1
|
Burtscher M, Álvarez-Herms J, Burtscher J, Strasser B, Kopp M, Pageaux B. Could the perception of effort help us unravel the potential of " living low-training high"? A perspective article. J Sports Sci 2025:1-12. [PMID: 40075272 DOI: 10.1080/02640414.2025.2474352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 02/24/2025] [Indexed: 03/14/2025]
Abstract
Living low-training high may promote favourable physiological adaptations and improvement of exercise performance in normoxia following training at altitudes above 1500 m. Whether and how physiological adaptations to training high interact with the perception of effort remains unknown. This perspective article aims to carve out potential contributory effects of the perception of effort on performance changes following living low-training high interventions. It is based on two unique case reports, findings on known physiological adaptations to living low-training high, and integration of current knowledge on the neurophysiology of effort perception. Considering the current state of knowledge on the effect of exercising in hypoxia on perceived effort, we propose that the hypoxia exposure associated with living low-training high protocols interact with the perception of effort and its rating, by inducing adaptations that i) slow the development of neuromuscular fatigue and associated compensatory increase in motor command, ii) alter the functioning of the anterior cingulate cortex and/or the motor areas, and iii) alter the interaction with other psychological responses to the exercise. In the proposed framework using a psychophysiological approach, changes in the participants' report of their perceived effort would reflect underlying neurophysiological and psychological adaptations to hypoxia exposure.
Collapse
Affiliation(s)
- Martin Burtscher
- Department of Sport Science, University of Innsbruck, Innsbruck, Austria
| | - Jesus Álvarez-Herms
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (Upv/ehu), Leioa, Spain
| | - Johannes Burtscher
- Department of Sport Science, University of Innsbruck, Innsbruck, Austria
| | - Barbara Strasser
- Ludwig Boltzmann Institute for Rehabilitation Research, Vienna, Austria
- Faculty of Medicine, Sigmund Freud Private University, Vienna, Austria
| | - Martin Kopp
- Department of Sport Science, University of Innsbruck, Innsbruck, Austria
| | - Benjamin Pageaux
- École de kinésiologie et des sciences de l'activité physique (EKSAP), Faculté de médecine, Université de Montréal, Montreal, QC, Canada
- Centre de recherche de l'Institut universitaire de gériatrie de Montréal (CRIUGM), Montreal, QC, Canada
- Centre interdisciplinaire de recherche sur le cerveau et l'apprentissage (CIRCA), Montreal, QC, Canada
| |
Collapse
|
2
|
Faiss R, Raberin A, Brocherie F, Millet GP. Repeated-sprint training in hypoxia: A review with 10 years of perspective. J Sports Sci 2024:1-15. [PMID: 39445500 DOI: 10.1080/02640414.2024.2416821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 10/08/2024] [Indexed: 10/25/2024]
Abstract
Over the past decade, numerous studies have investigated an innovative "live low-train high" approach based on the repetition of short (<30 s) "all-out" sprints with incomplete recoveries in hypoxia; the so-called Repeated-Sprint training in Hypoxia (RSH). The aims of the present review are therefore threefold. First, this study summarizes the available evidence on putative additional performance enhancement after RSH comparing to the same training in normoxia (RSN). Second, a critical analysis of underpinning mechanisms discusses how advantages can be obtained through RSH for sea-level performance enhancement. An enhanced microcirculatory vasodilation leading to improved muscle perfusion and/or oxygenation and an increase in muscular phosphocreatine content may help explain the superiority of RSH vs. RSN. Third, the present review aims to provide guidelines for coaches, athletes and scientists to apply RSH interventions with regard to the interval duration, exercise-to-rest ratio and training volume. In conclusion, this review supports repeated-sprint training in hypoxia as an efficient (but not magic) training intervention with 77% of the controlled studies reporting an additional benefit with added hypoxia, mainly for team-, combat- and racket-sports athletes but also for all other sports (e.g. endurance) that require repeated accelerations with lesser fatigue.
