1
|
Pannone E, Abbott R. What is known about the health effects of non-steroidal anti-inflammatory drug (NSAID) use in marathon and ultraendurance running: a scoping review. BMJ Open Sport Exerc Med 2024; 10:e001846. [PMID: 38318269 PMCID: PMC10840051 DOI: 10.1136/bmjsem-2023-001846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/22/2024] [Indexed: 02/07/2024] Open
Abstract
This systematic scoping review aimed to understand the extent and scope of evidence on the health risks of non-steroidal anti-inflammatory drug (NSAID) use in marathon and ultraendurance running. NSAIDs are commonly consumed by runners to combat pain and inflammation; however, the health risks of consuming these drugs during marathon and ultrarunning events are currently not fully understood. Four databases (Cochrane Library, PubMed, MEDLINE and SPORTDiscus) were searched to identify articles focusing on running events of 26.2 miles or further, and they must have reported on the health risks of NSAID use. There was no restriction on the study design or the date of publication. Thirty studies were ultimately included: 4 randomised controlled trials, 1 cross-sectional study, 11 retrospective reviews, 4 case reports, 1 non-randomised control trial, and 9 prospective observational studies. The literature showed that potential health concerns of NSAID use could be split into five categories: electrolyte balance and hyponatraemia; acute kidney injury (AKI); gastrointestinal disturbances; oxidative stress, inflammation and muscle damage; other medical concerns. None of these sections had clear statistically significant links with NSAID use in ultraendurance running. However, potential links were shown, especially in AKI and electrolyte balance. This review suggests there is very limited evidence to show that NSAIDs have a negative impact on the health of ultrarunning athletes. Indications from a few non-randomised studies of a possible effect on kidney function need exploring with more high-quality research.
Collapse
Affiliation(s)
- Eve Pannone
- Medical School, University of Exeter, Exeter, UK
| | - Rebecca Abbott
- Medical School, University of Exeter, Exeter, UK
- Evidence Synthesis Team, NIHR Applied Research Collaboration South West (PenARC), University of Exeter, Exeter, UK
| |
Collapse
|
2
|
Toriumi T, Ohmori H, Nagasaki Y. Design of Antioxidant Nanoparticle, which Selectively Locates and Scavenges Reactive Oxygen Species in the Gastrointestinal Tract, Increasing The Running Time of Mice. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301159. [PMID: 37526346 PMCID: PMC10520625 DOI: 10.1002/advs.202301159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 06/05/2023] [Indexed: 08/02/2023]
Abstract
Excess reactive oxygen species (ROS) produced during strong or unfamiliar exercise cause exercise-induced gastrointestinal syndrome (EIGS), leading to poor health and decreased exercise performance. The application of conventional antioxidants can neither ameliorate EIGS nor improve exercise performance because of their rapid elimination and severe side effects on the mitochondria. Hence, a self-assembling nanoparticle-type antioxidant (RNPO ) that is selectively located in the gastrointestinal (GI) tract for an extended time after oral administration is developed. Interestingly, orally administered RNPO significantly enhances the running time until exhaustion in mice with increasing dosage, whereas conventional antioxidants (TEMPOL) tends to reduce the running time with increasing dosage. The running (control) and TEMPOL groups show severe damage in the GI tract and increased plasma lipopolysaccharide (LPS) levels after 80 min of running, resulting in fewer red blood cells (RBCs) and severe damage to the skeletal muscles and liver. However, the RNPO group is protected against GI tract damage and elevation of plasma LPS levels, similar to the nonrunning (sedentary) group, which prevents damage to the whole body, unlike in the control and TEMPOL groups. Based on these results, it is concluded that continuous scavenging of excessive intestinal ROS protects against gut damage and further improves exercise performance.
