1
|
Makam RMM, Wan Omar WNN, Ahmad DABJ, Nor NUM, Shamjuddin A, Amin NAS. The potential of carboxylmethyl cellulose from empty fruit bunch as versatile material in food coating: A review. Carbohydr Polym 2024; 338:122194. [PMID: 38763709 DOI: 10.1016/j.carbpol.2024.122194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/19/2024] [Accepted: 04/20/2024] [Indexed: 05/21/2024]
Abstract
The rising demand for food packaging has led to a growing interest in sustainable and eco-friendly food coatings. Carboxymethyl cellulose (CMC), being a versatile cellulose derivative produced from various lignocellulosic sources, has emerged in edible food coatings. This review evaluates the research trends on CMC production from empty fruit bunch (EFB) as a potential edible food coating material by systematic review approach. It explores sustainable pre-treatment for green cellulose and different CMC synthesis methods. The review compares CMC-based coatings to other materials, focusing on formulation processes, coating quality, safety, and commercial feasibility. The bibliometric analysis is performed to correlate food coating and CMC. As a result, the study discovered the rapid growth in research on edible food coatings made from CMC for various food industry applications. The green approach such as ozone pre-treatment appear as promising method for cellulose isolation from EFB to be used as raw material for CMC. The synthesis conditions of the treatment would affect the CMC characteristics and usage. Herein, utilizing CMC from cellulose EFB in coating formulation and on coated food shows different benefits. This review provides a road map for future research with potential to make important contributions to the food industry's long-term evolution.
Collapse
Affiliation(s)
- Raissa Michele Mba Makam
- Chemical Reaction Engineering Group (CREG), Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia (UTM), 81310 UTM Johor Bahru, Johor, Malaysia
| | - Wan Nor Nadyaini Wan Omar
- Chemical Reaction Engineering Group (CREG), Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia (UTM), 81310 UTM Johor Bahru, Johor, Malaysia
| | - Danish Akmal Bin Jihat Ahmad
- Chemical Reaction Engineering Group (CREG), Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia (UTM), 81310 UTM Johor Bahru, Johor, Malaysia
| | - Nur Umisyuhada Mohd Nor
- Chemical Reaction Engineering Group (CREG), Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia (UTM), 81310 UTM Johor Bahru, Johor, Malaysia
| | - Amnani Shamjuddin
- Chemical Reaction Engineering Group (CREG), Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia (UTM), 81310 UTM Johor Bahru, Johor, Malaysia
| | - Nor Aishah Saidina Amin
- Chemical Reaction Engineering Group (CREG), Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia (UTM), 81310 UTM Johor Bahru, Johor, Malaysia.
| |
Collapse
|
2
|
Wang Y, Zhang Y, Cui Q, Feng Y, Xuan J. Composition of Lignocellulose Hydrolysate in Different Biorefinery Strategies: Nutrients and Inhibitors. Molecules 2024; 29:2275. [PMID: 38792135 PMCID: PMC11123716 DOI: 10.3390/molecules29102275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/06/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
The hydrolysis and biotransformation of lignocellulose, i.e., biorefinery, can provide human beings with biofuels, bio-based chemicals, and materials, and is an important technology to solve the fossil energy crisis and promote global sustainable development. Biorefinery involves steps such as pretreatment, saccharification, and fermentation, and researchers have developed a variety of biorefinery strategies to optimize the process and reduce process costs in recent years. Lignocellulosic hydrolysates are platforms that connect the saccharification process and downstream fermentation. The hydrolysate composition is closely related to biomass raw materials, the pretreatment process, and the choice of biorefining strategies, and provides not only nutrients but also possible inhibitors for downstream fermentation. In this review, we summarized the effects of each stage of lignocellulosic biorefinery on nutrients and possible inhibitors, analyzed the huge differences in nutrient retention and inhibitor generation among various biorefinery strategies, and emphasized that all steps in lignocellulose biorefinery need to be considered comprehensively to achieve maximum nutrient retention and optimal control of inhibitors at low cost, to provide a reference for the development of biomass energy and chemicals.