Collapse
Affiliation(s)
- Raphaël Faiss
- Institute of Sports Sciences, Department of Physiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Antoine Raberin
- Institute of Sports Sciences, Department of Physiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Franck Brocherie
- Laboratory Sport, Expertise and Performance, French Institute of Sport, Paris, France
| | - Grégoire P Millet
- Institute of Sports Sciences, Department of Physiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
3
|
Maciejczyk M, Palka T, Wiecek M, Szygula Z. Effects of concurrent heat and hypoxic training on cycling anaerobic capacity in men. Sci Rep 2024; 14:22879. [PMID: 39358452 PMCID: PMC11447210 DOI: 10.1038/s41598-024-74686-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 09/27/2024] [Indexed: 10/04/2024] Open
Abstract
Physical training in heat or hypoxia can improve physical performance. The purpose of this parallel group study was to investigate the concurrent effect of training performed simultaneously in heat (31 °C) and hypoxia (FIO2 = 14.4%) on anaerobic capacity in young men. For the study, 80 non-trained men were recruited and divided into 5 groups (16 participants per group): control, non-training (CTRL); training in normoxia and thermoneutral conditions (NT: 21 °C, FIO2 = 20.95%); training in normoxia and heat (H: 31 °C, FIO2 = 20.95%); training in hypoxia and thermoneutral conditions (IHT: 21 °C, FIO2 = 14.4%), and training in hypoxia and heat (IHT + H: 31 °C, FIO2 = 14.4%). Before and after physical training, the participants performed the Wingate Test, in which peak power and mean power were measured. Physical training lasted 4 weeks and the participants exercised 3 times a week for 60 min, performing interval training. Only the IHT and IHT + H groups showed significant increases in absolute peak power (p < 0.001, ES = 0.36 and p = 0.02, ES = 0.26, respectively). There were no significant changes (p = 0.18) after training in mean power. Hypoxia appeared to be an environmental factor that significantly improved peak power, but not mean power. Heat, added to hypoxia, did not increase cycling anaerobic power. Also, training only in heat did not significantly affect anaerobic power. The inclusion of heat and/or hypoxia in training did not induce negative effects, i.e., a reduction in peak and mean power as measured in the Wingate Test.
Collapse
Affiliation(s)
- Marcin Maciejczyk
- Department of Physiology and Biochemistry, University of Physical Education, Kraków, Poland.
| | - Tomasz Palka
- Department of Physiology and Biochemistry, University of Physical Education, Kraków, Poland
| | - Magdalena Wiecek
- Department of Physiology and Biochemistry, University of Physical Education, Kraków, Poland
| | - Zbigniew Szygula
- Department of Sport Medicine and Nutrition, University of Physical Education, Kraków, Poland
| |
Collapse
|
4
|
Solsona R, Normand‐Gravier T, Borrani F, Bernardi H, Sanchez AMJ. DNA methylation changes during a sprint interval exercise performed under normobaric hypoxia or with blood flow restriction: A pilot study in men. Physiol Rep 2024; 12:e16044. [PMID: 38849292 PMCID: PMC11161272 DOI: 10.14814/phy2.16044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/25/2024] [Accepted: 04/25/2024] [Indexed: 06/09/2024] Open
Abstract
This crossover study evaluated DNA methylation changes in human salivary samples following single sprint interval training sessions performed in hypoxia, with blood flow restriction (BFR), or with gravity-induced BFR. Global DNA methylation levels were evaluated with an enzyme-linked immunosorbent assay. Methylation-sensitive restriction enzymes were used to determine the percentage methylation in a part of the promoter of the gene-inducible nitric oxide synthase (p-iNOS), as well as an enhancer (e-iNOS). Global methylation increased after exercise (p < 0.001; dz = 0.50). A tendency was observed for exercise × condition interaction (p = 0.070). Post hoc analyses revealed a significant increase in global methylation between pre- (7.2 ± 2.6%) and postexercise (10.7 ± 2.1%) with BFR (p = 0.025; dz = 0.69). Methylation of p-iNOS was unchanged (p > 0.05). Conversely, the methylation of e-iNOS increased from 0.6 ± 0.4% to 0.9 ± 0.8% after exercise (p = 0.025; dz = 0.41), independently of the condition (p > 0.05). Global methylation correlated with muscle oxygenation during exercise (r = 0.37, p = 0.042), while e-iNOS methylation showed an opposite association (r = -0.60, p = 0.025). Furthermore, p-iNOS methylation was linked to heart rate (r = 0.49, p = 0.028). Hence, a single sprint interval training increases global methylation in saliva, and adding BFR tends to increase it further. Lower muscle oxygenation is associated with augmented e-iNOS methylation. Finally, increased cardiovascular strain results in increased p-iNOS methylation.
