1
|
Mei R, Yang H, Guo C, Hong Z, Hu Z, Wu Y, Huang D, Wang C. Effects of high light exposure and heterologous expression of β-carotene ketolase on the metabolism of carotenoids in Chlamydomonas reinhardtii. Front Bioeng Biotechnol 2025; 13:1533661. [PMID: 40144396 PMCID: PMC11938120 DOI: 10.3389/fbioe.2025.1533661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 02/14/2025] [Indexed: 03/28/2025] Open
Abstract
Introduction Stress from high light exposure and overexpression of β-carotene ketolase can have significant effects on the synthesis of carotenoids in Chlamydomonas reinhardtii. As a promising platform for carotenoid production, C. reinhardtii needs further research and technological innovation to address challenges, such as environmental interference, exogenous gene expression, and metabolic regulation, to achieve efficient and sustainable production of carotenoids. Methods Appropriate β-carotene ketolase were selected from different organisms and subjected for codon optimization based on the preferences of the nuclear genome of C. reinhardtii. After designation, including intron insertion and chloroplast transit peptide, expression vectors were constructed and used for nuclear transformation of C. reinhardtii CC849 by bead milling method. Subsequently, DNA-PCR and RT-PCR were used to identify positive transformants grown with antibiotic stress, LC-MS/MS and metabolic analysis were performed to evaluate the products of transformants. Results In this study, carotenoid metabolism regulation in C. reinhardtii was investigated in a time-dependent manner through high light exposure and heterologous expression of β-carotene ketolase. The results suggested that the stress from high light exposure (500 μmol/m2/s) negatively regulated the accumulation of β-carotene; positively induced the accumulation of zeaxanthin, echinenone, and canthaxanthin; and continuously promoted accumulation of zeaxanthin and canthaxanthin in C. reinhardtii. Metabolomics analysis suggested that high light exposure stress promoted biosynthesis of carotenoids, improved the intermediates associated with the astaxanthin synthesis pathway, and promoted conversion of β-carotene to downstream substances. Several strategies were implemented to improve canthaxanthin production in C. reinhardtii to achieve overexpression of β-carotene ketolase genes from different sources, including strong promoters, insertion introns, and chloroplast conduction peptides. It was found that β-carotene, echinenone, and canthaxanthin were all significantly increased in the transformed C. reinhardtii overexpressing β-carotene ketolase. Among these, the highest canthaxanthin content was found in pH124-CrtO, which was seven times that observed in the wild type. Moreover, the metabolomics analysis of carotenoids showed promotion of the abscisic acid and astaxanthin pathways in the transformed C. reinhardtii. Discussion The results of this study provide a new scheme for manipulating the metabolism of carotenoids and promoting the synthesis of high-value carotenoids in C. reinhardtii.
Collapse
Affiliation(s)
- Rui Mei
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Haihong Yang
- Guangdong Technology Research Center for Marine Algal Bioengineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Chunli Guo
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Zeyu Hong
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Zhangli Hu
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
- Guangdong Technology Research Center for Marine Algal Bioengineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Yan Wu
- Instrumental Analysis Center, Shenzhen University, Shenzhen, China
| | - Danqiong Huang
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Chaogang Wang
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
- Guangdong Technology Research Center for Marine Algal Bioengineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| |
Collapse
|
2
|
Aditi, Bhardwaj R, Yadav A, Swapnil P, Meena M. Characterization of microalgal β-carotene and astaxanthin: exploring their health-promoting properties under the effect of salinity and light intensity. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2025; 18:18. [PMID: 39953577 PMCID: PMC11829443 DOI: 10.1186/s13068-025-02612-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 01/22/2025] [Indexed: 02/17/2025]
Abstract
Microalgae are promising sources of valuable carotenoids like β-carotene and astaxanthin with numerous health benefits. This review summarizes recent studies on producing these carotenoids in microalgae under different salinity and light-intensity conditions, which are key factors influencing their biosynthesis. The carotenoid biosynthesis pathways in microalgae, involving the methylerythritol phosphate pathway in chloroplasts, are described in detail. The effects of high salinity and light stress on stimulating astaxanthin accumulation in species like Haematococcus pluvialis and Chromochloris zofingiensis and their synergistic impact are discussed. Similarly, the review covers how high light and salinity induce β-carotene production in Dunaliella salina and other microalgae. The diverse health-promoting properties of astaxanthin and β-carotene, such as their antioxidant, antiinflammatory, and anticancer activities, are highlighted. Strategies to improve carotenoid yields in microalgae through environmental stresses, two-stage cultivation, genetic engineering, and metabolic engineering approaches are evaluated. Overall, this review highlights advancements in β-carotene and astaxanthin production reporting the different microalgal capability to produce carotenoids under different stress level like 31.5% increase in β-carotene accumulation in Dunaliella salina and astaxanthin productivity reaching 18.1 mg/L/day in Haematococcus lacustris. It also explores novel biotechnological strategies, including CRISPR-Cas9, for enhancing carotenoid yield.