Collapse
Affiliation(s)
- Takuto Toriumi
- Department of Materials ScienceFaculty of Pure and Applied SciencesUniversity of Tsukuba1‐1‐1 TennoudaiTsukubaIbaraki305‐8573Japan
| | - Hajime Ohmori
- University of Tsukuba1‐1‐1 TennoudaiTsukubaIbaraki305‐8573Japan
- Faculty of Business Information SciencesJobu UniversityToyazukamachi 634‐1IsesakiGunma372‐8588Japan
| | - Yukio Nagasaki
- Department of Materials ScienceFaculty of Pure and Applied SciencesUniversity of Tsukuba1‐1‐1 TennoudaiTsukubaIbaraki305‐8573Japan
- Master's School of Medical SciencesGraduate School of Comprehensive Human SciencesUniversity of TsukubaTennoudai 1‐1‐1TsukubaIbaraki305‐8573Japan
- Center for Research in Radiation, Isotope and Earth System Sciences (CRiES)University of TsukubaTennoudai 1‐1‐1TsukubaIbaraki305‐8573Japan
- Department of ChemistryGraduate School of ScienceThe University of TokyoHongo 7‐3‐1Bunkyo‐kuTokyo113‐8654Japan
| |
Collapse
|
3
|
Effects of high-/low-temperature and high-altitude hypoxic environments on gut microbiota of sports people: A retrospective analysis. SPORTS MEDICINE AND HEALTH SCIENCE 2023. [DOI: 10.1016/j.smhs.2023.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023] Open
|
4
|
Brownlow MA, Mizzi JX. Pathophysiology of exertional heat illness in the Thoroughbred racehorse: Broadening perspective to include an exercise‐induced gastrointestinal syndrome in which endotoxaemia and systemic inflammation may contribute to the condition. EQUINE VET EDUC 2022. [DOI: 10.1111/eve.13750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
| | - James Xavier Mizzi
- Department of Regulation, Welfare and Biosecurity Policy The Hong Kong Jockey Club, Sha Tin Racecourse Sha Tin Hong Kong
| |
Collapse
|
5
|
Influence of Heat Stress on Intestinal Epithelial Barrier Function, Tight Junction Protein, and Immune and Reproductive Physiology. BIOMED RESEARCH INTERNATIONAL 2022; 2022:8547379. [PMID: 36093404 PMCID: PMC9458360 DOI: 10.1155/2022/8547379] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 04/30/2022] [Accepted: 06/14/2022] [Indexed: 11/22/2022]
Abstract
The potential threat of global warming in the 21st century is on the ecosystem through many aspects, including the negative impact of rising global temperature on the health of humans and animals, especially domestic animals. The damage caused by heat stress to animals has been more and more significant as the worldwide climate continues to rise, along with the breeding industry's expanding scale and stocking density, and it has become the most important stress-causing factor in southern China. In this review, we described the effects of heat stress on animal immune organs and immune system. The much-debated topic is how hyperthermia affects the tight junction barrier. Heat stress also induces inflammation in the body of animals causing low body weight and loss of appetite. This review also discussed that heat stress leads to hepatic disorder, and it also damages the intestine. The small intestine experiences ischemia, and the permeability of the intestine increases. Furthermore, the oxidative stress and mitogen-activated protein kinase (MAPK) pathways have a significant role in stress-induced cellular and organ injury. The study has shown that MAPK activity in the small intestine was increased by heat stress. Heat stress caused extreme small intestine damage, enhanced oxidative stress, and activated MAPK signaling pathways.