Collapse
Affiliation(s)
- Yilan Wang
- Department of Bioscience and Bioengineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Beijing 100083, China
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Shandong Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Qingdao 266101, China
| | - Yuedong Zhang
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Shandong Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Qingdao 266101, China
- Shandong Energy Institute, 189 Songling Road, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, 189 Songling Road, Qingdao 266101, China
| | - Qiu Cui
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Shandong Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Qingdao 266101, China
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Yingang Feng
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Shandong Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Qingdao 266101, China
- Shandong Energy Institute, 189 Songling Road, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, 189 Songling Road, Qingdao 266101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinsong Xuan
- Department of Bioscience and Bioengineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Beijing 100083, China
| |
Collapse
|
3
|
Nair LG, Agrawal K, Verma P. Organosolv pretreatment: an in-depth purview of mechanics of the system. BIORESOUR BIOPROCESS 2023; 10:50. [PMID: 38647988 PMCID: PMC10991910 DOI: 10.1186/s40643-023-00673-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 08/03/2023] [Indexed: 04/25/2024] Open
Abstract
The concept of biorefinery has been advancing globally and organosolv pretreatment strategy has seen an upsurge in research due to its efficiency in removing the recalcitrant lignin and dissolution of cellulose. The high-performance organosolv system uses green solvents and its reusability contributes concurrently to the biorefinery sector and sustainability. The major advantage of the current system involves the continuous removal of lignin to enhance cellulose accessibility, thereby easing the later biorefinery steps, which were immensely restricted due to the recalcitrant lignin. The current system process can be further explored and enhanced via the amalgamation of new technologies, which is still a work in progress. Thus, the current review summarizes organosolv pretreatment and the range of solvents used, along with a detailed mechanistic approach that results in efficient pretreatment of LCB. The latest developments for designing high-performance pretreatment systems, their pitfalls, and advanced assessments such as Life Cycle Assessment along with Techno-Economic Assessment have also been deliberated to allow an insight into its diverse potential applicability towards a sustainable future.
Collapse
Affiliation(s)
- Lakshana G Nair
- Bioprocess and Bioenergy Laboratory, Department of Microbiology, Central University of Rajasthan, Bandarsindri, Kishangarh, Ajmer, Rajasthan, 305817, India
| | - Komal Agrawal
- Bioprocess and Bioenergy Laboratory, Department of Microbiology, Central University of Rajasthan, Bandarsindri, Kishangarh, Ajmer, Rajasthan, 305817, India
- Department of Microbiology, School of Bio Engineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Pradeep Verma
- Bioprocess and Bioenergy Laboratory, Department of Microbiology, Central University of Rajasthan, Bandarsindri, Kishangarh, Ajmer, Rajasthan, 305817, India.
| |
Collapse
|
4
|
Xu J, Li H, Alam MA, Muhammad G, Lv Y, Zhao A, Zhang S, Xiong W. Employing Cationic Kraft Lignin as Additive to Enhance Enzymatic Hydrolysis of Corn Stalk. Polymers (Basel) 2023; 15:polym15091991. [PMID: 37177139 PMCID: PMC10180774 DOI: 10.3390/polym15091991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/10/2023] [Accepted: 04/18/2023] [Indexed: 05/15/2023] Open
Abstract
A water-soluble cationic kraft lignin (named JLQKL50), synthesized by combining quaternization and crosslinking reactions, was used as an additive to enhance the enzymatic hydrolysis of dilute-alkali-pretreated corn stalk. The chemical constitution of JLQKL50 was investigated by Fourier transform infrared spectroscopy, 1H nuclear magnetic resonance (NMR) and 13C NMR spectroscopy, and elemental analysis. The enzymatic hydrolysis efficiency of corn stalk at solid content of 10% (w/v) was significantly improved from 70.67% to 78.88% after 24 h when JLQKL50 was added at a concentration of 2 g/L. Meanwhile, the enzymatic hydrolysis efficiency after 72 h reached 91.11% with 10 FPU/g of cellulase and 97.92% with 15 FPU/g of cellulase. In addition, JLQKL50 was found capable of extending the pH and temperature ranges of enzymatic hydrolysis to maintain high efficiency (higher than 70%). The decrease in cellulase activity under vigorous stirring with the addition of JLQKL50 was 17.4%, which was much lower than that (29.7%) without JLQKL50. The addition of JLQKL50 reduced the nonproductive adsorption of cellulase on the lignin substrate and improved the longevity, dispersity, and stability of the cellulase by enabling electrostatic repulsion. Therefore, the enzymatic hydrolysis of the corn stalk was enhanced. This study paves the way for the design of sustainable lignin-based additives to boost the enzymatic hydrolysis of lignocellulosic biomass.