Collapse
Affiliation(s)
- Robert Solsona
- Institute of Sport SciencesUniversity of LausanneLausanneSwitzerland
- Laboratoire Interdisciplinaire Performance Santé Environnement de Montagne (LIPSEM), UR 4640University of Perpignan via Domitia, Faculty of Sports SciencesFont‐RomeuFrance
| | - Tom Normand‐Gravier
- Laboratoire Interdisciplinaire Performance Santé Environnement de Montagne (LIPSEM), UR 4640University of Perpignan via Domitia, Faculty of Sports SciencesFont‐RomeuFrance
- DMEM, Université de Montpellier, INRAEMontpellierFrance
| | - Fabio Borrani
- Institute of Sport SciencesUniversity of LausanneLausanneSwitzerland
| | | | - Anthony M. J. Sanchez
- Institute of Sport SciencesUniversity of LausanneLausanneSwitzerland
- Laboratoire Interdisciplinaire Performance Santé Environnement de Montagne (LIPSEM), UR 4640University of Perpignan via Domitia, Faculty of Sports SciencesFont‐RomeuFrance
| |
Collapse
|
5
|
Gutknecht AP, Gonzalez-Figueres M, Brioche T, Maurelli O, Perrey S, Favier FB. Maximizing anaerobic performance with repeated-sprint training in hypoxia: In search of an optimal altitude based on pulse oxygen saturation monitoring. Front Physiol 2022; 13:1010086. [PMID: 36311239 PMCID: PMC9597871 DOI: 10.3389/fphys.2022.1010086] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 09/28/2022] [Indexed: 11/23/2022] Open
Abstract
Purpose: Repeated-sprint training in hypoxia (RSH) leads to great improvements in anaerobic performance. However, there is no consensus about the optimal level of hypoxia that should be used during training to maximize subsequent performances. This study aimed to establish whether such an optimal altitude can be determined and whether pulse oxygen saturation during RSH is correlated with training-induced improvement in performance. Methods: Peak and mean power outputs of healthy young males [age (mean ± SD) 21.7 ± 1.4 years] were measured during a Wingate (30 s) and a repeated-sprint ability (RSA; 10 x 6-s sprint with 24-s recovery) test before and after RSH. Participants performed six cycling sessions comprising three sets of 8 x 6-s sprint with 24-s recovery in normobaric hypoxia at a simulated altitude of either 1,500 m, 2,100 m, or 3,200 m (n = 7 per group). Heart rate variability was assessed at rest and during recovery from Wingate test before and after RSH. Results: The subjective rating of perceived exertion and the relative exercise intensity during training sessions did not differ between the three groups, contrary to pulse oxygen saturation (p < 0.001 between each group). Mean and peak power outputs were significantly increased in all groups after training, except for the mean power in the RSA test for the 3200 m group. Change in mean power on RSA test (+8.1 ± 6.6%) was the only performance parameter significantly correlated with pulse oxygen saturation during hypoxic training (p < 0.05, r = 0.44). The increase in LnRMSSD during recovery from the Wingate test was enhanced after training in the 1,500 m (+22%) but not in the two other groups (≈– 6%). Moreover, the increase in resting heart rate with standing after training was negatively correlated with SpO2 (p < 0.01, r =–0.63) suggesting that hypoxemia level during training differentially altered autonomic nervous system activity. Conclusion: These data indicate that RSH performed as early as 1,500 m of altitude is effective in improving anaerobic performance in moderately trained subjects without strong association with pulse oxygen saturation monitoring during training.