Collapse
|
6
|
Smith KA, Pugh JN, Duca FA, Close GL, Ormsbee MJ. Gastrointestinal pathophysiology during endurance exercise: endocrine, microbiome, and nutritional influences. Eur J Appl Physiol 2021; 121:2657-2674. [PMID: 34131799 DOI: 10.1007/s00421-021-04737-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 06/07/2021] [Indexed: 12/17/2022]
Abstract
Gastrointestinal symptoms are abundant among athletes engaging in endurance exercise, particularly when exercising in increased environmental temperatures, at higher intensities, or over extremely long distances. It is currently thought that prolonged ischemia, mechanical damage to the epithelial lining, and loss of epithelial barrier integrity are likely contributors of gastrointestinal (GI) distress during bouts of endurance exercise, but due to the many potential causes and sporadic nature of symptoms this phenomenon has proven difficult to study. In this review, we cover known factors that contribute to GI distress symptoms in athletes during exercise, while further attempting to identify novel avenues of future research to help elucidate mechanisms leading to symptomology. We explore the link between the intestinal microbiome, the integrity of the gut epithelia, and add detail on gut hormone and peptide secretion that could potentially contribute to GI distress symptoms in athletes. The influence of nutrition and dietary supplementation strategies are also detailed, where much research has opened up new ideas and potential mechanisms for understanding gut pathophysiology during exercise. The etiology of gastrointestinal symptoms during endurance exercise is multi-factorial with neuroendocrine, microbial, and nutritional factors likely contributing to specific, individualized symptoms. Recent work in previously unexplored areas of both microbiome and gut peptide secretion are pertinent areas for future work, and the numerous supplementation strategies explored to date have provided insight into physiological mechanisms that may be targetable to reduce the incidence and severity of gastrointestinal symptoms in athletes.
Collapse
Affiliation(s)
- Kyle A Smith
- Department of Nutritional Sciences, University of Arizona, Tucson, AZ, USA
| | - Jamie N Pugh
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, L3 5UA, UK
| | - Frank A Duca
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, USA
| | - Graeme L Close
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, L3 5UA, UK
| | - Michael J Ormsbee
- Department of Nutrition and Integrative Physiology, Institute of Sports Sciences and Medicine, Florida State University, 1104 Spirit Way, Tallahassee, FL, 32306, USA. .,Discipline of Biokinetics, Exercise and Leisure Sciences, University of KwaZulu-Natal, Durban, 4041, South Africa.
| |
Collapse
|
7
|
Abstract
PURPOSE OF REVIEW To provide a focused analysis of the challenges to gut health in athletes and examine recent research aimed at determining the impact of probiotics on preventing gastrointestinal (GI) symptoms and loss of barrier function in athletes. RECENT FINDINGS Frequency and severity of GI symptoms during training or competition were reduced by approximately one-third in studies demonstrating efficacy. Improvement of GI symptoms with probiotic supplementation was measured in both single-strain Lactobacillus and multi-strain Lactobacillus and Bifidobacterim probiotics, while improvement in gut barrier function was only measured for multi-strain probiotics. Likelihood of efficacy increased with duration of supplementation. The greatest efficacy for reducing GI symptom frequency and severity, as well as improving or preserving gut barrier function during exercise training and competition, appears to be for multi-strain Lactobacillus and Bifidobacterium probiotic cocktails supplemented for at least 11 weeks.
Collapse
Affiliation(s)
- Mary P Miles
- Department of Health and Human Development, Montana State University-Bozeman, Box 3540, Herrick Hall, Bozeman, MT, 59717, USA.
| |
Collapse
|
8
|
Hot, Tired and Hungry: The Snacking Behaviour and Food Cravings of Firefighters During Multi-Day Simulated Wildfire Suppression. Nutrients 2020; 12:nu12041160. [PMID: 32326354 PMCID: PMC7230571 DOI: 10.3390/nu12041160] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/18/2020] [Accepted: 04/19/2020] [Indexed: 11/30/2022] Open
Abstract
Firefighters are exposed to numerous stressors during wildfire suppression, including working in hot temperatures and sleep restricted conditions. Research has shown that when sleep restricted, individuals choose foods higher in carbohydrates, fat, and sugar, and have increased cravings for calorie dense foods. However, there is currently no research on the combined effect of heat and sleep restriction on snacking behaviour. Conducting secondary analyses from a larger study, the current study aimed to investigate the impact of heat and sleep restriction on snacking behaviour and food cravings. Sixty-six firefighters completed three days of simulated physically demanding firefighting work and were randomly allocated to either the control (n = 18, CON; 19 °C, 8 h sleep opportunity), sleep restricted (n = 16, SR; 19 °C, 4-h sleep opportunity), hot (n = 18, HOT; 33 °C, 8 h sleep opportunity), or hot and sleep restricted (n = 14 HOT + SR; 33 °C, 4-h sleep opportunity) condition. During rest periods firefighters were able to self-select sweet, savoury, or healthy snacks from a ration pack and were asked to rate their hunger, fullness, and cravings every two hours (eating block). Mixed model analyses revealed no difference in total energy intake between conditions, however there was a significant interaction between eating block and condition, with those in the CON, HOT, and HOT + SR condition consuming significantly more energy between 1230 and 1430 compared to the SR condition (p = 0.002). Sleep restriction and heat did not impact feelings of hunger and fullness across the day, and did not lead to greater cravings for snacks, with no differences between conditions. These findings suggest that under various simulated firefighting conditions, it is not the amount of food that differs but the timing of food intake, with those that are required to work in hot conditions while sleep restricted more likely to consume food between 1230 and 1430. This has potential implications for the time of day in which a greater amount of food should be available for firefighters.
