1
|
Khalikova M, Jireš J, Horáček O, Douša M, Kučera R, Nováková L. What is the role of current mass spectrometry in pharmaceutical analysis? MASS SPECTROMETRY REVIEWS 2024; 43:560-609. [PMID: 37503656 DOI: 10.1002/mas.21858] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 06/02/2023] [Accepted: 06/25/2023] [Indexed: 07/29/2023]
Abstract
The role of mass spectrometry (MS) has become more important in most application domains in recent years. Pharmaceutical analysis is specific due to its stringent regulation procedures, the need for good laboratory/manufacturing practices, and a large number of routine quality control analyses to be carried out. The role of MS is, therefore, very different throughout the whole drug development cycle. While it dominates within the drug discovery and development phase, in routine quality control, the role of MS is minor and indispensable only for selected applications. Moreover, its role is very different in the case of analysis of small molecule pharmaceuticals and biopharmaceuticals. Our review explains the role of current MS in the analysis of both small-molecule chemical drugs and biopharmaceuticals. Important features of MS-based technologies being implemented, method requirements, and related challenges are discussed. The differences in analytical procedures for small molecule pharmaceuticals and biopharmaceuticals are pointed out. While a single method or a small set of methods is usually sufficient for quality control in the case of small molecule pharmaceuticals and MS is often not indispensable, a large panel of methods including extensive use of MS must be used for quality control of biopharmaceuticals. Finally, expected development and future trends are outlined.
Collapse
Affiliation(s)
- Maria Khalikova
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
- Department of Chemistry, Faculty of Science, University of Hradec Králové, Hradec Králové, Czech Republic
| | - Jakub Jireš
- Department of Analytical Chemistry, Faculty of Chemical Engineering, UCT Prague, Prague, Czech Republic
- Department of Development, Zentiva, k. s., Praha, Praha, Czech Republic
| | - Ondřej Horáček
- Department of Pharmaceutical Chemistry and Pharmaceutical Analysis, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - Michal Douša
- Department of Development, Zentiva, k. s., Praha, Praha, Czech Republic
| | - Radim Kučera
- Department of Pharmaceutical Chemistry and Pharmaceutical Analysis, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - Lucie Nováková
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| |
Collapse
|
2
|
Aebischer MK, Bouvarel T, Barrozo E, Kochardt D, Elger C, Haindl M, Ruppert R, Guillarme D, D'Atri V. Boosting the Separation of Adeno-Associated Virus Capsid Proteins by Liquid Chromatography and Capillary Electrophoresis Approaches. Int J Mol Sci 2023; 24:ijms24108503. [PMID: 37239849 DOI: 10.3390/ijms24108503] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/05/2023] [Accepted: 05/07/2023] [Indexed: 05/28/2023] Open
Abstract
The purity of the three capsid proteins that make up recombinant adeno-associated virus (rAAV) is considered a critical quality attribute of gene therapy products. As such, there is a clear need to develop separation methods capable of rapidly characterizing these three viral proteins (VPs). In this study, the potential benefits and limitations of different electrophoretic and chromatographic methods were evaluated, including capillary electrophoresis-sodium dodecyl sulfate (CE-SDS), reversed phase liquid chromatography (RPLC), hydrophilic interaction chromatography (HILIC), and hydrophobic interaction chromatography (HIC), for the analysis of VPs obtained from different serotypes (i.e., AAV2, AAV5, AAV8, and AAV9). CE-SDS is considered to be the reference method and provides a suitable separation of VP1-3 proteins using generic conditions and laser induced fluorescence detection. However, the characterization of post-translational modifications (i.e., phosphorylation, oxidation) remains difficult, and species identification is almost impossible due to the lack of compatibility between CE-SDS and mass spectrometry (MS). In contrast, RPLC and HILIC were found to be less generic than CE-SDS and require tedious optimization of the gradient conditions for each AAV serotype. However, these two chromatographic approaches are inherently compatible with MS, and were shown to be particularly sensitive in detecting capsid protein variants resulting from different post-translational modifications. Finally, despite being non-denaturing, HIC offers disappointing performance for viral capsid proteins characterization.
