1
|
Morishima Y, Chida K, Chiba H, Kumagai K. Radiation dose to the eye of physicians during radio frequency catheter ablation: a small-scale study. Ir J Med Sci 2024; 193:2745-2751. [PMID: 39367959 PMCID: PMC11666769 DOI: 10.1007/s11845-024-03802-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 09/04/2024] [Indexed: 10/07/2024]
Abstract
BACKGROUND Radio frequency catheter ablation (RFCA), a treatment for arrhythmia, requires a long fluoroscopy time that increases the radiation exposure dose to the physician, particularly to the lens of the eye. It is recommended that a lens-specific dosimeter such as DOSIRIS® is used to measure the dose to the lens. AIMS In this study, we investigated whether conventional glass badges can be used as an alternative to lens dosimeters. METHODS The doses to the lenses of two physicians (physician A, main operator; physician B, assistant; physician B was further away from the patient than physician A) were measured for 126 RFCA procedures performed over a 6-month period (fluoroscopy rate of 3.0 p/s with use of a ceiling-hanging shield). RESULTS The cumulative value measured by a lens dosimeter attached to the inside of Pb glasses (0.07-mm dose equivalent) next to the left eye was 4.7 mSv for physician A, and 0.8 mSv for physician B. The reading on the glass badge worn on the left side of the neck was 4.7 mSv for physician A and 1.3 mSv for physician B. Lens dosimeter and glass badge values showed a good correlation for the left eye and left neck (r = 0.86, p < 0.01). CONCLUSIONS We show that glass badges may be a viable alternative to lens-equivalent dosimetry when using low-pulse fluoroscopy and a ceiling-hanging shield.
Collapse
Affiliation(s)
- Yoshiaki Morishima
- Department of Radiological Technology, Tohoku Medical and Pharmaceutical University Hospital, 1-12-1 Fukumuro, Miyagino-Ku, Sendai, 983-8512, Japan.
- Department of Radiological Technology, Tohoku University School of Health Sciences, Sendai, 980-8575, Japan.
| | - Koichi Chida
- Department of Radiological Technology, Tohoku University School of Health Sciences, Sendai, 980-8575, Japan
| | - Hiroo Chiba
- Department of Radiological Technology, Tohoku Medical and Pharmaceutical University Hospital, 1-12-1 Fukumuro, Miyagino-Ku, Sendai, 983-8512, Japan
| | - Koji Kumagai
- Cardiac Center, Tohoku Medical and Pharmaceutical University Hospital, Sendai, 983-8512, Japan
| |
Collapse
|
2
|
Rosiak G, Franke J, Milczarek K, Konecki D, Frączek-Kozlovska A, Potulska-Chromik A, Kostera-Pruszczyk A, Łusakowska A. Real-time measurement of radiation exposure in interventional radiologists during CT-guided intrathecal injections of nusinersen. Neuroradiology 2024:10.1007/s00234-024-03496-8. [PMID: 39514033 DOI: 10.1007/s00234-024-03496-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
PURPOSE Some patients with spinal muscular atrophy and scoliosis require CT guidance during injections of nusinersen. The radiation applied to the operator in such procedures becomes an important issue in terms of staff health and safety. The aim of the study was to assess the operator's radiation exposure during CT-guided nusinersen injections in patients with spinal muscular atrophy and scoliosis. METHODS Consecutive 40 CT-guided nusinersen injections were analyzed in terms of operator's radiation exposure measured in real time. RESULTS The median radiation dose measured under the physician's lead apron and patient dose in terms of DLP was 0.20 µSv and 31.90 mGy*cm respectively. The radiation doses were significantly higher (p = 0.047) in patients with spinal instrumentation. CONCLUSION The results show that CT-guided nusinersen injection is a relatively safe procedure in terms of operator's radiation exposure. This can allow for interventional radiologists to perform more procedures without exceeding their annual dose limit.
Collapse
Affiliation(s)
- Grzegorz Rosiak
- II Department of Radiology, Medical University of Warsaw, Warsaw, Poland
| | - Jakub Franke
- II Department of Radiology, Medical University of Warsaw, Warsaw, Poland.