Collapse
Affiliation(s)
| | | | - Thomas Brioche
- DMEM, University of Montpellier, INRAE, Montpellier, France
| | | | - Stéphane Perrey
- EuroMov Digital Health in Motion, University of Montpellier, IMT Mines Ales, Montpellier, France
| | - François B. Favier
- DMEM, University of Montpellier, INRAE, Montpellier, France
- *Correspondence: François B. Favier,
| |
Collapse
|
6
|
Karayigit R, Ramirez-Campillo R, Yasli BC, Gabrys T, Benesova D, Esen O. High Dose of Acute Normobaric Hypoxia Does Not Adversely Affect Sprint Interval Training, Cognitive Performance and Heart Rate Variability in Males and Females. BIOLOGY 2022; 11:biology11101463. [PMID: 36290367 PMCID: PMC9598265 DOI: 10.3390/biology11101463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/01/2022] [Accepted: 10/04/2022] [Indexed: 11/06/2022]
Abstract
Although preliminary studies suggested sex-related differences in physiological responses to hypoxia, the effects of sex on sprint interval training (SIT) performance in different degrees of hypoxia are largely lacking. The aim of this study was to examine the acute effect of different doses of normobaric hypoxia on SIT performance as well as heart rate variability (HRV) and cognitive performance (CP) in amateur-trained team sport players by comparing potential sex differences. In a randomized, double-blind, crossover design, 26 (13 females) amateur team-sport (football, basketball, handball, rugby) players completed acute SIT (6 × 15 s all-out sprints, separated with 2 min active recovery, against a load equivalent to 9% of body weight) on a cycle ergometer, in one of four conditions: (I) normoxia without a mask (FiO2: 20.9%) (CON); (II) normoxia with a mask (FiO2: 20.9%) (NOR); (III) moderate hypoxia (FiO2: 15.4%) with mask (MHYP); and (IV) high hypoxia (FiO2: 13.4%) with mask (HHYP). Peak (PPO) and mean power output (MPO), HRV, heart rate (HR), CP, capillary lactate (BLa), and ratings of perceived exertion (RPE) pre- and post-SIT were compared between CON, NOR, MHYP and HHYP. There were no significant differences found between trials for PPO (p = 0.55), MPO (p = 0.44), RPE (p = 0.39), HR (p = 0.49), HRV (p > 0.05) and CP (response accuracy: p = 0.92; reaction time: p = 0.24). The changes in MP, PP, RPE, HR, CP and HRV were similar between men and women (all p > 0.05). While BLa was similar (p = 0.10) between MHYP and HHYP trials, it was greater compared to CON (p = 0.01) and NOR (p = 0.01), without a sex-effect. In conclusion, compared to normoxia, hypoxia, and wearing a mask, have no effect on SIT acute responses (other than lactate), including PP, MP, RPE, CP, HR, and cardiac autonomic modulation either in men or women.