Collapse
|
9
|
Tiller NB, Roberts JD, Beasley L, Chapman S, Pinto JM, Smith L, Wiffin M, Russell M, Sparks SA, Duckworth L, O'Hara J, Sutton L, Antonio J, Willoughby DS, Tarpey MD, Smith-Ryan AE, Ormsbee MJ, Astorino TA, Kreider RB, McGinnis GR, Stout JR, Smith JW, Arent SM, Campbell BI, Bannock L. International Society of Sports Nutrition Position Stand: nutritional considerations for single-stage ultra-marathon training and racing. J Int Soc Sports Nutr 2019; 16:50. [PMID: 31699159 PMCID: PMC6839090 DOI: 10.1186/s12970-019-0312-9] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 09/24/2019] [Indexed: 12/12/2022] Open
Abstract
Background In this Position Statement, the International Society of Sports Nutrition (ISSN) provides an objective and critical review of the literature pertinent to nutritional considerations for training and racing in single-stage ultra-marathon. Recommendations for Training. i) Ultra-marathon runners should aim to meet the caloric demands of training by following an individualized and periodized strategy, comprising a varied, food-first approach; ii) Athletes should plan and implement their nutrition strategy with sufficient time to permit adaptations that enhance fat oxidative capacity; iii) The evidence overwhelmingly supports the inclusion of a moderate-to-high carbohydrate diet (i.e., ~ 60% of energy intake, 5–8 g·kg− 1·d− 1) to mitigate the negative effects of chronic, training-induced glycogen depletion; iv) Limiting carbohydrate intake before selected low-intensity sessions, and/or moderating daily carbohydrate intake, may enhance mitochondrial function and fat oxidative capacity. Nevertheless, this approach may compromise performance during high-intensity efforts; v) Protein intakes of ~ 1.6 g·kg− 1·d− 1 are necessary to maintain lean mass and support recovery from training, but amounts up to 2.5 g.kg− 1·d− 1 may be warranted during demanding training when calorie requirements are greater; Recommendations for Racing. vi) To attenuate caloric deficits, runners should aim to consume 150–400 Kcal·h− 1 (carbohydrate, 30–50 g·h− 1; protein, 5–10 g·h− 1) from a variety of calorie-dense foods. Consideration must be given to food palatability, individual tolerance, and the increased preference for savory foods in longer races; vii) Fluid volumes of 450–750 mL·h− 1 (~ 150–250 mL every 20 min) are recommended during racing. To minimize the likelihood of hyponatraemia, electrolytes (mainly sodium) may be needed in concentrations greater than that provided by most commercial products (i.e., > 575 mg·L− 1 sodium). Fluid and electrolyte requirements will be elevated when running in hot and/or humid conditions; viii) Evidence supports progressive gut-training and/or low-FODMAP diets (fermentable oligosaccharide, disaccharide, monosaccharide and polyol) to alleviate symptoms of gastrointestinal distress during racing; ix) The evidence in support of ketogenic diets and/or ketone esters to improve ultra-marathon performance is lacking, with further research warranted; x) Evidence supports the strategic use of caffeine to sustain performance in the latter stages of racing, particularly when sleep deprivation may compromise athlete safety.
