1
|
Mirzapour-Kouhdasht A, Shaghaghian S, Majdinasab M, Huang JY, Garcia-Vaquero M. Unravelling the Digestibility and Structure-Function Relationship of Lentil Protein Through Germination and Molecular Weight Fractionation. Foods 2025; 14:272. [PMID: 39856938 PMCID: PMC11765259 DOI: 10.3390/foods14020272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 01/07/2025] [Accepted: 01/13/2025] [Indexed: 01/27/2025] Open
Abstract
This study explores for the first time the impact of a 6-day germination process on the structure (FTIR), antioxidant activity, nutritional/safety attributes (ACE-I inhibitory activity, digestibility, and cytotoxicity), and functional properties of fractions of variable molecular weight (W > 5 kDa; 3 kDa < MW < 5 kDa; and MW < 3 kDa) isolated from proteins extracted from lentils. FTIR results indicated a substantial increase in β-sheet contents during germination. The digestibility of proteins increased from day 0 (16.32-17.04%) to day 6 of germination (24.92-26.05%) with variable levels of digestibility depending on their MW. ACE-I inhibitory activity improved during germination in all fractions, reaching IC50 values of 0.95, 0.83, and 0.69 mg/mL after 6 days of germination. All antioxidant activities analyzed notably increased, particularly in low-MW fractions (MW < 3 kDa). The functional properties of low-MW fractions were also the most promising, displaying the highest water and fat binding capacities and emulsifying and foaming capacities but lower foaming and emulsifying stability compared to high-MW fractions. Cytotoxicity tests on L929 cells revealed the slight adverse effects of low-MW fractions during germination. This study provides insights into the enhanced nutritional and functional attributes of lentil proteins following germination, emphasizing their potential application in functional foods.
Collapse
Affiliation(s)
- Armin Mirzapour-Kouhdasht
- Section of Food and Nutrition, School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland;
- Department of Food Science, Purdue University, West Lafayette, IN 47907, USA;
| | - Samaneh Shaghaghian
- Department of Food Science and Technology, School of Agriculture, Shiraz University, Shiraz 71441-65186, Iran; (S.S.); (M.M.)
- Department of Food Science, University of Laval, Quebec, QC G1V0A6, Canada
| | - Marjan Majdinasab
- Department of Food Science and Technology, School of Agriculture, Shiraz University, Shiraz 71441-65186, Iran; (S.S.); (M.M.)
| | - Jen-Yi Huang
- Department of Food Science, Purdue University, West Lafayette, IN 47907, USA;
| | - Marco Garcia-Vaquero
- Section of Food and Nutrition, School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland;
| |
Collapse
|
2
|
Kumar KBV, Varadaraju KR, Shivaramu PD, Kumar CMH, Prakruthi HR, Shekara BMC, Shreevatsa B, Wani TA, Prakasha KC, Kollur SP, Shivamallu C. Bactericidal, anti-hemolytic, and anticancerous activities of phytofabricated silver nanoparticles of glycine max seeds. Front Chem 2024; 12:1427797. [PMID: 39364440 PMCID: PMC11447554 DOI: 10.3389/fchem.2024.1427797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 07/15/2024] [Indexed: 10/05/2024] Open
Abstract
Introduction Soybean is a rich source of bioactive components with good nutritional support and is easily available. In the treatment of cancer, green synthesis of silver nanoparticles (AgNPs) from plant-based samples has gained attentions due to its potency and feasibility. In the present study, using soybean extracts (GM), silver nanoparticles are synthesized and analyzed for their anticancer potency. Methods The synthesized GM-AgNPs were characterized via UV-Vis spectroscopy, Fourier transform-infrared (FT-IR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and energy-dispersive X-ray (EDX) techniques for further analysis. Antibacterial activity was evaluated using the disc method and anti-hemolysis activity using the in vitro method, followed by anticancer property evaluation by cytotoxicity, cell migration, apoptosis, and cell cycle. Results and discussion Our results showed that the synthesized GM-AgNPs were spiral-shaped with a size range of 5-50 nm. The antibacterial activity against Staphylococcus aureus and Klebsiella pneumoniae showed the maximum zone of inhibition at 250 μg/mL in comparison with gentamicin. On exploring the anti-hemolysis efficiency, at 200 μg/mL, GM-AgNPs showed no hemolysis in comparison to the extract which showed 40% hemolysis. On analysis of GM-AgNPs against the breast cancer cell line, the nanoparticles displayed the IC50 value of 74.04 μg/mL. Furthermore, at the IC50 concentration, cancer cell migration was reduced. The mechanism of action of GM-AgNPs confirmed the initiation of apoptosis and cell cycle arrest in the sub-G0/G1 (growth phase) phase by 48.19%. In gene expression and protein expression analyses, Bax and Bcl-2 were altered to those of normal physiology.