Collapse
Affiliation(s)
- Aditi
- School of Basic Sciences, Department of Botany, Central University of Punjab, Ghudda, Bathinda, Punjab, 151401, India
| | - Rupesh Bhardwaj
- School of Basic Sciences, Department of Botany, Central University of Punjab, Ghudda, Bathinda, Punjab, 151401, India
| | - Ankush Yadav
- School of Basic Sciences, Department of Botany, Central University of Punjab, Ghudda, Bathinda, Punjab, 151401, India
| | - Prashant Swapnil
- School of Basic Sciences, Department of Botany, Central University of Punjab, Ghudda, Bathinda, Punjab, 151401, India.
| | - Mukesh Meena
- Laboratory of Phytopathology and Microbial Biotechnology, Department of Botany, Mohanlal Sukhadia University, Udaipur, Rajasthan, 313001, India.
| |
Collapse
|
3
|
Isaia A, Coulombier N, Le Dean L, Mériot V, Jauffrais T. Detrimental effects of UV-A radiation on antioxidant capacity and photosynthetic efficiency on a tropical microalga. J Biotechnol 2024; 396:104-115. [PMID: 39510352 DOI: 10.1016/j.jbiotec.2024.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/29/2024] [Accepted: 10/30/2024] [Indexed: 11/15/2024]
Abstract
Antioxidants are molecules able to neutralize reactive oxygen species with potential applications in the cosmetic or nutraceutical industries. Abiotic stressors, such as light intensity, ultraviolet (UV) radiation, or nutrient availability, can influence their production. In the perspective of optimizing and understanding the antioxidant capacity of microalgae, we investigated the effects of UV-A radiation on growth, and antioxidant and photosynthetic activities on Tetraselmis, a microalga genus known for its high antioxidant capacity. Cultures were exposed to UV-A radiation alongside to photosynthetically active radiation (PAR) in photobioreactors operated in continuous culture. UV-A exposure affects both the photosynthetic and antioxidant activities of Tetraselmis. Photosynthetic parameters suggest that UV-A has a negative effect on photosynthetic efficiency, particularly on the electron transport chain on short-term exposure (1-2 days). However, a resilience of most physiological parameters was observed over the experiment (10 days) suggesting a photochemical adaption over long-term exposure to UV-A radiation. Concerning the antioxidant capacity, UV-A exposure reduced the antioxidant capacity in Tetraselmis suggesting the use of antioxidant molecules to counteract reactive oxygen species production and prevent damage to photosystem II. Finally, the highest antioxidant capacity never observed with a Tetraselmis sp. was measured in cultures without UV addition, with an IC50 of 2.87 ± 0.24 µg mL-1, a value close to the reference compounds Trolox and α-tocopherol. This study showed the great potential of Tetraselmis as a source of antioxidants under favorable culture condition and without UV-A radiations. Indeed, we discourage the use of UV-A to enhance antioxidant capacity in this species due to its negative impact on it and on the photosynthetic efficiency.