Collapse
Affiliation(s)
- Megane K Aebischer
- School of Pharmaceutical Sciences, University of Geneva, CMU-Rue Michel Servet 1, 1211 Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU-Rue Michel Servet 1, 1211 Geneva, Switzerland
| | - Thomas Bouvarel
- School of Pharmaceutical Sciences, University of Geneva, CMU-Rue Michel Servet 1, 1211 Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU-Rue Michel Servet 1, 1211 Geneva, Switzerland
| | - Emmalyn Barrozo
- School of Pharmaceutical Sciences, University of Geneva, CMU-Rue Michel Servet 1, 1211 Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU-Rue Michel Servet 1, 1211 Geneva, Switzerland
| | | | - Carsten Elger
- Roche Diagnostics GmbH, Nonnenwald 2, 82377 Penzberg, Germany
| | - Markus Haindl
- Roche Diagnostics GmbH, Nonnenwald 2, 82377 Penzberg, Germany
| | - Raphael Ruppert
- Roche Diagnostics GmbH, Nonnenwald 2, 82377 Penzberg, Germany
| | - Davy Guillarme
- School of Pharmaceutical Sciences, University of Geneva, CMU-Rue Michel Servet 1, 1211 Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU-Rue Michel Servet 1, 1211 Geneva, Switzerland
| | - Valentina D'Atri
- School of Pharmaceutical Sciences, University of Geneva, CMU-Rue Michel Servet 1, 1211 Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU-Rue Michel Servet 1, 1211 Geneva, Switzerland
| |
Collapse
|
3
|
Murisier A, D’Atri V, Pirner S, Larraillet V, Fekete S, Lauber M, Guillarme D. Ultra-Fast Middle-Up Reversed Phase Liquid Chromatography Analysis of Complex Bispecific Antibodies Obtained in Less Than One Minute. Pharmaceutics 2022; 14:2315. [PMID: 36365134 PMCID: PMC9698801 DOI: 10.3390/pharmaceutics14112315] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/24/2022] [Accepted: 10/25/2022] [Indexed: 08/12/2023] Open
Abstract
This work illustrates the benefits and limitations of using ultra-short reversed phase liquid chromatography (RPLC) columns for the characterization of various complex bispecific antibodies after prolonged thermal stress at the middle-up level of analysis. First, we have demonstrated that alternative organic modifiers, such as isopropanol, can be used in RPLC mode without generating excessive pressure, thanks to the prototype 10 × 2.1 mm, 2.7 µm particle column. However, compared to acetonitrile, the selectivity was not improved, at least for the selected biopharmaceutical products. Importantly, very fast separations (sub-1 min) of high quality were systematically obtained for the different samples when using a spectroscopic detector, but a severe loss of performance was observed with mass spectrometry (MS) detection due to dispersion effects. Based on these results, there is a clear need to improve the interfacing between LC and MS (shorter/thinner tubing) to mitigate band broadening.
Collapse
Affiliation(s)
- Amarande Murisier
- School of Pharmaceutical Sciences, University of Geneva, CMU-Rue Michel Servet 1, 1211 Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU-Rue Michel Servet 1, 1211 Geneva, Switzerland
| | - Valentina D’Atri
- School of Pharmaceutical Sciences, University of Geneva, CMU-Rue Michel Servet 1, 1211 Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU-Rue Michel Servet 1, 1211 Geneva, Switzerland
| | | | | | - Szabolcs Fekete
- Waters Corporation, CMU-Rue Michel Servet 1, 1211 Geneva, Switzerland
| | - Matthew Lauber
- Waters Corporation, 34 Maple Street, Milford, MA 01757-3696, USA
| | - Davy Guillarme
- School of Pharmaceutical Sciences, University of Geneva, CMU-Rue Michel Servet 1, 1211 Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU-Rue Michel Servet 1, 1211 Geneva, Switzerland
| |
Collapse
|