Collapse
Affiliation(s)
- K B Vijendra Kumar
- Department of Chemistry, Bangalore Institute of Technology, Bengaluru, Karnataka, India
| | | | - Prasanna D Shivaramu
- Department of Applied Sciences, Vishveshvaraya Technical University, Chikkaballapura, India
| | - C M Hemanth Kumar
- Department of Chemistry, Bangalore Institute of Technology, Bengaluru, Karnataka, India
| | - H R Prakruthi
- Department of Chemistry, Bangalore Institute of Technology, Bengaluru, Karnataka, India
| | - B M Chandra Shekara
- Department of Chemistry, Bangalore Institute of Technology, Bengaluru, Karnataka, India
| | - Bhargav Shreevatsa
- Department of Biotechnology and Bioinformatics, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
| | - Tanveer A Wani
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - K C Prakasha
- Department of Chemistry, KLE Society's PC Jabin Science College, Huballi, India
| | - Shiva Prasad Kollur
- School of Physical Sciences, Amrita Vishwa Vidyapeetham, Mysuru Campus, Mysuru, Karnataka, India
| | - Chandan Shivamallu
- Department of Biotechnology and Bioinformatics, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
| |
Collapse
|
3
|
Karthika AM, Thomas T, Augustine C. Computational studies on a selection of phosphite esters as antioxidants for polymeric materials. J Mol Model 2024; 30:244. [PMID: 38958769 DOI: 10.1007/s00894-024-06045-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 06/24/2024] [Indexed: 07/04/2024]
Abstract
CONTEXT Phosphite esters, a class of organo-phosphorus compounds, are widely used as non-discolouring antioxidants in many polymeric products. Apart from normal radical scavenging, they prevent the splitting of hydroperoxides (ROOH), one of the initial products of autoxidation, from forming extremely reactive free radicals such as alkoxy (RO.) and hydroxy (.OH) radicals. The inherent molecular properties of antioxidants and the chemistry of their action are essential for researchers working in this field of science. Four organo-phosphorous compounds well-known for their antioxidant activity are selected here for theoretical analysis: Tri(m-methylphenyl) phosphite (m-TMPP), Tri(4-methyl-2,6-di-tert-butylphenyl) phosphite (TMdtBPP), Tri(allylphenyl) phosphite (TAPP) and Tri(mercaptobenzothiazoyl) thiophosphate (TMBTTP). The antioxidant activity exhibited by these compounds is theoretically verified, and the results are consistent with the available experimental data. Such theoretical predictions offer advantages in scientific research, particularly when researchers need to select certain molecules as antioxidants for experiments from a pool of molecular systems. METHODS The chemical computations presented in this report are done in Gaussian 16 program package. The procedure of density functional theory (DFT) with the model chemistry B3LYP/6-31G(d,p) is used to generate computational data. Global reactivity indices, thermochemical data, Fukui functions, molecular electrostatic potential and NMR spectra are computed for the chosen molecular systems from their optimized geometries.
Collapse
Affiliation(s)
- A M Karthika
- Department of Chemistry, St. Berchmans College (Autonomous), Mahatma Gandhi University, Kottayam, India
| | - Tiju Thomas
- Department of Metallurgical and Materials Engineering, Indian Institute of Technology Madras, Chennai, India
| | - Cyril Augustine
- Department of Chemistry, St. Berchmans College (Autonomous), Mahatma Gandhi University, Kottayam, India.
- Department of Metallurgical and Materials Engineering, Indian Institute of Technology Madras, Chennai, India.
| |
Collapse
|
4
|
Wang Y, Li C, Li Z, Moalin M, den Hartog GJM, Zhang M. Computational Chemistry Strategies to Investigate the Antioxidant Activity of Flavonoids-An Overview. Molecules 2024; 29:2627. [PMID: 38893503 PMCID: PMC11173571 DOI: 10.3390/molecules29112627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 05/27/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
Despite several decades of research, the beneficial effect of flavonoids on health is still enigmatic. Here, we focus on the antioxidant effect of flavonoids, which is elementary to their biological activity. A relatively new strategy for obtaining a more accurate understanding of this effect is to leverage computational chemistry. This review systematically presents various computational chemistry indicators employed over the past five years to investigate the antioxidant activity of flavonoids. We categorize these strategies into five aspects: electronic structure analysis, thermodynamic analysis, kinetic analysis, interaction analysis, and bioavailability analysis. The principles, characteristics, and limitations of these methods are discussed, along with current trends.