Collapse
Affiliation(s)
- Raci Karayigit
- Faculty of Sport Sciences, Ankara University, Gölbaşı, Ankara 06830, Turkey
- Correspondence: ; Tel.: +90-312-600-0100
| | - Rodrigo Ramirez-Campillo
- School of Physical Therapy, Faculty of Rehabilitation Sciences, Exercise and Rehabilitation Sciences Institute, Universidad Andres Bello, Santiago 7591538, Chile
| | - Burak Caglar Yasli
- Department of Physical Education and Sports, Iğdır University, Iğdır 76000, Turkey
| | - Tomasz Gabrys
- Department of Physical Education and Sport, Faculty of Education, University of West Bohemia, 30100 Pilsen, Czech Republic
| | - Daniela Benesova
- Department of Physical Education and Sport, Faculty of Education, University of West Bohemia, 30100 Pilsen, Czech Republic
| | - Ozcan Esen
- Department of Sport, Exercise and Rehabilitation, Northumbria University, Newcastle-upon-Tyne NE1 8ST, UK
| |
Collapse
|
7
|
Giovanna M, Solsona R, Sanchez AMJ, Borrani F. Effects of short-term repeated sprint training in hypoxia or with blood flow restriction on response to exercise. J Physiol Anthropol 2022; 41:32. [PMID: 36057591 PMCID: PMC9440585 DOI: 10.1186/s40101-022-00304-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 08/06/2022] [Indexed: 11/10/2022] Open
Abstract
AbstractThis study compared the effects of a brief repeated sprint training (RST) intervention performed with bilateral blood flow restriction (BFR) conditions in normoxia or conducted at high levels of hypoxia on response to exercise. Thirty-nine endurance-trained athletes completed six repeated sprints cycling sessions spread over 2 weeks consisting of four sets of five sprints (10-s maximal sprints with 20-s active recovery). Athletes were assigned to one of the four groups and subjected to a bilateral partial blood flow restriction (45% of arterial occlusion pressure) of the lower limbs during exercise (BFRG), during the recovery (BFRrG), exercised in a hypoxic room simulating hypoxia at FiO2 ≈ 13% (HG) or were not subjected to additional stress (CG). Peak aerobic power during an incremental test, exercise duration, maximal accumulated oxygen deficit and accumulated oxygen uptake (VO2) during a supramaximal constant-intensity test were improved thanks to RST (p < 0.05). No significant differences were observed between the groups (p > 0.05). No further effect was found on other variables including time-trial performance and parameters of the force-velocity relationship (p > 0.05). Thus, peak aerobic power, exercise duration, maximal accumulated oxygen deficit, and VO2 were improved during a supramaximal constant-intensity exercise after six RST sessions. However, combined hypoxic stress or partial BFR did not further increase peak aerobic power.
Collapse
|
8
|
Kong Z, Yu Q, Sun S, Lei OK, Tian Y, Shi Q, Nie J, Burtscher M. The Impact of Sprint Interval Exercise in Acute Severe Hypoxia on Executive Function. High Alt Med Biol 2022; 23:135-145. [PMID: 35638971 DOI: 10.1089/ham.2022.0004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Kong, Zhaowei, Qian Yu, Shengyan Sun, On Kei Lei, Yu Tian, Qingde Shi, Jinlei Nie, and Martin Burtscher. The impact of sprint interval exercise in acute severe hypoxia on executive function. High Alt Med Biol. 23: 135-145, 2022. Objective: The present study evaluated executive performance responses to sprint interval exercise in normoxia and relatively severe hypoxia. Methods: Twenty-five physically active men (age 22 ± 2 years; maximal oxygen uptake 43 ± 2 ml/[kg·min]) performed four trials including two normoxic (FIO2 = 0.209) and two normobaric hypoxic trials (FIO2 = 0.112), at rest (control) and exercise at the same time on different days. The exercise scheme consisted of 20 sets of 6-seconds all-out cycling sprint interspersed with 15-seconds recovery. The Stroop task was conducted before, 10, 30, and 60 minutes after each trial, whereas peripheral oxygen saturation (SpO2), heart rate, ratings of perceived exertion, and feelings of arousal were additionally recorded immediately after the interventions. Results: Despite the low SpO2 levels, both resting and sprint interval exercise in hypoxia had no adverse effects on executive function. Exercise elicited executive improvements in normoxia (-5.3% and -3.4% at 10 and 30 minutes after exercise) and in hypoxia (-7.8% and -4.3%), which is reflected by ameliorating incongruent reaction time and its 30-minutes sustained effects (p = 0.018). Conclusions: The findings demonstrate that sprint interval exercise caused sustained executive benefits, and exercise in relatively severe hypoxia did not impair executive performance.
