1
|
Fatale S, Patil JK, Pardeshi CV, Pande VV, Bhutkar MA, Parashar K, Sonawane RO. Montmorillonite: An advanced material with diverse pharmaceutical and medicinal applications. ANNALES PHARMACEUTIQUES FRANÇAISES 2025; 83:588-604. [PMID: 39515642 DOI: 10.1016/j.pharma.2024.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/29/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
Montmorillonite (MMT) clay is composed of naturally layered silicate. The clays were more popular in the pharmaceutical and other various fields due to their beneficial physicochemical properties viz. non-toxicity, high surface area, efficient adsorption capability, high swellability, high dispersibility, thixotropic behaviour, and cation exchange capacity. Chemically modified clay provides significant opportunities in variety of applications. MMT finds very crucial place in pharmaceutical field owing to its medicinal properties, which may be used to delay the drug release in chronic physiological conditions and the targeted drug release as well. It is also used to improve the dissolution rate of certain drug molecules, which increased the attention of the researchers to explore the MMT for drug delivery applications. MMT clay has been used as pharmaceutical aids viz. suspending agent, lubricant, anticaking agent, diluent, emulsifier, nanocomposites-forming material, and sometimes filler. MMT clay have been investigated in the fabrication of different pharmaceutical formulations viz. hydrogel, films, nanocomposites, and matrix-based systems. MMT has obtained industrial importance due to its adsorption property and also finds use in wastewater treatment. Other than this, MMT also finds applications in cosmetic industry, food industry, and paper industry. Considering the wide applicability of MMT, it is need of an hour to explore the MMT for further commercial exploitation.
Collapse
Affiliation(s)
- Sagar Fatale
- Department of Pharmaceutics, R.C. Patel Institute of Pharmaceutical Education and Research, Near Karwand Naka, Shirpur, India
| | - Javesh K Patil
- Department of Pharmacognasy. PSGVPM'S College of Pharmacy, Shahada, India
| | - Chandrakantsing V Pardeshi
- Department of Pharmaceutics, R.C. Patel Institute of Pharmaceutical Education and Research, Near Karwand Naka, Shirpur, India
| | - Vishal V Pande
- Department of Pharmaceutics, RSMs N.N. Sattha College of Pharmacy, Ahamadnagar, India
| | - Mangesh A Bhutkar
- Department of Pharmaceutics, Rajaram Bapu College of Pharmacy, Kasegaon, India
| | - Komal Parashar
- Department of Pharmaceutics, R.C. Patel Institute of Pharmaceutical Education and Research, Near Karwand Naka, Shirpur, India
| | - Raju O Sonawane
- Department of Pharmaceutics, R.C. Patel Institute of Pharmaceutical Education and Research, Near Karwand Naka, Shirpur, India.
| |
Collapse
|
2
|
Oladele JO, Xenophontos X, Elizondo GM, Daasari Y, Wang M, Tamamis P, Johnson NM, Phillips TD. Green-Engineered Montmorillonite Clays for the Adsorption, Detoxification, and Mitigation of Aflatoxin B1 Toxicity. Toxins (Basel) 2025; 17:131. [PMID: 40137904 PMCID: PMC11945334 DOI: 10.3390/toxins17030131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/03/2025] [Accepted: 03/07/2025] [Indexed: 03/29/2025] Open
Abstract
Dietary and environmental exposure to aflatoxins via contaminated food items can pose major health challenges to both humans and animals. Studies have reported the coexistence of aflatoxins and other environmental toxins. This emphasizes the urgent need for efficient and effective mitigation strategies for aflatoxins. Previous reports from our laboratory have demonstrated the potency of the green-engineered clays (GECs) on ochratoxin and other toxic chemicals. Therefore, this study sought to investigate the binding and detoxification potential of chlorophyll (CMCH and SMCH) and chlorophyllin (CMCHin and SMCHin)-amended montmorillonite clays for aflatoxin B1 (AFB1). In addition to analyzing binding metrics including affinity, capacity, free energy, and enthalpy, the sorption mechanisms of AFB1 onto the surfaces of engineered clays were also investigated. Computational and experimental studies were performed to validate the efficacy and safety of the clays. CMCH showed the highest binding capacity (Qmax) of 0.43 mol/kg compared to the parent clays CM (0.34 mol/kg) and SM (0.32 mol/kg). Interestingly, there were no significant changes in the binding capacity of the clays at pH2 and pH6, suggesting that the clays can bind to AFB1 throughout the gastrointestinal track. In silico investigations employing molecular dynamics simulations also demonstrated that CMCH enhanced AFB1 binding as compared to parent clay and predicted hydrophobic interactions as the main mode of interaction between the AFB1 and CMCH. This was corroborated by the kinetic results which indicated that the interaction was best defined by chemosorption with favorable thermodynamics and Gibbs free energy (∆G) being negative. In vitro experiments in Hep G2 cells showed that clay treatment mitigated AFB1-induced cytotoxicity, with the exception of 0.5% (w/v) SMCH. Finally, the in vivo results validated the protection of all the clays against AFB1-induced toxicities in Hydra vulgaris. This study showed that these clays significantly detoxified AFB1 (86% to 100%) and provided complete protection at levels as low as 0.1%, suggesting that they may be used as AFB1 binders in feed and food.