Collapse
Affiliation(s)
- Yue Wang
- Department of Pharmacology and Personalized Medicine, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, 6200 MD Maastricht, The Netherlands; (Y.W.); (C.L.); (G.J.M.d.H.)
| | - Chujie Li
- Department of Pharmacology and Personalized Medicine, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, 6200 MD Maastricht, The Netherlands; (Y.W.); (C.L.); (G.J.M.d.H.)
| | - Zhengwen Li
- School of Pharmacy, Chengdu University, 2025 Chengluo Avenue, Chengdu 610106, China;
| | - Mohamed Moalin
- Research Centre Material Sciences, Zuyd University of Applied Science, 6400 AN Heerlen, The Netherlands;
| | - Gertjan J. M. den Hartog
- Department of Pharmacology and Personalized Medicine, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, 6200 MD Maastricht, The Netherlands; (Y.W.); (C.L.); (G.J.M.d.H.)
| | - Ming Zhang
- Hainan University-HSF/LWL Collaborative Innovation Laboratory, College of Food Sciences & Engineering, Hainan University, 58 People Road, Haikou 570228, China
| |
Collapse
|
5
|
Efficient Extraction of Flavonoids from Lotus Leaves by Ultrasonic-Assisted Deep Eutectic Solvent Extraction and Its Evaluation on Antioxidant Activities. SEPARATIONS 2023. [DOI: 10.3390/separations10020065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The discovery of a green extraction solvent for natural plants could promote related research. In this study, deep eutectic solvents (DES) were used as green solvents coupled with an ultrasound-assisted extraction method (UAE) to extract flavonoids from lotus leaves. Thirty-four different DES were performed and choline chloride/urea with 40% water was chosen as the most promising one, and the related parameters in the procedures were optimized, resulting in the highest extraction amount of flavonoids in lotus leaves. D-101 was selected from four macroporous resins to separate the flavonoids from DES. Moreover, DES could be recycled and efficiently reused four times with satisfactory performances. In addition, the lotus leaf flavonoids from the DES extract exhibited antioxidant activities in five kinds of assays including DPPH, ABTS, Fe3+ reducing, FRAP, and Fe2+ chelating. It also showed antibacterial activities on Staphylococcus aureus and Escherichia coli bacterial strains with minimal inhibitory concentrations at 1666 μg/mL and 208 μg/mL, respectively. In the HPLC analysis, the three main components in the DES extract were identified as astragalin, hyperoside, and isoquercitrin. In conclusion, the developed UAE-DES followed by macroporous resin treatment could become an efficient and environmentally friendly extraction and enrichment method for flavonoids from lotus leaves and other natural products.
Collapse
|
6
|
Zongo E, Busuioc A, Meda RNT, Botezatu AV, Mihaila MD, Mocanu AM, Avramescu SM, Koama BK, Kam SE, Belem H, Somda FLS, Ouedraogo C, Ouedraogo GA, Dinica RM. Exploration of the Antioxidant and Anti-inflammatory Potential of Cassia sieberiana DC and Piliostigma thonningii (Schumach.) Milne-Redh, Traditionally Used in the Treatment of Hepatitis in the Hauts-Bassins Region of Burkina Faso. Pharmaceuticals (Basel) 2023; 16:ph16010133. [PMID: 36678629 PMCID: PMC9863482 DOI: 10.3390/ph16010133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/06/2023] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
Inflammation is the supreme biological response to illness. In the Hauts-Bassins region, in traditional medicine, all parts of Cassia sieberiana and Piliostigma thonningii are used to treat hepatitis and inflammation. The aim of this study was to evaluate the in vitro antioxidant and anti-inflammatory activities of their aqueous extracts. High performance liquid chromatography with photodiode array (HPLC-DAD) and ultra-high-performance liquid chromatography coupled with high-resolution mass spectrometry (UHPLC-MS/MS) analyses highlighted the presence of polyphenols and flavonoids. Antioxidant and anti-inflammatory activities were measured by various methods such as DPPH (2,2-diphenyl-1-picrylhydrazyl), ABTS 