Collapse
Affiliation(s)
- Jingliang Xu
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
- Henan Center for Outstanding Overseas Scientists, Zhengzhou 450001, China
| | - Huihua Li
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Md Asraful Alam
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Gul Muhammad
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Yongkun Lv
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Anqi Zhao
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Shen Zhang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Wenlong Xiong
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
- Henan Center for Outstanding Overseas Scientists, Zhengzhou 450001, China
| |
Collapse
|
5
|
Chew ZL, Tan EH, Palaniandy SA, Woon KS, Phuang ZX. An integrated life-cycle greenhouse gas protocol accounting on oil palm trunk and empty fruit bunch biofuel production. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:159007. [PMID: 36167122 DOI: 10.1016/j.scitotenv.2022.159007] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 09/17/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
Improper discard of oil palm trunk and empty fruit bunch renders massive greenhouse gases. Turning these palm wastes into solid biofuels could aid in carbon reduction. The embodied environmental impacts of the solid biofuel densification process are neglected in carbon emission quantification studies applying Greenhouse Gas Protocol while the significance of classifying the system's direct and indirect carbon emissions were overlooked in those utilising life cycle assessment. Despite the prospect of both methodologies to complement their limitations for carbon emissions quantification, no study integrates both methodologies to investigate direct and indirect emissions systematically from a life cycle perspective. An integrated framework of life cycle assessment and Greenhouse Gas Protocol is developed to quantify the direct and indirect carbon emissions of oil palm trunk and empty fruit bunch densification from cradle-to-gate for three pellet plants in Indonesia and Malaysia. The emissions are categorised into three emission scopes: Scope 1, Scope 2, and Scope 3 according to the Greenhouse Gas Protocol, integrated with avoided emissions which are quantified via life cycle assessment. The pellet plants generate 534.7-732.3 kg CO2-eq/tonnepellet per hour, in which Scope 1 (i.e., direct emissions) is the major emission scope due to high emissions from wastewater production and drying fuel combustion. Washing equipment (169.2-439.0 kg CO2-eq/tonnepellet per hour) and burners (87.1-214.5 kg CO2-eq/tonnepellet per hour) are the hotspots found in the pellet plants. Producing empty fruit bunch pellets could reduce 62.0-74.1 % of emissions than landfilling the empty fruit bunch. Empty fruit bunch pellet and oil palm trunk pellet are recommended to co-fire with coal to phase down coal usage in achieving COP26 pledge. This study provides data-driven insights for quantifying carbon emissions through the integrated framework and could be a reference in future life cycle carbon footprint studies of the biomass densification process.