Collapse
Affiliation(s)
- Johnson O. Oladele
- Interdisciplinary Faculty of Toxicology, Texas A&M University, College Station, TX 77843, USA; (J.O.O.); (G.M.E.III); (N.M.J.)
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Xenophon Xenophontos
- Artie McFerrin Department of Chemical Engineering, College of Engineering, Texas A&M University, College Station, TX 77843, USA; (X.X.); (P.T.)
| | - Gustavo M. Elizondo
- Interdisciplinary Faculty of Toxicology, Texas A&M University, College Station, TX 77843, USA; (J.O.O.); (G.M.E.III); (N.M.J.)
- Department of Environmental & Occupational Health, Texas A&M University, College Station, TX 77843, USA
| | - Yash Daasari
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Meichen Wang
- Department of Environmental Health Sciences, University of Massachusetts Amherst, Amherst, MA 01003, USA;
| | - Phanourios Tamamis
- Artie McFerrin Department of Chemical Engineering, College of Engineering, Texas A&M University, College Station, TX 77843, USA; (X.X.); (P.T.)
- Department of Materials Science and Engineering, College of Engineering, Texas A&M University, College Station, TX 77840, USA
| | - Natalie M. Johnson
- Interdisciplinary Faculty of Toxicology, Texas A&M University, College Station, TX 77843, USA; (J.O.O.); (G.M.E.III); (N.M.J.)
- Department of Environmental & Occupational Health, Texas A&M University, College Station, TX 77843, USA
| | - Timothy D. Phillips
- Interdisciplinary Faculty of Toxicology, Texas A&M University, College Station, TX 77843, USA; (J.O.O.); (G.M.E.III); (N.M.J.)
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
3
|
Oladele JO, Wang M, Rivenbark KJ, Phillips TD. Application and efficacy of beidellite clay for the adsorption and detoxification of deoxynivalenol (vomitoxin). EMERGING CONTAMINANTS 2024; 10:100390. [PMID: 40276486 PMCID: PMC12021442 DOI: 10.1016/j.emcon.2024.100390] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/26/2025]
Abstract
The incidence of mycotoxin occurrence throughout the entire lifespan of some agricultural products could be due to climatic conditions and environmental factors (including high temperature, drought, and heavy rainfall) that enhance growth of fungi. Deoxynivalenol (DON) which is also referred to as vomitoxin is a mycotoxin produced from many Fusarium species. DON ranks high among the prominent mycotoxins in cereal products and is a ubiquitous toxin in livestock feeds. DON's adverse effects present major health challenges in both livestock and humans. The use of natural sorbents including smectite clays, is an economically feasible strategy to mitigate mycotoxin toxicities. Previous studies have demonstrated the potential of edible clays as protective components of human food and animal feed to alleviate toxicity associated with short-term exposure to mycotoxins including DON. Hence, this study was designed to investigate the sorption mechanisms of DON onto the binding surfaces of beidellite clay, assessing essential binding parameters such as enthalpy, free energy, binding capacity, affinity, and plateau surface density. These markers were used to predict availability of DON under the experimental conditions. Furthermore, the protection of beidellite clay against DON-induced toxicity was carried out using living organisms susceptible to DON toxicity, including Hydra vulgaris and Lemna minor. These studies investigated the dose-dependent detoxification of DON by 0.05-2 % inclusion of beidellite. Beidellite exhibited more than 75 % protection in Lemna minor and 53 % in Hydra vulgaris validating that this clay is effective in detoxifying DON. During emergencies, or after disasters, inclusion of edible clay like beidellite in food, water or capsules could reduce bioavailability of DON and halt potential exposures to humans and animals.