Collapse
Affiliation(s)
- Nicholas B Tiller
- Division of Pulmonary and Critical Care Physiology and Medicine, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA. .,Academy of Sport and Physical Activity, Faculty of Health and Wellbeing, Sheffield Hallam University, Sheffield, UK.
| | - Justin D Roberts
- Cambridge Centre for Sport and Exercise Sciences, School of Psychology and Sports Science, Anglia Ruskin University, Cambridge, UK.
| | - Liam Beasley
- Cambridge Centre for Sport and Exercise Sciences, School of Psychology and Sports Science, Anglia Ruskin University, Cambridge, UK
| | - Shaun Chapman
- Cambridge Centre for Sport and Exercise Sciences, School of Psychology and Sports Science, Anglia Ruskin University, Cambridge, UK
| | - Jorge M Pinto
- Cambridge Centre for Sport and Exercise Sciences, School of Psychology and Sports Science, Anglia Ruskin University, Cambridge, UK
| | - Lee Smith
- Cambridge Centre for Sport and Exercise Sciences, School of Psychology and Sports Science, Anglia Ruskin University, Cambridge, UK
| | - Melanie Wiffin
- Cambridge Centre for Sport and Exercise Sciences, School of Psychology and Sports Science, Anglia Ruskin University, Cambridge, UK
| | - Mark Russell
- School of Social and Health Sciences, Leeds Trinity University, Leeds, UK
| | - S Andy Sparks
- Sport Nutrition and Performance Research Group, Department of Sport and Physical Activity, Edge Hill University, Ormskirk, Lancashire, UK
| | | | - John O'Hara
- Carnegie School of Sport, Leeds Beckett University, Leeds, UK
| | - Louise Sutton
- Carnegie School of Sport, Leeds Beckett University, Leeds, UK
| | - Jose Antonio
- College of Health Care Sciences, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Darryn S Willoughby
- Department of Health, Human Performance, and Recreation, Baylor University, Waco, TX, USA
| | - Michael D Tarpey
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - Abbie E Smith-Ryan
- Department of Exercise and Sport Science, University of North Carolina, Chapel Hill, NC, USA
| | - Michael J Ormsbee
- Institute of Sports Sciences & Medicine, Department of Nutrition, Food and Exercise Sciences, Florida State University, Tallahassee, FL, USA.,Discipline of Biokinetics, Exercise and Leisure Sciences, School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Todd A Astorino
- Department of Kinesiology, California State University San Marcos, San Marcos, CA, USA
| | - Richard B Kreider
- Department of Health & Kinesiology, Texas A&M University, College Station, TX, USA
| | - Graham R McGinnis
- Kinesiology and Nutrition Sciences, University of Nevada, Las Vegas, NV, USA
| | - Jeffrey R Stout
- College of Health Professions and Sciences, University of Central Florida, Orlando, FL, USA
| | - JohnEric W Smith
- Department of Kinesiology, Mississippi State University, Mississippi, MS, USA
| | - Shawn M Arent
- Department of Exercise Science, University of South Carolina, Columbia, SC, USA
| | - Bill I Campbell
- Exercise Science Program, Performance & Physique Enhancement Laboratory, University of South Florida, Tampa, FL, USA
| | | |
Collapse
|
10
|
Gibson OR, James CA, Mee JA, Willmott AG, Turner G, Hayes M, Maxwell NS. Heat alleviation strategies for athletic performance: A review and practitioner guidelines. Temperature (Austin) 2019; 7:3-36. [PMID: 32166103 PMCID: PMC7053966 DOI: 10.1080/23328940.2019.1666624] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 09/06/2019] [Accepted: 09/08/2019] [Indexed: 12/19/2022] Open
Abstract
International competition inevitably presents logistical challenges for athletes. Events such as the Tokyo 2020 Olympic Games require further consideration given historical climate data suggest athletes will experience significant heat stress. Given the expected climate, athletes face major challenges to health and performance. With this in mind, heat alleviation strategies should be a fundamental consideration. This review provides a focused perspective of the relevant literature describing how practitioners can structure male and female athlete preparations for performance in hot, humid conditions. Whilst scientific literature commonly describes experimental work, with a primary focus on maximizing magnitudes of adaptive responses, this may sacrifice ecological validity, particularly for athletes