Collapse
Affiliation(s)
- Zhaowei Kong
- Faculty of Education, University of Macau, Macao, China
| | - Qian Yu
- Faculty of Education, University of Macau, Macao, China
| | - Shengyan Sun
- Institute of Physical Education, Huzhou University, Huzhou, China
| | - On Kei Lei
- Faculty of Education, University of Macau, Macao, China
| | - Yu Tian
- Faculty of Education, University of Macau, Macao, China
| | - Qingde Shi
- School of Health Sciences and Sports, Macao Polytechnic Institute, Macao, China
| | - Jinlei Nie
- School of Health Sciences and Sports, Macao Polytechnic Institute, Macao, China
| | - Martin Burtscher
- Department of Sport Science, University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
9
|
Kong Z, Hu M, Sun S, Zou L, Shi Q, Jiao Y, Nie J. Affective and Enjoyment Responses to Sprint Interval Exercise at Different Hypoxia Levels. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:8171. [PMID: 34360464 PMCID: PMC8346060 DOI: 10.3390/ijerph18158171] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/29/2021] [Accepted: 07/30/2021] [Indexed: 11/13/2022]
Abstract
Benefits of performing sprint interval training (SIT) under hypoxic conditions on improving cardiorespiratory fitness and body composition have been well-documented, yet data is still lacking regarding affective responses to SIT under hypoxia. This study aimed to compare affective responses to SIT exercise under different oxygen conditions. Nineteen active males participated in three sessions of acute SIT exercise (20 repetitions of 6 s of all-out cycling bouts interspersed with 15 s of passive recovery) under conditions of normobaric normoxia (SL: PIO2 150 mmHg, FIO2 0.209), moderate hypoxia (MH: PIO2 117 mmHg, FIO2 0.154, simulating an altitude corresponding to 2500 m), and severe hypoxia (SH: PIO2 87 mmHg, FIO2 0.112, simulating an altitude of 5000 m) in a randomized order. Perceived exertions (RPE), affect, activation, and enjoyment responses were recorded before and immediately after each SIT session. There were no significant differences across the three conditions in RPE or the measurements of affective responses, despite a statistically lower SpO2 (%) in severe hypoxia. Participants maintained a positive affect valence and reported increased activation in all the three SIT conditions. Additionally, participants experienced a medium level of enjoyment after exercise as indicated by the exercise enjoyment scale (EES) and physical activity enjoyment scale (PACES). These results indicated that performing short duration SIT exercise under severe hypoxia could be perceived as pleasurable and enjoyable as performing it under normoxia in active male population.
Collapse
Affiliation(s)
- Zhaowei Kong
- Faculty of Education, University of Macau, Macao 999078, China; (Z.K.); (Y.J.)
| | - Mingzhu Hu
- Faculty of Education, University of Macau, Macao 999078, China; (Z.K.); (Y.J.)
| | - Shengyan Sun
- Institute of Physical Education, Huzhou University, Huzhou 313000, China;
| | - Liye Zou
- Exercise Psychophysiology Laboratory, Institute of KEEP Collaborative Innovation, School of Psychology, Shenzhen University, Shenzhen 518060, China;
| | - Qingde Shi
- School of Health Sciences and Sports, Macao Polytechnic Institute, Macao 999078, China; (Q.S.); (J.N.)
| | - Yubo Jiao
- Faculty of Education, University of Macau, Macao 999078, China; (Z.K.); (Y.J.)
| | - Jinlei Nie
- School of Health Sciences and Sports, Macao Polytechnic Institute, Macao 999078, China; (Q.S.); (J.N.)