Collapse
Affiliation(s)
- Anna Isaia
- Ifremer, IRD, Univ Nouvelle-Calédonie, Univ La Réunion, CNRS, UMR 9220 ENTROPIE, RBE/LEAD, 101 Promenade Roger Laroque, Noumea 98897, New Caledonia; Univ Brest, CNRS, IRD, Ifremer, LEMAR, Plouzané F-29280, France.
| | - Noémie Coulombier
- ADECAL Technopole, 1 bis rue Berthelot, Noumea 98846, New Caledonia.
| | - Loïc Le Dean
- Ifremer, IRD, Univ Nouvelle-Calédonie, Univ La Réunion, CNRS, UMR 9220 ENTROPIE, RBE/LEAD, 101 Promenade Roger Laroque, Noumea 98897, New Caledonia.
| | - Vincent Mériot
- ISEA, EA7484, Université de Nouvelle Calédonie, Campus de Nouville, Nouméa 98851, New Caledonia.
| | - Thierry Jauffrais
- Ifremer, IRD, Univ Nouvelle-Calédonie, Univ La Réunion, CNRS, UMR 9220 ENTROPIE, RBE/LEAD, 101 Promenade Roger Laroque, Noumea 98897, New Caledonia.
| |
Collapse
|
4
|
Bermudez G, Terenzi C, Medri F, Andrisano V, Montanari S. Extraction and Analytical Methods for the Characterization of Polyphenols in Marine Microalgae: A Review. Mar Drugs 2024; 22:538. [PMID: 39728113 PMCID: PMC11678617 DOI: 10.3390/md22120538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/27/2024] [Accepted: 11/28/2024] [Indexed: 12/28/2024] Open
Abstract
Marine microalgae are emerging as promising sources of polyphenols, renowned for their health-promoting benefits. Recovering polyphenols from microalgae requires suitable treatment and extraction techniques to ensure their release from the biomass and analytical methodologies to assess their efficiency. This review provides a comprehensive comparison of traditional and cutting-edge extraction and analytical procedures applied for polyphenolic characterization in marine microalgae over the past 26 years, with a unique perspective on optimizing their recovery and identification. It addresses (I) cell disruption techniques, including bead milling, high-speed homogenization, pulsed electric field, ultrasonication, microwave, freeze-thawing, and enzymatic/chemical hydrolysis; (II) extraction techniques, such as solid-liquid extraction, ultrasound and microwave-assisted extraction, pressurized-liquid extraction, and supercritical CO2; (III) analytical methods, including total phenolic and flavonoid content assays and advanced chromatographic techniques like GC-MS, HPLC-DAD, and HPLC-MS. Key findings showed bead milling and chemical hydrolysis as effective cell disruption techniques, pressurized-liquid extraction and microwave-assisted extraction as promising efficient extraction methods, and HPLC-MS as the finest alternative for precise phenolic characterization. Unlike previous reviews, this study uniquely integrates both extractive and analytical approaches in one work, focusing exclusively on marine microalgae, a relatively underexplored area compared to freshwater species, offering actionable insights to guide future research and industrial applications.
Collapse
Affiliation(s)
| | | | | | | | - Serena Montanari
- Department for Life Quality Studies, University of Bologna, Corso d’Augusto 237, 47921 Rimini, Italy; (G.B.); (V.A.)
| |
Collapse
|
5
|
Baldisserotto C, Gessi S, Ferraretto E, Merighi S, Ardondi L, Giacò P, Ferroni L, Nigro M, Travagli A, Pancaldi S. Cultivation modes affect the morphology, biochemical composition, and antioxidant and anti-inflammatory properties of the green microalga Neochloris oleoabundans. PROTOPLASMA 2024; 261:1185-1206. [PMID: 38864933 PMCID: PMC11511745 DOI: 10.1007/s00709-024-01958-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 05/15/2024] [Indexed: 06/13/2024]
Abstract
Microalgae are considered promising sustainable sources of natural bioactive compounds to be used in biotechnological sectors. In recent years, attention is increasingly given to the search of microalgae-derived compounds with antioxidant and anti-inflammatory properties for nutraceutical or pharmacological issues. In this context, attention is usually focused on the composition and bioactivity of algae or their extracts, while less interest is driven to their biological features, for example, those related to morphology and cultivation conditions. In addition, specific studies on the antioxidant and anti-inflammatory properties of microalgae mainly concern Chlorella or Spirulina. The present work was focused on the characterization of the Chlorophyta Neochloris oleoabundans under two combinations of cultivation modes: autotrophy and glucose-induced mixotrophy, each followed by starvation. Biomass for morphological and biochemical characterization, as well as for extract preparation, was harvested at the end of each cultivation phase. Analyses indicated a different content of the most important classes of bioactive compounds with antioxidant/anti-inflammatory properties (lipids, exo-polysaccharides, pigments, total phenolics, and proteins). In particular, the most promising condition able to prompt the production of antioxidant algal biomass with anti-inflammatory properties was the mixotrophic one. Under mixotrophy, beside an elevated algal biomass production, a strong photosynthetic metabolism with high appression of thylakoid membranes and characteristics of high photo-protection from oxidative damage was observed and linked to the overproduction of exo-polysaccharides and lipids rather than pigments. Overall, mixotrophy appears a good choice to produce natural bioactive extracts, potentially well tolerated by human metabolism and environmentally sustainable.