Collapse
Affiliation(s)
- Johnson O. Oladele
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Meichen Wang
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Kelly J. Rivenbark
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Timothy D. Phillips
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX, USA
| |
Collapse
|
4
|
Oladele JO, Wang M, Xenophontos X, Lilly K, Tamamis P, Phillips TD. Chlorophyll-Amended Organoclays for the Detoxification of Ochratoxin A. Toxins (Basel) 2024; 16:479. [PMID: 39591234 PMCID: PMC11598794 DOI: 10.3390/toxins16110479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/26/2024] [Accepted: 10/30/2024] [Indexed: 11/28/2024] Open
Abstract
Climate change has been associated with outbreaks of mycotoxicosis following periods of drought, enhanced fungal growth, and increased exposure to mycotoxins. For detoxification, the inclusion of clay-based materials in food and drinking water has resulted in a very promising strategy to reduce mycotoxin exposure. In this strategy, mycotoxins are tightly sorbed to high-affinity clay particles in the gastrointestinal tract, thus decreasing bioavailability, uptake to blood, and potential toxicity. This study investigated the ability of chlorophyll and chlorophyllin-amended montmorillonite clays to decrease the toxicity of ochratoxin A (OTA). The sorption mechanisms of OTA binding to surfaces of sorbents, as well as binding parameters such as capacity, affinity, enthalpy, and free energy, were examined. Chlorophyll-amended organoclay (CMCH) demonstrated the highest binding (72%) and was better than the chlorophyllin-amended hydrophilic clay (59%), possibly due to the hydrophobicity of OTA (LogP 4.7). In silico studies using molecular dynamics simulations showed that CMCH improves OTA binding in comparison to parent clay in line with experiments. Simulations depicted that chlorophyll amendments on clay facilitated OTA molecules binding both directly, through enhancing OTA binding on the clay, or predominantly indirectly, through OTA molecules interacting with bound chlorophyll amendments. Simulations uncovered the key role of calcium ions in OTA binding, particularly in neutral conditions, and demonstrated that CMCH binding to OTA is enhanced under both neutral and acidic conditions. Furthermore, the protection of various sorbents against OTA-induced toxicity was carried out using two living organisms (Hydra vulgaris and Caenorhabditis elegans) which are susceptible to OTA toxicity. This study showed the significant detoxification of OTA (33% to 100%) by inclusion of sorbents. Organoclay (CMCH) at 0.5% offered complete protection. These findings suggest that the chlorophyll-amended organoclays described in this study could be included in food and feed as OTA binders and as potential filter materials for water and beverages to protect against OTA contaminants during outbreaks and emergencies.
Collapse
Affiliation(s)
- Johnson O. Oladele
- Interdisciplinary Faculty of Toxicology, Texas A&M University, College Station, TX 77843, USA; (J.O.O.); (M.W.)
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Meichen Wang
- Interdisciplinary Faculty of Toxicology, Texas A&M University, College Station, TX 77843, USA; (J.O.O.); (M.W.)
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Xenophon Xenophontos
- Artie McFerrin Department of Chemical Engineering, College of Engineering, Texas A&M University, College Station, TX 77843, USA; (X.X.); (P.T.)
| | - Kendall Lilly
- Department of Materials Science and Engineering, College of Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Phanourios Tamamis
- Artie McFerrin Department of Chemical Engineering, College of Engineering, Texas A&M University, College Station, TX 77843, USA; (X.X.); (P.T.)