Collapse
Affiliation(s)
- Zhen Li Chew
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Jalan Sunsuria, Bandar Sunsuria, 43900 Sepang, Selangor, Malaysia
| | - Eng Hau Tan
- Treehouz Asia Sdn Bhd, Jalan Serendah 26/39, Seksyen 26, 40400 Shah Alam, Selangor, Malaysia
| | | | - Kok Sin Woon
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Jalan Sunsuria, Bandar Sunsuria, 43900 Sepang, Selangor, Malaysia.
| | - Zhen Xin Phuang
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Jalan Sunsuria, Bandar Sunsuria, 43900 Sepang, Selangor, Malaysia
| |
Collapse
|
6
|
Sun C, Song G, Pan Z, Tu M, Kharaziha M, Zhang X, Show PL, Sun F. Advances in organosolv modified components occurring during the organosolv pretreatment of lignocellulosic biomass. BIORESOURCE TECHNOLOGY 2023; 368:128356. [PMID: 36414144 DOI: 10.1016/j.biortech.2022.128356] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 11/14/2022] [Accepted: 11/16/2022] [Indexed: 06/16/2023]
Abstract
The valorization of organosolv pretreatment (OP) is a required approach to the industrialization of the current enzyme-mediated lignocellulosic biorefinery. Recent literature has demonstrated that the solvolysis happening in the OP can modify the soluble components into value-added active compounds, namely organosolv modified lignin (OML) and organosolv modified sugars (OMSs), in addition to protecting them against excessive degradation. Among them, the OML is coincidental with the "lignin-first" strategy that should render a highly reactive lignin enriched with β-O-4 linkages and less condensed structure by organosolv grafting, which is desirable for the transformation into phenolic compounds. The OMSs are valuable glycosidic compounds mainly synthesized by trans-glycosylation, which can find potential applications in cosmetics, foods, and healthcare. Therefore, a state-of-the-art OP holds a big promise of lowering the process cost by the valorization of these active compounds. Recent advances in organosolv modified components are reviewed, and perspectives are made for addressing future challenges.
Collapse
Affiliation(s)
- Chihe Sun
- Key Laboratory of Industrial Biotechnology of MOE, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Guojie Song
- Key Laboratory of Industrial Biotechnology of MOE, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Zhenying Pan
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Maobing Tu
- Department of Biomedical, Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Mahshid Kharaziha
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Xueming Zhang
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Pau-Loke Show
- Department of Chemical and Environmental Engineering, Faculty of Engineering, University of Nottingham Malaysia, 43500 Semenyih, Malaysia
| | - Fubao Sun
- Key Laboratory of Industrial Biotechnology of MOE, School of Biotechnology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
7
|
Parchami M, Agnihotri S, Taherzadeh MJ. Aqueous ethanol organosolv process for the valorization of Brewer's spent grain (BSG). BIORESOURCE TECHNOLOGY 2022; 362:127764. [PMID: 35985459 DOI: 10.1016/j.biortech.2022.127764] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/05/2022] [Accepted: 08/06/2022] [Indexed: 06/15/2023]
Abstract
Brewers spent grain (BSG), the main solid byproduct of brewing, is annually generated by ca 37 million tons worldwide, which due to limited application, mostly ends up in landfills. This study aims to separate BSG's fractions (lignin, cellulose, and hemicellulose) by ethanol organosolv pretreatment. Lignin-rich fractions were recovered using a two-step separation technique. The effects of temperature, retention time, and ethanol concentration on the quantity and quality of fractions were studied. The temperature considerably impacted the quality and quantity of obtained fractions, while other parameter effects greatly depended on the temperature. Substantial hemicellulose removal (90 %) along with lignin removal (56 %) and recovery (57 %) were obtained at 180 °C. The highest lignin purity (95 %) was obtained at the pretreatment conditions of 180 °C, 120 min, and 50 % ethanol concentration. This work provides an alternative route for BSG utilization, mitigating its environmental impact while enhancing the economy of a brewery.