Collapse
Affiliation(s)
- C Baldisserotto
- Department of Environmental and Prevention Sciences, University of Ferrara, C.So Ercole I d'Este, 32, 44121, Ferrara, Italy
| | - S Gessi
- Department of Translational Medicine, University of Ferrara, Via Fossato Di Mortara, 17-19, 44121, Ferrara, Italy
| | - E Ferraretto
- Department of Environmental and Prevention Sciences, University of Ferrara, C.So Ercole I d'Este, 32, 44121, Ferrara, Italy
- Department of Translational Medicine, University of Ferrara, Via Fossato Di Mortara, 17-19, 44121, Ferrara, Italy
| | - S Merighi
- Department of Translational Medicine, University of Ferrara, Via Fossato Di Mortara, 17-19, 44121, Ferrara, Italy
| | - L Ardondi
- Department of Environmental and Prevention Sciences, University of Ferrara, C.So Ercole I d'Este, 32, 44121, Ferrara, Italy
| | - P Giacò
- Department of Environmental and Prevention Sciences, University of Ferrara, C.So Ercole I d'Este, 32, 44121, Ferrara, Italy
| | - L Ferroni
- Department of Environmental and Prevention Sciences, University of Ferrara, C.So Ercole I d'Este, 32, 44121, Ferrara, Italy
| | - M Nigro
- Department of Translational Medicine, University of Ferrara, Via Fossato Di Mortara, 17-19, 44121, Ferrara, Italy
| | - A Travagli
- Department of Translational Medicine, University of Ferrara, Via Fossato Di Mortara, 17-19, 44121, Ferrara, Italy
| | - S Pancaldi
- Department of Environmental and Prevention Sciences, University of Ferrara, C.So Ercole I d'Este, 32, 44121, Ferrara, Italy.
| |
Collapse
|
6
|
Rouphael Y, Carillo P, Ciriello M, Formisano L, El-Nakhel C, Ganugi P, Fiorini A, Miras Moreno B, Zhang L, Cardarelli M, Lucini L, Colla G. Copper boosts the biostimulant activity of a vegetal-derived protein hydrolysate in basil: morpho-physiological and metabolomics insights. FRONTIERS IN PLANT SCIENCE 2023; 14:1235686. [PMID: 37692443 PMCID: PMC10484225 DOI: 10.3389/fpls.2023.1235686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 07/31/2023] [Indexed: 09/12/2023]
Abstract
In addition to be used as a plant protection agent, copper (Cu) is also an essential micronutrient for plant growth and development. The bioavailability of Cu in agricultural systems can be limited due to its specific physical-chemical characteristics, leading to imbalances in plant production. To address this issue, an experimental trial was conducted on Genovese basil (Ocimum basilicum L.) in protected conditions to comparatively evaluate the effects of a vegetable protein hydrolysate (VPH), free Cu and Cu complexed with peptides and amino acids of vegetal origin (Cu and Cu-VPH, respectively), and a combination of VPH and Cu-VPH (VPH+Cu-VPH). The study showed that the combined application of VPH+Cu-VPH led to a significant average increase of 16.3% in fresh yield compared to the untreated Control and Cu treatment. This finding was supported by an improved photosynthetic performance in ACO2 (+29%) and Fv/Fm (+7%). Furthermore, mineral analysis using ICP OES demonstrated that Cu and Cu-VPH treatments determined, on average, a 15.1-, 16.9-, and 1.9-fold increase in Cu in plant tissues compared to control, VPH, and VPH+Cu-VPH treatments, respectively. However, the VPH+Cu-VPH treatment induced the highest contents of the other analyzed ions, except for P. In particular, Mg, Mn, Ca, and Fe, which take part in the constitution of chlorophylls, water splitting system, and photosynthetic electron transport chain, increased by 23%, 21%, 25%, and 32% compared to respective controls. Indeed, this improved the photosynthetic efficiency and the carboxylation capacity of the plants, and consequently, the physiological and productive performance of Genovese basil, compared to all other treatments and control. Consistently, the untargeted metabolomics also pointed out a distinctive modulation of phytochemical signatures as a function of the treatment. An accumulation of alkaloids, terpenoids, and phenylpropanoids was observed following Cu treatment, suggesting an oxidative imbalance upon metal exposure. In contrast, a mitigation of oxidative stress was highlighted in Cu-VPH and VPH+Cu-VPH, where the treatments reduced stress-related metabolites. Overall, these results highlight an interaction between Cu and VPH, hence paving the way towards the combined use of Cu and biostimulants to optimize agronomic interventions.