- Department of Materials Science and Engineering, College of Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Timothy D. Phillips
- Interdisciplinary Faculty of Toxicology, Texas A&M University, College Station, TX 77843, USA; (J.O.O.); (M.W.)
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
5
|
Lilly K, Wang M, Orr AA, Bondos SE, Phillips TD, Tamamis P. β-Lactoglobulin Enhances Clay and Activated Carbon Binding and Protection Properties for Cadmium and Lead. Ind Eng Chem Res 2024; 63:16124-16140. [PMID: 39319074 PMCID: PMC11417999 DOI: 10.1021/acs.iecr.4c01774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/13/2024] [Accepted: 08/14/2024] [Indexed: 09/26/2024]
Abstract
The removal of heavy metals from wastewater remains a challenge due to the limitations of current remediation methods. This study aims to develop multicomponent composites as inexpensive and environmentally friendly sorbents with enhanced capture of cadmium (Cd) and lead (Pb). The composites are based on calcium montmorillonite (CM) and activated carbon (AC) because of their proven effectiveness as sorbents for diverse toxins in environmental settings. In this study, we used a combination of computational and experimental methods to delineate that β-lactoglobulin enhances CM and AC binding and protection properties for Cd and Pb. Modeling and molecular dynamics simulations investigated the formation of material systems formed by CM and AC in complex with β-lactoglobulin and predicted their capacity to bind heavy metal ions at neutral pH conditions. Our simulations suggest that the enhanced binding properties of the material systems are attributed to the presence of several binding pockets formed by β-lactoglobulin for the two heavy metal ions. At neutral pH conditions, divalent Cd and Pb shared comparable binding propensities in all material systems, with the former being consistently higher than the latter. To validate the interactions depicted in simulations, two ecotoxicological models (L. minor and H. vulgaris) were exposed to Cd, Pb, and a mixture of the two. The inclusion of CM-lactoglobulin (β-lactoglobulin amended CM) and AC-lactoglobulin (β-lactoglobulin amended AC) at 0.05-0.2% efficiently and dose-dependently reduced the severe toxicity of metals and increased the growth parameters. This high efficacy of protection shown in the ecotoxicological models may result from the numerous possible interaction pockets of the β-lactoglobulin-amended materials depicted in simulations. The ecotoxicological models support the agreement with computations. This study serves as a proof of concept on how computations in tandem with experiments can be used in the design of multicomponent clay- and carbon-based sorbent amended systems with augmented functionalities for particular toxins.
Collapse
Affiliation(s)
- Kendall Lilly
- Department
of Materials Science and Engineering, College of Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Meichen Wang
- Department
of Veterinary Physiology and Pharmacology, College of Veterinary Medicine
and Biomedical Sciences, Texas A&M University, College Station, Texas 77843, United States
- Interdisciplinary
Faculty of Toxicology, College of Veterinary Medicine and Biomedical
Sciences, Texas A&M University, College Station, Texas 77843, United States
- Department
of Environmental Health Sciences, University
of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Asuka A. Orr
- Artie
McFerrin Department of Chemical Engineering, College of Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Sarah E. Bondos
- Department
of Medical Physiology Texas A&M Health Science Center, Texas A&M University, College Station, Texas 77843, United States
| | - Timothy D. Phillips
- Department
of Veterinary Physiology and Pharmacology, College of Veterinary Medicine
and Biomedical Sciences, Texas A&M University, College Station, Texas 77843, United States
- Interdisciplinary
Faculty of Toxicology, College of Veterinary Medicine and Biomedical
Sciences, Texas A&M University, College Station, Texas 77843, United States
| | - Phanourios Tamamis
- Department
of Materials Science and Engineering, College of Engineering, Texas A&M University, College Station, Texas 77843, United States
- Artie
McFerrin Department of Chemical Engineering, College of Engineering, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
6
|
Rivenbark KJ, Fawkes LS, Nikkhah H, Wang M, Sansom GT, Beykal B, Wade TL, Phillips TD. Using L. minor and C. elegans to assess the ecotoxicity of real-life contaminated soil samples and their remediation by clay- and carbon-based sorbents. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 347:123762. [PMID: 38479705 PMCID: PMC11323775 DOI: 10.1016/j.envpol.2024.123762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/21/2024] [Accepted: 03/09/2024] [Indexed: 03/18/2024]