Collapse
Affiliation(s)
- Mohsen Parchami
- Swedish Centre for Resource Recovery, University of Borås, 50190 Borås, Sweden.
| | - Swarnima Agnihotri
- Swedish Centre for Resource Recovery, University of Borås, 50190 Borås, Sweden
| | | |
Collapse
|
8
|
Guo H, Zhao Y, Chang JS, Lee DJ. Inhibitor formation and detoxification during lignocellulose biorefinery: A review. BIORESOURCE TECHNOLOGY 2022; 361:127666. [PMID: 35878776 DOI: 10.1016/j.biortech.2022.127666] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/16/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
For lignocellulose biorefinery, pretreatment is needed to maximize the cellulose accessibility, frequently generating excess inhibitory substances to decline the efficiency of the subsequent fermentation processes. This mini-review updates the current research efforts to detoxify the adverse impacts of generated inhibitors on the performance of biomass biorefinery. The lignocellulose pretreatment processes are first reviewed. The generation of inhibitors, furans, furfural, phenols, formic acid, and acetic acid, from the lignocellulose, with their action mechanisms, are listed. Then the detoxification processes are reviewed, from which the biological detoxification processes are noted as promising and worth further study. The challenges and prospects for applying biological detoxification in lignocellulose biorefinery are outlined. Integrated studies considering the entire biorefinery should be performed on a case-by-case basis.
Collapse
Affiliation(s)
- Hongliang Guo
- College of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Ying Zhao
- College of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Jo-Shu Chang
- Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung 407, Taiwan
| | - Duu-Jong Lee
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon Tong, Hong Kong; Department of Chemical Engineering and Materials Science, Yuan Ze University, Chung-li 32003, Taiwan.
| |
Collapse
|
9
|
Zafar A, Hamid A, Peng L, Wang Y, Aftab MN. Enzymatic hydrolysis of lignocellulosic biomass using a novel, thermotolerant recombinant xylosidase enzyme from Clostridium clariflavum: a potential addition for biofuel industry. RSC Adv 2022; 12:14917-14931. [PMID: 35702232 PMCID: PMC9115876 DOI: 10.1039/d2ra00304j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 04/13/2022] [Indexed: 11/28/2022] Open
Abstract
The present study describes the cloning, expression, purification and characterization of the xylosidase gene (1650 bp) from a thermophilic bacterium Clostridium clariflavum into E. coli BL21 (DE3) using the expression vector pET-21a(+) for utilization in biofuel production. The recombinant xylosidase enzyme was purified to homogeneity by heat treatment and immobilized metal ion affinity chromatography. SDS-PAGE determined that the molecular weight of purified xylosidase was 60 kDa. This purified recombinant xylosidase showed its maximum activity at a temperature of 37 °C and pH 6.0. The purified recombinant xylosidase enzyme remains stable up to 90 °C for 4 h and retained 54.6% relative activity as compared to the control. The presence of metal ions such as Ca2+ and Mg2+ showed a positive impact on xylosidase enzyme activity whereas Cu2+ and Hg2+ inhibit its activity. Organic solvents did not considerably affect the stability of the purified xylosidase enzyme while DMSO and SDS cause the inhibition of enzyme activity. Pretreatment experiments were run in triplicate for 72 h at 30 °C using 10% NaOH. Saccharification experiment was performed by using 1% substrate (pretreated plant biomass) in citrate phosphate buffer of pH 6.5 loaded with 150 U mL−1 of purified recombinant xylosidase enzyme along with ampicillin (10 μg mL−1). Subsequent incubation was carried out at 50 °C and 100 rpm in a shaking incubator for 24 h. Saccharification potential of the recombinant xylosidase enzyme was calculated against both pretreated and untreated sugarcane bagasse and wheat straw as 9.63% and 8.91% respectively. All these characteristics of the recombinant thermotolerant xylosidase enzyme recommended it as a potential candidate for biofuel industry. The present study describes the cloning, expression, purification and characterization of a xylosidase gene from Clostridium clariflavum into E. coli BL21 (DE3) using the expression vector pET-21a(+) for utilization in biofuel production.![]()
Collapse
Affiliation(s)
- Asma Zafar