Collapse
Affiliation(s)
- Youssef Rouphael
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Petronia Carillo
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Caserta, Italy
| | - Michele Ciriello
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Luigi Formisano
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Christophe El-Nakhel
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Paola Ganugi
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Andrea Fiorini
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Begoña Miras Moreno
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Leilei Zhang
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | | | - Luigi Lucini
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Piacenza, Italy
- CRAST Research Centre, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Giuseppe Colla
- Department of Agriculture and Forest Sciences, University of Tuscia, Viterbo, Italy
| |
Collapse
|
7
|
Grande T, Vornoli A, Lubrano V, Vizzarri F, Raffaelli A, Gabriele M, Novoa J, Sandoval C, Longo V, Echeverria MC, Pozzo L. Chlamydomonas agloeformis from the Ecuadorian Highlands: Nutrients and Bioactive Compounds Profiling and In Vitro Antioxidant Activity. Foods 2023; 12:3147. [PMID: 37685081 PMCID: PMC10487033 DOI: 10.3390/foods12173147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/27/2023] [Accepted: 08/18/2023] [Indexed: 09/10/2023] Open
Abstract
Green microalgae are single-celled eukaryotic organisms that, in recent years, are becoming increasingly important in the nutraceutical, cosmetic, and pharmaceutical fields because of their high content of bioactive compounds. In this study, a particular green microalga was isolated from freshwater highland lakes of Ecuador and morphologically and molecularly identified as Chlamydomonas agloeformis (ChA), and it was studied for nutritional and nutraceutical properties. The phenolic composition and the fatty acids profile of lyophilized cells were determined. The methanolic extract was analyzed for the phenolic compounds profile and the antioxidant capacity by means of in vitro tests. Finally, Human Microvascular Endothelial Cells (HMEC-1) were exploited to explore the capacity of ChA to reduce the endothelial damage induced by oxidized LDL-mediated oxidative stress. The extract showed a good antioxidant ability thanks to the high content in polyphenolic compounds. The observed decrease in HMEC-1 cells endothelial damage also was probably due to the antioxidant compounds present in the extract. Based on the outcomes of our in vitro assays, ChA demonstrated to be a promising source of bioactive compounds possessing exceptional antioxidant capacities which make it a prospective functional food.
Collapse
Affiliation(s)
- Teresa Grande
- Institute of Agricultural Biology and Biotechnology-National Research Council (IBBA-CNR), Via Moruzzi 1, 56124 Pisa, Italy; (T.G.); (A.V.); (A.R.); (M.G.); (V.L.)