Abstract
Toxic substances, such as polycyclic aromatic hydrocarbons (PAHs) and heavy metals, can accumulate in soil, posing a risk to human health and the environment. To reduce the risk of exposure, rapid identification and remediation of potentially hazardous soils is necessary. Adsorption of contaminants by activated carbons and clay materials is commonly utilized to decrease the bioavailability of chemicals in soil and environmental toxicity in vitro, and this study aims to determine their efficacy in real-life soil samples. Two ecotoxicological models (Lemna minor and Caenorhabditis elegans) were used to test residential soil samples, known to contain an average of 5.3, 262, and 9.6 ppm of PAHs, lead, and mercury, for potential toxicity. Toxicity testing of these soils indicated that 86% and 58% of soils caused ≤50% inhibition of growth and survival of L. minor and C. elegans, respectively. Importantly, 3 soil samples caused ≥90% inhibition of growth in both models, and the toxicity was positively correlated with levels of heavy metals. These toxic soil samples were prioritized for remediation using activated carbon and SM-Tyrosine sorbents, which have been shown to immobilize PAHs and heavy metals, respectively. The inclusion of low levels of SM-Tyrosine protected the growth and survival of L. minor and C. elegans by 83% and 78%, respectively from the polluted soil samples while activated carbon offered no significant protection. These results also indicated that heavy metals were the driver of toxicity in the samples. Results from this study demonstrate that adsorption technologies are effective strategies for remediating complex, real-life soil samples contaminated with hazardous pollutants and protecting natural soil and groundwater resources and habitats. The results highlight the applicability of these ecotoxicological models as rapid screening tools for monitoring soil quality and verifying the efficacy of remediation practices.
Collapse
Affiliation(s)
- Kelly J Rivenbark
- Interdisciplinary Faculty of Toxicology, Texas A&M University, College Station, TX, USA; Department of Veterinary Physiology and Pharmacology, School of Veterinary Medicine, Texas A&M University, College Station, TX, USA
| | - Leanne S Fawkes
- Department of Environmental and Occupational Health, University of Texas School of Public Health San Antonio at the University of Texas Health Science Center at San Antonio, TX, USA
| | - Hasan Nikkhah
- Department of Chemical & Biomolecular Engineering, University of Connecticut, Storrs, CT, USA; Center for Clean Energy Engineering, University of Connecticut, Storrs, CT, USA
| | - Meichen Wang
- Interdisciplinary Faculty of Toxicology, Texas A&M University, College Station, TX, USA; Department of Veterinary Physiology and Pharmacology, School of Veterinary Medicine, Texas A&M University, College Station, TX, USA
| | - Garett T Sansom
- Interdisciplinary Faculty of Toxicology, Texas A&M University, College Station, TX, USA; Department of Environmental and Occupational Health, School of Public Health, Texas A&M University, College Station, TX, USA
| | - Burcu Beykal
- Department of Chemical & Biomolecular Engineering, University of Connecticut, Storrs, CT, USA; Center for Clean Energy Engineering, University of Connecticut, Storrs, CT, USA
| | - Terry L Wade
- Geochemical & Environmental Research Group, Texas A&M University, College Station, TX, USA
| | - Timothy D Phillips
- Interdisciplinary Faculty of Toxicology, Texas A&M University, College Station, TX, USA; Department of Veterinary Physiology and Pharmacology, School of Veterinary Medicine, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
7
|
Wang M, Rivenbark KJ, Nikkhah H, Beykal B, Phillips TD. In vitro and in vivo remediation of per- and polyfluoroalkyl substances by processed and amended clays and activated carbon in soil. APPLIED SOIL ECOLOGY : A SECTION OF AGRICULTURE, ECOSYSTEMS & ENVIRONMENT 2024; 196:105285. [PMID: 38463139 PMCID: PMC10919550 DOI: 10.1016/j.apsoil.2024.105285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Remediation methods for soil contaminated with poly- and perfluoroalkyl substances (PFAS) are needed to prevent their leaching into drinking water sources and to protect living organisms in the surrounding environment. In this study, the efficacy of processed and amended clays and carbons as soil amendments to sequester PFAS and prevent leaching was assessed using PFAS-contaminated soil and validated using sensitive ecotoxicological bioassays. Four different soil matrices including quartz sand, clay loam soil, garden soil, and compost were spiked with 4 PFAS congeners (PFOA, PFOS, GenX, and PFBS) at 0.01-0.2 μg/mL and subjected to a 3-step extraction method to quantify