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid), TAC (total antioxidant capacity), anti-protease, anti-lipoxygenase, and membrane stabilization. The best antioxidant activity was observed in the bark (DPPH: IC50 = 13.45 ± 0.10 µg/mL) and roots (TAC = 29.68 ± 1.48 mg AAE/g DW) of Piliostigma thonningii and in the roots (ABTS: IC50 = 1.83 ± 0.34 µg/mL) of Cassia sieberiana. The best anti-inflammatory activity was observed in the bark (anti-lipoxygenase: IC50 = 13.04 ± 1.99 µg/mL) and leaves (anti-proteases: IC50 = 75.74 ± 1.07 µg/mL, membrane stabilization: IC50 = 48.32 ± 6.39 µg/mL) of Cassia sieberiana. Total polyphenols (ABTS: r = -0.679, TAC: r = 0.960) and condensed tannins (ABTS: r = -0.702, TAC: r = 0.701) were strongly correlated with antioxidant activity. Total flavonoids (anti-proteases: r = -0.729), condensed tannins (anti-proteases: r = 0.698), and vitamin C (anti-proteases: r = -0.953) were strongly correlated with anti-inflammatory activity. Total polyphenols, flavonoids, condensed tannins, and vitamin C could contribute to the antioxidant and anti-inflammatory activities of the two studied plants. These results could validate the traditional use of these plants to treat various inflammatory diseases.
Collapse
Affiliation(s)
- Eliasse Zongo
- Laboratoire de Recherche et d’Enseignement en Santé et Biotechnologies Animales, Université Nazi BONI, Bobo Dioulasso 01 BP 1091, Burkina Faso
| | - Anna Busuioc
- Department of Chemistry, Physics and Environment, Faculty of Sciences and Environment, “Dunărea de Jos” University of Galati, 111 Domnească Street, 800201 Galati, Romania
- Correspondence: (A.B.); (R.M.D.)
| | - Roland Nâg-Tiero Meda
- Laboratoire de Recherche et d’Enseignement en Santé et Biotechnologies Animales, Université Nazi BONI, Bobo Dioulasso 01 BP 1091, Burkina Faso
| | - Andreea Veronica Botezatu
- Department of Chemistry, Physics and Environment, Faculty of Sciences and Environment, “Dunărea de Jos” University of Galati, 111 Domnească Street, 800201 Galati, Romania
| | - Maria Daniela Mihaila
- Department of Chemistry, Physics and Environment, Faculty of Sciences and Environment, “Dunărea de Jos” University of Galati, 111 Domnească Street, 800201 Galati, Romania
| | - Ana-Maria Mocanu
- Department of Chemistry, Physics and Environment, Faculty of Sciences and Environment, “Dunărea de Jos” University of Galati, 111 Domnească Street, 800201 Galati, Romania
- Department of Organic Chemistry, Biochemistry and Catalysis, Faculty of Chemistry, University of Bucharest, 90-92 Soseaua Panduri, 050663 Bucharest, Romania
| | - Sorin Marius Avramescu
- Department of Organic Chemistry, Biochemistry and Catalysis, Faculty of Chemistry, University of Bucharest, 90-92 Soseaua Panduri, 050663 Bucharest, Romania
| | - Benjamin Kouliga Koama
- Laboratoire de Recherche et d’Enseignement en Santé et Biotechnologies Animales, Université Nazi BONI, Bobo Dioulasso 01 BP 1091, Burkina Faso
| | - Sami Eric Kam
- Laboratoire de Recherche et d’Enseignement en Santé et Biotechnologies Animales, Université Nazi BONI, Bobo Dioulasso 01 BP 1091, Burkina Faso
| | - Hadidiatou Belem
- Laboratoire de Recherche et d’Enseignement en Santé et Biotechnologies Animales, Université Nazi BONI, Bobo Dioulasso 01 BP 1091, Burkina Faso
| | - Franck Le Sage Somda
- Laboratoire de Recherche et d’Enseignement en Santé et Biotechnologies Animales, Université Nazi BONI, Bobo Dioulasso 01 BP 1091, Burkina Faso
| | - Clarisse Ouedraogo
- Laboratoire de Recherche et d’Enseignement en Santé et Biotechnologies Animales, Université Nazi BONI, Bobo Dioulasso 01 BP 1091, Burkina Faso
| | - Georges Anicet Ouedraogo
- Laboratoire de Recherche et d’Enseignement en Santé et Biotechnologies Animales, Université Nazi BONI, Bobo Dioulasso 01 BP 1091, Burkina Faso
| | - Rodica Mihaela Dinica
- Department of Chemistry, Physics and Environment, Faculty of Sciences and Environment, “Dunărea de Jos” University of Galati, 111 Domnească Street, 800201 Galati, Romania
- Correspondence: (A.B.); (R.M.D.)