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Viale Morgagni 50, 50134 Florence, Italy
| | - Andrea Vornoli
- Institute of Agricultural Biology and Biotechnology-National Research Council (IBBA-CNR), Via Moruzzi 1, 56124 Pisa, Italy; (T.G.); (A.V.); (A.R.); (M.G.); (V.L.)
| | - Valter Lubrano
- Fondazione G. Monasterio, CNR/Regione Toscana, 56124 Pisa, Italy;
| | - Francesco Vizzarri
- National Agricultural and Food Centre Nitra, Hlohovecká 2, 95141 Lužianky, Slovakia;
| | - Andrea Raffaelli
- Institute of Agricultural Biology and Biotechnology-National Research Council (IBBA-CNR), Via Moruzzi 1, 56124 Pisa, Italy; (T.G.); (A.V.); (A.R.); (M.G.); (V.L.)
- Crop Science Research Center, Scuola Superiore Sant’Anna, Piazza Martiri della Libertà 33, 56127 Pisa, Italy
| | - Morena Gabriele
- Institute of Agricultural Biology and Biotechnology-National Research Council (IBBA-CNR), Via Moruzzi 1, 56124 Pisa, Italy; (T.G.); (A.V.); (A.R.); (M.G.); (V.L.)
| | - Jeniffer Novoa
- eCIER Research Group, Department of Biotechnology, Universidad Técnica del Norte, Av. 17 de Julio 5–21 y Gral. José María Córdova, Ibarra 100150, Ecuador; (J.N.); (C.S.); (M.C.E.)
| | - Carla Sandoval
- eCIER Research Group, Department of Biotechnology, Universidad Técnica del Norte, Av. 17 de Julio 5–21 y Gral. José María Córdova, Ibarra 100150, Ecuador; (J.N.); (C.S.); (M.C.E.)
| | - Vincenzo Longo
- Institute of Agricultural Biology and Biotechnology-National Research Council (IBBA-CNR), Via Moruzzi 1, 56124 Pisa, Italy; (T.G.); (A.V.); (A.R.); (M.G.); (V.L.)
| | - Maria Cristina Echeverria
- eCIER Research Group, Department of Biotechnology, Universidad Técnica del Norte, Av. 17 de Julio 5–21 y Gral. José María Córdova, Ibarra 100150, Ecuador; (J.N.); (C.S.); (M.C.E.)
| | - Luisa Pozzo
- Institute of Agricultural Biology and Biotechnology-National Research Council (IBBA-CNR), Via Moruzzi 1, 56124 Pisa, Italy; (T.G.); (A.V.); (A.R.); (M.G.); (V.L.)
| |
Collapse
|
8
|
Chini Zittelli G, Lauceri R, Faraloni C, Silva Benavides AM, Torzillo G. Valuable pigments from microalgae: phycobiliproteins, primary carotenoids, and fucoxanthin. Photochem Photobiol Sci 2023; 22:1733-1789. [PMID: 37036620 DOI: 10.1007/s43630-023-00407-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 03/03/2023] [Indexed: 04/11/2023]
Abstract
Phycobiliproteins, carotenoids and fucoxanthin are photosynthetic pigments extracted from microalgae and cyanobacteria with great potential biotechnological applications, as healthy food colorants and cosmetics. Phycocyanin possesses a brilliant blue color, with fluorescent properties making it useful as a reagent for immunological essays. The most important source of phycocyanin is the cyanobacterium Arthrospira platensis, however, recently, the Rhodophyta Galdieria sulphuraria has also been identified as such. The main obstacle to the commercialization of phycocyanin is represented by its chemical instability, strongly reducing its shelf-life. Moreover, the high level of purity needed for pharmaceutical applications requires several steps which increase both the production time and cost. Microalgae (Chlorella, Dunaliella, Nannochloropsis, Scenedesmus) produce several light harvesting carotenoids, and are able to manage with oxidative stress, due to their free radical scavenging properties, which makes them suitable for use as source of natural antioxidants. Many studies focused on the selection of the most promising strains producing valuable carotenoids and on their extraction and purification. Among carotenoids produced by marine microalgae, fucoxanthin is the most abundant, representing more than 10% of total carotenoids. Despite the abundance and diversity of fucoxanthin producing microalgae only a few species have been studied for commercial production, the most relevant being Phaeodactylum tricornutum. Due to its antioxidant activity, fucoxanthin can bring various potential benefits to the prevention and treatment of lifestyle-related diseases. In this review, we update the main results achieved in the production, extraction, purification, and commercialization of these important pigments, motivating the cultivation of microalgae as a source of natural pigments.