whom must balance logistical considerations aligned with integrating environmental preparation around training, tapering and travel plans. Additionally, opportunities for sophisticated interventions may not be possible in the constrained environment of the athlete village or event arenas. This review therefore takes knowledge gained from robust experimental work, interprets it and provides direction on how practitioners/coaches can optimize their athletes' heat alleviation strategies. This review identifies two distinct heat alleviation themes that should be considered to form an individualized strategy for the athlete to enhance thermoregulatory/performance physiology. First, chronic heat alleviation techniques are outlined, these describe interventions such as heat acclimation, which are implemented pre, during and post-training to prepare for the increased heat stress. Second, acute heat alleviation techniques that are implemented immediately prior to, and sometimes during the event are discussed. Abbreviations: CWI: Cold water immersion; HA: Heat acclimation; HR: Heart rate; HSP: Heat shock protein; HWI: Hot water immersion; LTHA: Long-term heat acclimation; MTHA: Medium-term heat acclimation; ODHA: Once-daily heat acclimation; RH: Relative humidity; RPE: Rating of perceived exertion; STHA: Short-term heat acclimation; TCORE: Core temperature; TDHA: Twice-daily heat acclimation; TS: Thermal sensation; TSKIN: Skin temperature; V̇O2max: Maximal oxygen uptake; WGBT: Wet bulb globe temperature.
Collapse
Affiliation(s)
- Oliver R. Gibson
- Centre for Human Performance, Exercise and Rehabilitation (CHPER), Division of Sport, Health and Exercise Sciences, Brunel University London, Uxbridge, UK
| | - Carl A. James
- Institut Sukan Negara (National Sports Institute), Kuala Lumpur, Malaysia
| | - Jessica A. Mee
- School of Sport and Exercise Sciences, University of Worcester, Worcester, UK
| | - Ashley G.B. Willmott
- Cambridge Centre for Sport and Exercise Sciences, Anglia Ruskin University, Cambridge, UK
| | - Gareth Turner
- Bisham Abbey National High-Performance Centre, English Institute of Sport, EIS Performance Centre, Marlow, UK
| | - Mark Hayes
- Environmental Extremes Laboratory, School of Sport and Service Management, University of Brighton, Eastbourne, UK
| | - Neil S. Maxwell
- Environmental Extremes Laboratory, School of Sport and Service Management, University of Brighton, Eastbourne, UK
| |
Collapse
|
11
|
Osborne JO, Stewart IB, Beagley KW, Borg DN, Minett GM. Acute glutamine supplementation does not improve 20-km self-paced cycling performance in the heat. Eur J Appl Physiol 2019; 119:2567-2578. [PMID: 31565753 DOI: 10.1007/s00421-019-04234-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 09/18/2019] [Indexed: 01/03/2023]
Abstract
INTRODUCTION The premise of this study was to investigate the effect of acute glutamine supplementation on 20 km time trial cycling performance in the heat, neuromuscular function, inflammation and endotoxemia. METHODS Twelve cyclists completed two, 20-km time trials (20TT) in 35 °C (50% relative humidity). Participants ingested either glutamine (GLUT; 0.9 g kg-1 fat-free mass) or a placebo (CON) 60 min before each 20TT. Physiological and perceptual measures were recorded during each 20TT, and neuromuscular function assessed pre- and post-exercise. Venous blood was analysed for endotoxins, markers of gut damage (inflammatory fatty acid binding protein; I-FABP) and inflammatory cytokines (interleukin-6, IL-6; tumour necrosis factor-alpha, TNF-α). Data were analysed using linear mixed models in a Bayesian framework. RESULTS 20TT in the heat increased I-FABP and elevated inflammatory cytokines (IL-6 and TNF-α) compared to pre-exercise values but did not result in endotoxemia. Completion time was not statistically different between conditions (mean difference [95% credible interval] = 11 s [- 23, 44]). Relative to CON, GLUT did not alter any physiological or perceptual measures during the 20TT. CONCLUSION Glutamine supplementation does not improve 20TT performance in the heat or preserve neuromuscular function when compared to a placebo. These findings suggest that glutamine is not an ergogenic aid or prophylactic intervention for heat-induced gut damage during short-duration self-paced exercise in hot environments.