- Faculty of Life Sciences, University of Central Punjab Lahore Pakistan
| | - Attia Hamid
- Institute of Industrial Biotechnology, Government College University Lahore 54000 Pakistan +92 99213341 +92 3444704190
| | - Liangcai Peng
- Biomass and Bioenergy Research Center, Huazhong Agriculture University Wuhan China
| | - Yanting Wang
- Biomass and Bioenergy Research Center, Huazhong Agriculture University Wuhan China
| | - Muhammad Nauman Aftab
- Institute of Industrial Biotechnology, Government College University Lahore 54000 Pakistan +92 99213341 +92 3444704190
| |
Collapse
|
10
|
Investigation on the Potential of Various Biomass Waste for the Synthesis of Carbon Material for Energy Storage Application. SUSTAINABILITY 2022. [DOI: 10.3390/su14052919] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
The metal–air battery (MAB) has been a promising technology to store energy, with its outstanding energy density, as well as safety features. Yet, the current material used as air cathode is costly and not easily available. This study investigated a few biomass wastes with good potential, including the oil palm empty fruit bunch and garlic peel, as well as the oil palm frond, to determine a sufficiently environmentally-safe, yet efficient, precursor to produce carbon material as an electro-catalyst for MAB. The precursors were carbonized at different temperatures (450, 600, and 700 °C) and time (30, 45, and 60 min) followed by chemical (KOH) activation to synthesize the carbon material. The synthesized materials were subsequently studied through chemical, as well as physical characterization. It was found that PF presented superior tunability that can improve electrical conductivity, due to its ability to produce amorphous carbon particles with a smaller size, consisting of hierarchical porous structure, along with a higher specific surface area of up to 777.62 m2g−1, when carbonized at 600 °C for 60 min. This paper identified that PF has the potential as a sustainable and cost-efficient alternative to carbon nanotube (CNT) as an electro-catalyst for energy storage application, such as MAB.
Collapse
|
11
|
Sidiras D, Politi D, Giakoumakis G, Salapa I. Simulation and optimization of organosolv based lignocellulosic biomass refinery: A review. BIORESOURCE TECHNOLOGY 2022; 343:126158. [PMID: 34673192 DOI: 10.1016/j.biortech.2021.126158] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 10/12/2021] [Accepted: 10/14/2021] [Indexed: 06/13/2023]
Abstract
Organosolv pretreatment can be considered as the core of the lignocellulosic biomass fractionation within the biorefinery concept. Organosolv facilitates the separation of the major fractions (cellulose, hemicelluloses, lignin), and their use as renewable feedstocks to produce bioenergy, biofuels, and added-value biomass derived chemicals. The efficient separation of these fractions affects the economic feasibility of the biorefinery complex. This review focuses on the simulation of the organosolv pretreatment and the optimization of (i) feedstock delignification, (ii) sugars production (mainly from hemicelluloses), (iii) enzymatic digestibility of the cellulose fraction and (iv) quality of lignin. Simulation is used for the technoeconomic optimization of the biorefinery complex. Simulation and optimization implement a holistic approach considering the efficient technological, economic, and environmental performance of the biorefinery operational units. Consequently, an optimized organosolv stage is the first step for a sustainable, economically viable biorefinery complex in the concept of industrial ecology and zero waste circular economy.
Collapse
Affiliation(s)
- Dimitrios Sidiras
- Laboratory of Simulation of Industrial Processes, Department of Industrial Management and Technology, University of Piraeus, 80 Karaoli & Dimitriou, GR 18534, Piraeus, Greece.
| | - Dorothea Politi
- Laboratory of Simulation of Industrial Processes, Department of Industrial Management and Technology, University of Piraeus, 80 Karaoli & Dimitriou, GR 18534, Piraeus, Greece
| | - Georgios Giakoumakis
- Laboratory of Simulation of Industrial Processes, Department of Industrial Management and Technology, University of Piraeus, 80 Karaoli & Dimitriou, GR 18534, Piraeus, Greece
| | - Ioanna Salapa
- Laboratory of Simulation of Industrial Processes, Department of Industrial Management and Technology, University of Piraeus, 80 Karaoli & Dimitriou, GR 18534, Piraeus, Greece
| |
Collapse
|