the leachability of PFAS from each matrix. The multistep extraction method showed that PFAS leaching from soil was aligned with the total carbon content in soil, and the recovery was dependent on concentration of the PFAS. To prevent the leaching of PFAS, several sorbents including activated carbon (AC), calcium montmorillonite (CM), acid processed montmorillonite (APM), and organoclays modified with carnitine, choline, and chlorophyll were added to the four soil matrices at 0.5-4 % w/w, and PFAS was extracted using the LEAF method. Total PFAS bioavailability was reduced by 58-97 % by all sorbents in a dose-dependent manner, with AC being the most efficient sorbent with a reduction of 73-97 %. The water leachates and soil were tested for toxicity using an aquatic plant (Lemna minor) and a soil nematode (Caenorhabditis elegans), respectively, to validate the reduction in PFAS bioavailability. Growth parameters in both ecotoxicological models showed a dose-dependent reduction in toxicity with value-added growth promotion from the organoclays due to added nutrients. The kinetic studies at varying time intervals and varying pHs simulating acidic rain, fresh water, and brackish water suggested a stable sorption of PFAS on all sorbents that fit the pseudo-second-order for up to 21 days. Contaminated soil with higher than 0.1 μg/mL PFAS may require reapplication of soil amendments every 21 days. Overall, AC showed the highest sorption percentage of total PFAS from in vitro studies, while organoclays delivered higher protection in ecotoxicological models (in vivo). This study suggests that in situ immobilization with soil amendments can reduce PFAS leachates and their bioavailability to surrounding organisms. A combination of sorbents may facilitate the most effective remediation of complex soil matrices containing mixtures of PFAS and prevent leaching and uptake into plants.
Collapse
Affiliation(s)
- Meichen Wang
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
- Interdisciplinary Faculty of Toxicology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Kelly J Rivenbark
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
- Interdisciplinary Faculty of Toxicology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Hasan Nikkhah
- Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, CT 06269, USA
- Center for Clean Energy Engineering, University of Connecticut, Storrs, CT 06269, USA
| | - Burcu Beykal
- Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, CT 06269, USA
- Center for Clean Energy Engineering, University of Connecticut, Storrs, CT 06269, USA
| | - Timothy D Phillips
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
- Interdisciplinary Faculty of Toxicology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
8
|
Rivenbark KJ, Lilly K, Wang M, Tamamis P, Phillips TD. Green-engineered clay- and carbon-based composite materials for the adsorption of benzene from air. JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING 2024; 12:111836. [PMID: 38576544 PMCID: PMC10993424 DOI: 10.1016/j.jece.2023.111836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
Benzene is a carcinogenic volatile organic compound (VOC) that is ubiquitously detected in enclosed spaces due to emissions from cooking activities, building materials, and cleaning products. To remove benzene and other VOCs from indoor air and protect public health, traditional fabric filters have been modified to contain activated carbons to enhance the filtration efficacy. In this study, composites derived from natural clay minerals and activated carbon were individually green-engineered with chlorophylls and were attached to the surface of filter materials. These systems were assessed for their adsorption of benzene from air using in vitro and in silico methods. Isothermal, thermodynamic, and kinetic experiments indicated that all green-engineered composites had improved binding profiles for benzene, as demonstrated by increased binding affinities (Kf ≥ 900 vs 472) and lower values of Gibbs free energy (ΔG = -16.8 vs -15.2) compared to activated carbon. Adsorption of benzene to all composites was achieved quickly (< 30 min), and the green-engineered composites also showed low levels of desorption (≤ 25%). While free chlorophyll is known to be photosensitive, chlorophylls in the green-engineered composites showed photostability and maintained high binding rates (≥ 70%). Additionally, the in silico simulations demonstrated the significant contribution of chlorophyll for the overall binding of benzene in clay systems and that chlorophyll could contribute to benzene binding in the carbon-based systems. Together, these studies indicated that novel, green-engineered composite materials can be effective filter sorbents to enhance the removal of benzene from air.