Collapse
Affiliation(s)
- John O Osborne
- School of Exercise and Nutrition Sciences, Queensland University of Technology (QUT), Kelvin Grove, 60 Musk Avenue, Brisbane, QLD, 4059, Australia. .,Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), Brisbane, Australia.
| | - Ian B Stewart
- School of Exercise and Nutrition Sciences, Queensland University of Technology (QUT), Kelvin Grove, 60 Musk Avenue, Brisbane, QLD, 4059, Australia.,Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), Brisbane, Australia
| | - Kenneth W Beagley
- Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), Brisbane, Australia.,School of Biomedical Sciences, Queensland University of Technology (QUT), Brisbane, Australia
| | - David N Borg
- School of Exercise and Nutrition Sciences, Queensland University of Technology (QUT), Kelvin Grove, 60 Musk Avenue, Brisbane, QLD, 4059, Australia.,Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), Brisbane, Australia.,The Hopkins Centre, Menzies Health Institute Queensland, Griffith University, Brisbane, Australia
| | - Geoffrey M Minett
- School of Exercise and Nutrition Sciences, Queensland University of Technology (QUT), Kelvin Grove, 60 Musk Avenue, Brisbane, QLD, 4059, Australia.,Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), Brisbane, Australia
| |
Collapse
|
12
|
Costa RJS, Gaskell SK, McCubbin AJ, Snipe RMJ. Exertional-heat stress-associated gastrointestinal perturbations during Olympic sports: Management strategies for athletes preparing and competing in the 2020 Tokyo Olympic Games. Temperature (Austin) 2019; 7:58-88. [PMID: 32166105 PMCID: PMC7053925 DOI: 10.1080/23328940.2019.1597676] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/05/2019] [Accepted: 03/14/2019] [Indexed: 12/15/2022] Open
Abstract
Exercise-induced gastrointestinal syndrome (EIGS) is a common characteristic of exercise. The causes appear to be multifactorial in origin, but stem primarily from splanchnic hypoperfusion and increased sympathetic drive. These primary causes can lead to secondary outcomes that include increased intestinal epithelial injury and gastrointestinal hyperpermeability, systemic endotoxemia, and responsive cytokinemia, and impaired gastrointestinal function (i.e. transit, digestion, and absorption). Impaired gastrointestinal integrity and functional responses may predispose individuals, engaged in strenuous exercise, to gastrointestinal symptoms (GIS), and health complications of clinical significance, both of which may have exercise performance implications. There is a growing body of evidence indicating heat exposure during exercise (i.e. exertional-heat stress) can substantially exacerbate these gastrointestinal perturbations, proportionally to the magnitude of exertional-heat stress, which is of major concern for athletes preparing for and competing in the upcoming 2020 Tokyo Olympic Games. To date, various hydration and nutritional strategies have been explored to prevent or ameliorate exertional-heat stress associated gastrointestinal perturbations. The aims of the current review are to comprehensively explore the impact of exertional-heat stress on markers of EIGS, examine the evidence for the prevention and (or) management of EIGS in relation to exertional-heat stress, and establish best-practice nutritional recommendations for counteracting EIGS and associated GIS in athletes preparing for and competing in Tokyo 2020.