| |
Collapse
|
10
|
Karabiyik H, Eser MC, Guler O, Yasli BC, Ertetik G, Sisman A, Koz M, Gabrys T, Pilis K, Karayigit R. The Effects of 15 or 30 s SIT in Normobaric Hypoxia on Aerobic, Anaerobic Performance and Critical Power. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18083976. [PMID: 33918866 PMCID: PMC8069352 DOI: 10.3390/ijerph18083976] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 03/31/2021] [Accepted: 04/07/2021] [Indexed: 12/16/2022]
Abstract
Sprint interval training (SIT) is a concept that has been shown to enhance aerobic-anaerobic training adaptations and induce larger effects in hypoxia. The purpose of this study was to examine the effects of 4 weeks of SIT with 15 or 30 s in hypoxia on aerobic, anaerobic performance and critical power (CP). A total of 32 male team players were divided into four groups: SIT with 15 s at FiO2: 0.209 (15 N); FiO2: 0.135 (15 H); SIT with 30 s at FiO2: 0.209 (30 N); and FiO2: 0.135 (30 H). VO2max did not significantly increase, however time-to-exhaustion (TTE) was found to be significantly longer in the post test compared to pre test (p = 0.001) with no difference between groups (p = 0.86). Mean power (MPw.kg) after repeated wingate tests was significantly higher compared to pre training in all groups (p = 0.001) with no difference between groups (p = 0.66). Similarly, CP was increased in all groups with 4 weeks of SIT (p = 0.001) with no difference between groups (p = 0.82). This study showed that 4 weeks of SIT with 15 and 30 s sprint bouts in normoxia or hypoxia did not increased VO2max in trained athletes. However, anerobic performance and CP can be increased with 4 weeks of SIT both in normoxia or hypoxia with 15 or 30 s of sprint durations.
Collapse
Affiliation(s)
- Hakan Karabiyik
- Faculty of Sport Sciences, Ankara University, Gölbaşı, Ankara 06830, Turkey; (H.K.); (M.C.E.); (O.G.); (B.C.Y.); (G.E.); (A.S.); (M.K.)
| | - Mustafa Can Eser
- Faculty of Sport Sciences, Ankara University, Gölbaşı, Ankara 06830, Turkey; (H.K.); (M.C.E.); (O.G.); (B.C.Y.); (G.E.); (A.S.); (M.K.)
| | - Ozkan Guler
- Faculty of Sport Sciences, Ankara University, Gölbaşı, Ankara 06830, Turkey; (H.K.); (M.C.E.); (O.G.); (B.C.Y.); (G.E.); (A.S.); (M.K.)
| | - Burak Caglar Yasli
- Faculty of Sport Sciences, Ankara University, Gölbaşı, Ankara 06830, Turkey; (H.K.); (M.C.E.); (O.G.); (B.C.Y.); (G.E.); (A.S.); (M.K.)
- Department of Physical Education and Sports, Iğdır University, Iğdır 76410, Turkey
| | - Goktug Ertetik
- Faculty of Sport Sciences, Ankara University, Gölbaşı, Ankara 06830, Turkey; (H.K.); (M.C.E.); (O.G.); (B.C.Y.); (G.E.); (A.S.); (M.K.)
- Faculty of Sport Sciences, Kastamonu University, Kastamonu 37000, Turkey
| | - Aysegul Sisman
- Faculty of Sport Sciences, Ankara University, Gölbaşı, Ankara 06830, Turkey; (H.K.); (M.C.E.); (O.G.); (B.C.Y.); (G.E.); (A.S.); (M.K.)
- Faculty of Sport Sciences, Muğla Sıtkı Koçman University, Muğla 48000, Turkey
| | - Mitat Koz
- Faculty of Sport Sciences, Ankara University, Gölbaşı, Ankara 06830, Turkey; (H.K.); (M.C.E.); (O.G.); (B.C.Y.); (G.E.); (A.S.); (M.K.)
| | - Tomasz Gabrys
- Sport Centrum Faculty of Pedagogy, University of West Bohemia, 301 00 Pilsen, Czech Republic;
| | - Karol Pilis
- Faculty of Health Science, Jan Dlugosz University, 42-200 Czestochowa, Poland;
| | - Raci Karayigit
- Faculty of Sport Sciences, Ankara University, Gölbaşı, Ankara 06830, Turkey; (H.K.); (M.C.E.); (O.G.); (B.C.Y.); (G.E.); (A.S.); (M.K.)
- Correspondence: ; Tel.: +90-312-600-0100
| |
Collapse
|