nidawi M, Ozalp O, Alshana U, Soylak M. Synergistic Cloud Point Microextraction Prior to Spectrophotometric Determination of Curcumin in Food Samples. ANAL LETT 2022. [DOI: 10.1080/00032719.2022.2152830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Mais Al-Nidawi
- Department of Chemistry, Faculty of Sciences, Erciyes University, Kayseri, Turkey
- Department of Analytical Chemistry, Faculty of Pharmacy, Near East University, Mersin 10, Turkey
| | - Ozgur Ozalp
- Department of Chemistry, Faculty of Sciences, Erciyes University, Kayseri, Turkey
| | - Usama Alshana
- Department of Analytical Chemistry, Faculty of Pharmacy, Near East University, Mersin 10, Turkey
- Department of Chemistry, College of Science, Sultan Qaboos University, Muscat, Oman
| | - Mustafa Soylak
- Department of Chemistry, Faculty of Sciences, Erciyes University, Kayseri, Turkey
| |
Collapse
|