Collapse
Affiliation(s)
- Ricardo J S Costa
- Monash University, Department of Nutrition Dietetics and Food, Notting Hill, Victoria, Australia
| | - Stephanie K Gaskell
- Monash University, Department of Nutrition Dietetics and Food, Notting Hill, Victoria, Australia
| | - Alan J McCubbin
- Monash University, Department of Nutrition Dietetics and Food, Notting Hill, Victoria, Australia
| | - Rhiannon M J Snipe
- Deakin University, Centre for Sport Research, School of Exercise and Nutrition Science, Burwood, Victoria, Australia
| |
Collapse
|
13
|
Keto-Adaptation and Endurance Exercise Capacity, Fatigue Recovery, and Exercise-Induced Muscle and Organ Damage Prevention: A Narrative Review. Sports (Basel) 2019; 7:sports7020040. [PMID: 30781824 PMCID: PMC6410243 DOI: 10.3390/sports7020040] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 02/06/2019] [Accepted: 02/10/2019] [Indexed: 12/15/2022] Open
Abstract
A ketogenic diet (KD) could induce nutritional ketosis. Over time, the body will acclimate to use ketone bodies as a primary fuel to achieve keto-adaptation. Keto-adaptation may provide a consistent and fast energy supply, thus improving exercise performance and capacity. With its anti-inflammatory and anti-oxidative properties, a KD may contribute to muscle health, thus preventing exercise-induced fatigue and damage. Given the solid basis of its potential to improve exercise capacity, numerous investigations into KD and exercise have been carried out in recent years. This narrative review aims to summarize recent research about the potential of a KD as a nutritional approach during endurance exercise, focusing on endurance capacity, recovery from fatigue, and the prevention of exhaustive exercise-induced muscle and organ damage.
Collapse
|
14
|
Heat stress in poultry production: Mitigation strategies to overcome the future challenges facing the global poultry industry. J Therm Biol 2018; 78:131-139. [DOI: 10.1016/j.jtherbio.2018.08.010] [Citation(s) in RCA: 150] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 06/16/2018] [Accepted: 08/18/2018] [Indexed: 02/06/2023]
|
15
|
Lim CL. Heat Sepsis Precedes Heat Toxicity in the Pathophysiology of Heat Stroke-A New Paradigm on an Ancient Disease. Antioxidants (Basel) 2018; 7:E149. [PMID: 30366410 PMCID: PMC6262330 DOI: 10.3390/antiox7110149] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 10/21/2018] [Accepted: 10/22/2018] [Indexed: 01/05/2023] Open
Abstract
Heat stroke (HS) is an ancient illness dating back more than 2000 years and continues to be a health threat and to cause fatality during physical exertion, especially in military personnel, fire-fighters, athletes, and outdoor laborers. The current paradigm in the pathophysiology and prevention of HS focuses predominantly on heat as the primary trigger and driver of HS, which has not changed significantly for centuries. However, pathological and clinical reports from HS victims and research evidence from animal and human studies support the notion that heat alone does not fully explain the pathophysiology of HS and that HS may also be triggered and driven by heat- and exercise-induced endotoxemia. Exposure to heat and exercise stresses independently promote the translocation of lipopolysaccharides (LPS) from gram-negative bacteria in the gut to blood in the circulatory system. Blood concentration of LPS can increase to a threshold that triggers the systemic inflammatory response, leading to the downstream ramifications of cellular and organ damage with sepsis as the end point i.e., heat sepsis. The dual pathway model (DPM) of HS proposed that HS is triggered by two independent pathways sequentially along the core temperature continuum of >40 °C. HS is triggered by heat sepsis at Tc < 42 °C and by the heat toxicity at Tc > 42 °C, where the direct effects of heat alone can cause cellular and organ damage. Therefore, heat sepsis precedes heat toxicity in the pathophysiology of HS.
Collapse
Affiliation(s)
- Chin Leong Lim
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore.
| |
Collapse
|