Collapse
Affiliation(s)
- Graziella Chini Zittelli
- Istituto per la Bioeconomia, CNR, Via Madonna del Piano 10, 50019, Sesto Fiorentino, Florence, Italy
| | - Rosaria Lauceri
- Istituto di Ricerca sulle Acque, CNR, Sede Di Verbania, Largo Tonolli 50, 28922, Verbania, Italy
| | - Cecilia Faraloni
- Istituto per la Bioeconomia, CNR, Via Madonna del Piano 10, 50019, Sesto Fiorentino, Florence, Italy
| | - Ana Margarita Silva Benavides
- Centro de Investigación en Ciencias del Mar Y Limnologίa, Universidad de Costa Rica, San Pedro, San José, 2060, Costa Rica
- Escuela de Biologia, Universidad de Costa Rica, San Pedro, San José, 2060, Costa Rica
| | - Giuseppe Torzillo
- Istituto per la Bioeconomia, CNR, Via Madonna del Piano 10, 50019, Sesto Fiorentino, Florence, Italy.
- Centro de Investigación en Ciencias del Mar Y Limnologίa, Universidad de Costa Rica, San Pedro, San José, 2060, Costa Rica.
| |
Collapse
|
9
|
Vignaud J, Loiseau C, Hérault J, Mayer C, Côme M, Martin I, Ulmann L. Microalgae Produce Antioxidant Molecules with Potential Preventive Effects on Mitochondrial Functions and Skeletal Muscular Oxidative Stress. Antioxidants (Basel) 2023; 12:antiox12051050. [PMID: 37237915 DOI: 10.3390/antiox12051050] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/25/2023] [Accepted: 05/03/2023] [Indexed: 05/28/2023] Open
Abstract
In recent years, microalgae have become a source of molecules for a healthy life. Their composition of carbohydrates, peptides, lipids, vitamins and carotenoids makes them a promising new source of antioxidant molecules. Skeletal muscle is a tissue that requires constant remodeling via protein turnover, and its regular functioning consumes energy in the form of adenosine triphosphate (ATP), which is produced by mitochondria. Under conditions of traumatic exercise or muscular diseases, a high production of reactive oxygen species (ROS) at the origin of oxidative stress (OS) will lead to inflammation and muscle atrophy, with life-long consequences. In this review, we describe the potential antioxidant effects of microalgae and their biomolecules on mitochondrial functions and skeletal muscular oxidative stress during exercises or in musculoskeletal diseases, as in sarcopenia, chronic obstructive pulmonary disease (COPD) and Duchenne muscular dystrophy (DMD), through the increase in and regulation of antioxidant pathways and protein synthesis.
Collapse
Affiliation(s)
- Jordi Vignaud
- BiOSSE (Biology of Organisms, Stress, Health, Environment), Institut Universitaire de Technologie, Département Génie Biologique, Le Mans Université, F-53020 Laval, France
| | - Céline Loiseau
- BiOSSE (Biology of Organisms, Stress, Health, Environment), Institut Universitaire de Technologie, Département Génie Biologique, Le Mans Université, F-53020 Laval, France
| | - Josiane Hérault
- BiOSSE (Biology of Organisms, Stress, Health, Environment), Institut Universitaire de Technologie, Département Génie Biologique, Le Mans Université, F-53020 Laval, France
| | - Claire Mayer
- BiOSSE (Biology of Organisms, Stress, Health, Environment), Institut Universitaire de Technologie, Département Génie Biologique, Le Mans Université, F-53020 Laval, France
| | - Martine Côme
- BiOSSE (Biology of Organisms, Stress, Health, Environment), Institut Universitaire de Technologie, Département Génie Biologique, Le Mans Université, F-53020 Laval, France
| | - Isabelle Martin
- BiOSSE (Biology of Organisms, Stress, Health, Environment), Institut Universitaire de Technologie, Département Génie Biologique, Le Mans Université, F-53020 Laval, France
| | - Lionel Ulmann
- BiOSSE (Biology of Organisms, Stress, Health, Environment), Institut Universitaire de Technologie, Département Génie Biologique, Le Mans Université, F-53020 Laval, France
| |
Collapse
|