| |
Collapse
|
7
|
Bălănescu F, Botezatu AV, Marques F, Busuioc A, Marincaş O, Vînătoru C, Cârâc G, Furdui B, Dinica RM. Bridging the Chemical Profile and Biological Activities of a New Variety of Agastache foeniculum (Pursh) Kuntze Extracts and Essential Oil. Int J Mol Sci 2023; 24:ijms24010828. [PMID: 36614269 PMCID: PMC9821440 DOI: 10.3390/ijms24010828] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 12/25/2022] [Accepted: 12/28/2022] [Indexed: 01/04/2023] Open
Abstract
This study investigated the phytochemical content of alcoholic extracts and essential oil of a new variety of medicinal plants, Agastache foeniculum (Pursh), which Kuntze adapted for cultivation in Romania, namely “Aromat de Buzău”. The essential oil was investigated by GC-MS, while the identification and quantification of various compounds from alcoholic extracts were performed by HPLC-DAD. The total phenol and flavonoid contents of the extracts were evaluated by using standard phytochemical methods. The antioxidant activities of ethanol, methanol extracts, and essential oil of the plant were also assessed against 2,2′-diphenyl-1-picrylhydrazyl (DPPH•), 2,2′-azino-bis-(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS•+), and by ferric reducing power (FRAP) using spectroscopic methods. Cyclic voltammetry was used to evaluate the antioxidant capacity of the essential oil. The concentrations of phenolic compounds were higher in methanolic extract compared to ethanolic extract. A significant correlation was found between total phenol and total flavonoid contents (r = 0.9087). Significant high correlations were also found between the total phenolic compounds and the antioxidant activities of the extracts (r ≥ 0.8600, p < 0.05). In addition, the extracts and essential oil showed good antioxidant and xanthine oxidase inhibitory activities. Estragole was detected as the major constituent of the essential oil (94.89%). The cytotoxic activity of the essential oil was evaluated by the MTT assay. At lower concentrations (1 µg/mL) high cytotoxicity against MCF-7 breast cancer cells was observed but not on the non-tumoral dermal fibroblasts (HDF) which indicated selectivity for cancer cells and suggests the presence of biologically active components that contribute to the observed high cytotoxic effect. Findings from the present study offer new perspectives on the use of A. foeniculum as a potential source of bioactive compounds and a good candidate for pharmaceutical plant-based products.
Collapse
Affiliation(s)
- Fănică Bălănescu
- Faculty of Medicine and Pharmacy, “Dunărea de Jos” University of Galati, 35 A.I. Cuza Street, 800010 Galati, Romania
- Faculty of Sciences and Environment, Department of Chemistry Physical and Environment, “Dunărea de Jos” University of Galati, 111 Domnească Street, 800201 Galati, Romania
| | - Andreea Veronica Botezatu
- Faculty of Sciences and Environment, Department of Chemistry Physical and Environment, “Dunărea de Jos” University of Galati, 111 Domnească Street, 800201 Galati, Romania
- Correspondence: (A.V.B.); (R.M.D.)
| | - Fernanda Marques
- Departamento de Engenharia e Ciências Nucleares (DECN), Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, University of Lisbon, Campus Tecnológico e Nuclear, Estrada Nacional 10, Km 139.7, Bobadela, 2695-066 Boticas, Portugal
| | - Anna Busuioc
- Faculty of Sciences and Environment, Department of Chemistry Physical and Environment, “Dunărea de Jos” University of Galati, 111 Domnească Street, 800201 Galati, Romania
| | - Olivian Marincaş
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat Street, 400293 Cluj-Napoca, Romania
| | - Costel Vînătoru
- Plant Genetic Resources Bank for Vegetables, Floriculture, Aromatic and Medicinal Plants Buzău, 56 Nicolae Bălcescu Street, 120187 Buzau, Romania
| | - Geta Cârâc
- Faculty of Sciences and Environment, Department of Chemistry Physical and Environment, “Dunărea de Jos” University of Galati, 111 Domnească Street, 800201 Galati, Romania
| | - Bianca Furdui
- Faculty of Sciences and Environment, Department of Chemistry Physical and Environment, “Dunărea de Jos” University of Galati, 111 Domnească Street, 800201 Galati, Romania
| | - Rodica Mihaela Dinica
- Faculty of Sciences and Environment, Department of Chemistry Physical and Environment, “Dunărea de Jos” University of Galati, 111 Domnească Street, 800201 Galati, Romania
- Correspondence: (A.V.B.); (R.M.D.)