Collapse
Affiliation(s)
- Kelly J. Rivenbark
- Interdisciplinary Faculty of Toxicology, Texas A&M University, College Station, TX, USA
- Department of Veterinary Physiology and Pharmacology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Kendall Lilly
- Department of Materials Science and Engineering, College of Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Meichen Wang
- Interdisciplinary Faculty of Toxicology, Texas A&M University, College Station, TX, USA
- Department of Veterinary Physiology and Pharmacology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Phanourios Tamamis
- Department of Materials Science and Engineering, College of Engineering, Texas A&M University, College Station, TX 77843, USA
- Artie McFerrin Department of Chemical Engineering, College of Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Timothy D. Phillips
- Interdisciplinary Faculty of Toxicology, Texas A&M University, College Station, TX, USA
- Department of Veterinary Physiology and Pharmacology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| |
Collapse
|
9
|
Wang M, Lilly K, Martin LMA, Xu W, Tamamis P, Phillips TD. Adsorption and removal of polystyrene nanoplastics from water by green-engineered clays. WATER RESEARCH 2024; 249:120944. [PMID: 38070346 PMCID: PMC11824905 DOI: 10.1016/j.watres.2023.120944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/24/2023] [Accepted: 11/28/2023] [Indexed: 01/03/2024]
Abstract
Human exposure to micro- and nanoplastics (MNPs) commonly occurs through the consumption of contaminated drinking water. Among these, polystyrene (PS) is well-characterized and is one of the most abundant MNPs, accounting for 10 % of total plastics. Previous studies have focused on carbonaceous materials to remove MNPs by filtration, but most of the work has involved microplastics since nanoplastics (NPs) are smaller in size and more difficult to measure and remove. To address this need, green-engineered chlorophyll-amended sodium and calcium montmorillonites (SMCH and CMCH) were tested for their ability to bind and detoxify parent and fluorescently labeled PSNP using in vitro, in silico, and in vivo assays. In vitro dosimetry, isothermal analyses, thermodynamics, and adsorption/desorption kinetic models demonstrated 1) high binding capacities (173-190 g/kg), 2) high affinities (103), and 3) chemisorption as suggested by low desorption (≤42 %) and high Gibbs free energy and enthalpy (>|-20| kJ/mol) in the Langmuir and pseudo-second-order models. Computational dynamics simulations for 30 and 40 monomeric units of PSNP depicted that chlorophyll amendments increased the binding percentage and contributed to the sustained binding. Also, 64 % of PSNP bind to both the head and tail of chlorophyll aggregates, rather than the head or tail only. Fluorescent PSNP at 100 nm and 30 nm that were exposed to Hydra vulgaris showed concentration-dependent toxicity at 20-100 µg/mL. Importantly, the inclusion of 0.05-0.3 % CMCH and SMCH significantly (p ≤ 0.01) and dose-dependently reduced PSNP toxicity in morphological changes and feeding rate. The bioassay validated the in vitro and in silico predictions about adsorption efficacy and mechanisms and suggested that CMCH and SMCH are efficacious binders for PSNP in water.
Collapse
Affiliation(s)
- Meichen Wang
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA; Interdisciplinary Faculty of Toxicology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Kendall Lilly
- Department of Materials Science and Engineering, College of Engineering, Texas A&M University, College Station, TX 77843, USA; Artie McFerrin Department of Chemical Engineering, College of Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Leisha M A Martin
- Department of Life Sciences, Texas A&M University, Corpus Christi, TX 78412, USA
| | - Wei Xu
- Department of Life Sciences, Texas A&M University, Corpus Christi, TX 78412, USA
| | - Phanourios Tamamis
- Department of Materials Science and Engineering, College of Engineering, Texas A&M University, College Station, TX 77843, USA; Artie McFerrin Department of Chemical Engineering, College of Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Timothy D Phillips
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA; Interdisciplinary Faculty of Toxicology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA.
| |
Collapse
|