| |
Collapse
|
8
|
Simultaneous Optimization of Phenolic Compounds and Antioxidant Abilities of Moroccan Pimpinella anisum Extracts Using Mixture Design Methodology. Processes (Basel) 2022. [DOI: 10.3390/pr10122580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Pimpinella anisum (anise) is a dense vegetal matrix with considerable amounts of bioactive components known for its pharmacological properties. The optimization of extraction constitutes an important key to improving efficacy and avoiding wasting time. Within this framework, the present study was designed to select the most appropriate extractor solvent mixture to extract phenolic and flavonoids using Mixture Design Methodology. The concerned responses were the total phenolic content (TPC), total flavonoid content (TFC) and antioxidant ability examined by 2,2-diphenyl-l-picrylhydrazyl (DPPH) assay. Before mixture design optimization, a screening of solvents was conducted on ten polar and nonpolar solvents to choose the best solvents that give a maximum of total phenolic compounds. This first step has shown that water, ethanol and methanol were the best-used solvents. Later, an augmented centroid design investigated the solvent system’s optimization. The results of simultaneous optimization have shown that the ternary mixture containing 44% of water, 22% of ethanol and 34% of methanol was the most appropriate for simultaneous maximization of TPC, TFC and antioxidant activity with 18.55 mg GAE/g, 7.16 mg QE/g and 0.56 mg/mL, respectively. Our results have shown that using mixture design as an optimization technique was an excellent way to choose the most suitable mixture to extract bioactive compounds, which may represent a promising method of multi-purpose extraction, especially in the pharmaceutical and food sectors.
Collapse
|
9
|
Giordano M, Petropoulos SA, Kyriacou MC, Graziani G, Zarrelli A, Rouphael Y, El-Nakhel C. Nutritive and Phytochemical Composition of Aromatic Microgreen Herbs and Spices Belonging to the Apiaceae Family. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11223057. [PMID: 36432786 PMCID: PMC9695664 DOI: 10.3390/plants11223057] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/07/2022] [Accepted: 11/09/2022] [Indexed: 06/12/2023]
Abstract
Microgreens represent a new generation of food products, commonly used to garnish and embellish culinary dishes, and recently associated with an increasing interest in their nutraceutical and phytochemical profiles. Four Apiaceae species: Pimpinella anisum L. (anise), Anthriscus cerefolium L. (chervil), Carum carvi L. (caraway), and Anethum graveolens L. (dill) were assessed for fresh yield, macro- and microminerals, total chlorophylls, total ascorbic acid, carotenoids, polyphenols, and their antioxidant activity. Anise was the species yielding the most (2.53 kg m-2) and having the highest lutein content (18.4 µg g-1 dry weight (DW)). Chervil and dill were characterized by the highest total ascorbic acid content (~151 mg AA g-1 fresh weight (FW)). The phenolic profile highlighted the presence of five flavonoid derivatives and 12 phenolic acid derivatives, with quinic acid derivatives being the most abundant phenols in the species tested. In addition, anise, caraway, and dill proved to be considerably rich in total polyphenols (~11056 μg g-1 DW). Caraway and dill were characterized by the highest antioxidant activity measured by the DPPH and ABTS methods, whereas the FRAP method revealed caraway as having the highest antioxidant activity. Such results highlight the potential of Apiaceae species as an alternative to other families which are commonly used for microgreens production.
Collapse
Affiliation(s)
- Maria Giordano
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy
| | - Spyridon A. Petropoulos
- Department of Agriculture, Crop Production and Rural Environment, University of Thessaly, Fytokou Street, 38446 Volos, Greece
| | - Marios C. Kyriacou
- Department of Vegetable Crops, Agricultural Research Institute, Nicosia 1516, Cyprus
| | - Giulia Graziani
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy
| | - Armando Zarrelli
- Department of Chemical Sciences, University of Naples Federico II, 800126 Naples, Italy
| | - Youssef Rouphael
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy
| | - Christophe El-Nakhel
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy
| |
Collapse
|