| | | | - Dariusz Konecki
- II Department of Radiology, Medical University of Warsaw, Warsaw, Poland
| | - Anna Frączek-Kozlovska
- Department of Neurology, Medical University of Warsaw, ERN EURO NMD, Banacha 1a, Warsaw, 02-097, Poland
| | - Anna Potulska-Chromik
- Department of Neurology, Medical University of Warsaw, ERN EURO NMD, Banacha 1a, Warsaw, 02-097, Poland
| | - Anna Kostera-Pruszczyk
- Department of Neurology, Medical University of Warsaw, ERN EURO NMD, Banacha 1a, Warsaw, 02-097, Poland
| | - Anna Łusakowska
- Department of Neurology, Medical University of Warsaw, ERN EURO NMD, Banacha 1a, Warsaw, 02-097, Poland
| |
Collapse
|
3
|
Sagehashi K, Haga Y, Takahira S, Tanabe M, Nakamura M, Sota M, Kaga Y, Abe M, Tada N, Chida K. Evaluation of radiation dose to the lens in interventional cardiology physicians before and after dose limit regulation changes. JOURNAL OF RADIOLOGICAL PROTECTION : OFFICIAL JOURNAL OF THE SOCIETY FOR RADIOLOGICAL PROTECTION 2024; 44:031512. [PMID: 39142296 DOI: 10.1088/1361-6498/ad6f19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 08/14/2024] [Indexed: 08/16/2024]
Abstract
In response to the International Commission on Radiological Protection, which lowered the lens equivalent dose limit, Japan lowered the lens dose limit from 150 mSv y-1to 100 mSv/5 years and 50 mSv y-1, with this new rule taking effect on 1 April 2021. DOSIRIS®is a dosimeter that can accurately measure lens dose. Herein, we investigated lens dose in interventional cardiology physicians 1 year before and after the reduction of the lens dose limit using a neck dosimeter and lens dosimeter measurements. With an increase in the number of cases, both personal dose equivalent at 0.07 mm depth [Hp(0.07), neck dosimeter] and personal dose equivalent at 3 mm depth [Hp(3), lens dosimeter] increased for most of the physicians. The Hp(3) of the lens considering the shielding effect of the Pb glasses using lens dosimeter exceeded 20 mSv y-1for two of the 14 physicians. Protection from radiation dose will become even more important in the future, as these two physicians may experience radiation dose exceeding 100 mSv/5 years. The average dose per procedure increased, but not significantly. There was a strong correlation between the neck dosimeter and lens dosimeter scores, although there was no significant change before and after the lens dose limit was lowered. This correlation was particularly strong for physicians who primarily treated patients. As such, it is possible to infer accurate lens doses from neck doses in physicians who primarily perform diagnostics. However, it is desirable to use a dosimeter that can directly measure Hp(3) because of the high lens dose.
Collapse
Affiliation(s)
- Kodai Sagehashi
- Department of Radiological Examination and Technology, Tohoku University Graduate School of Medicine, 2-1, Seiryo-Machi, Aoba-Ku, Sendai, Miyagi 980-8575, Japan
| | - Yoshihiro Haga
- Department of Radiological Examination and Technology, Tohoku University Graduate School of Medicine, 2-1, Seiryo-Machi, Aoba-Ku, Sendai, Miyagi 980-8575, Japan
- Department of Radiology, Sendai Kosei Hospital, 4-15, Hirose-Machi, Aoba-Ku, Sendai, Miyagi 980-0873, Japan
| | - Saki Takahira
- Department of Radiological Examination and Technology, Tohoku University Graduate School of Medicine, 2-1, Seiryo-Machi, Aoba-Ku, Sendai, Miyagi 980-8575, Japan
| | - Mako Tanabe
- Department of Radiological Examination and Technology, Tohoku University Graduate School of Medicine, 2-1, Seiryo-Machi, Aoba-Ku, Sendai, Miyagi 980-8575, Japan
- Disaster Medical Radiology, Division of Disaster Medical Science, International Research Institute of Disaster Science, Tohoku University, 468-1, Aoba, Aramaki, Aoba-Ku, Sendai, Miyagi 980-8572, Japan
| | - Mio Nakamura
- Department of Radiological Examination and Technology, Tohoku University Graduate School of Medicine, 2-1, Seiryo-Machi, Aoba-Ku, Sendai, Miyagi 980-8575, Japan
- Disaster Medical Radiology, Division of Disaster Medical Science, International Research Institute of Disaster Science, Tohoku University, 468-1, Aoba, Aramaki, Aoba-Ku, Sendai, Miyagi 980-8572, Japan
| | - Masahiro Sota
- Department of Radiological Examination and Technology, Tohoku University Graduate School of Medicine, 2-1, Seiryo-Machi, Aoba-Ku, Sendai, Miyagi 980-8575, Japan
- Department of Radiology, Sendai Kosei Hospital, 4-15, Hirose-Machi, Aoba-Ku, Sendai, Miyagi 980-0873, Japan
| | - Yuji Kaga
- Department of Radiology, Sendai Kosei Hospital, 4-15, Hirose-Machi, Aoba-Ku, Sendai, Miyagi 980-0873, Japan
| | - Mitsuya Abe
- Department of Radiology, Sendai Kosei Hospital, 4-15, Hirose-Machi, Aoba-Ku, Sendai, Miyagi 980-0873, Japan
| | - Norio Tada
- Department of Cardiovascular Medicine, Sendai Kousei Hospital, 4-15 Hirose-machi, Aoba-ku, Sendai 980-0873, Japan
| | - Koichi Chida
- Department of Radiological Examination and Technology, Tohoku University Graduate School of Medicine, 2-1, Seiryo-Machi, Aoba-Ku, Sendai, Miyagi 980-8575, Japan
- Disaster Medical Radiology, Division of Disaster Medical Science, International Research Institute of Disaster Science, Tohoku University, 468-1, Aoba, Aramaki, Aoba-Ku, Sendai, Miyagi 980-8572, Japan
| |
Collapse
|
4
|
Khan MUA, Yi BJ. Real time eye dose reduction in fluoroscopy with auditory and visual feedback dosimeter through swine model experiments. Sci Rep 2024; 14:19319. [PMID: 39164306 PMCID: PMC11335762 DOI: 10.1038/s41598-024-66698-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 07/03/2024] [Indexed: 08/22/2024] Open
Abstract
This paper proposes measurement and reduction of eye dose in real time for the physician and the assistant performing fluoroscopy guided arterial puncture. Eye dose rates were measured for 30 fluoroscopy-guided punctures of bilateral femoral arteries in pigs. Fifteen fluoroscopy-guided punctures were performed using real time radiation dosimeter without auditory and visual feedback and other fifteen punctures were done using real time radiation dosimeter with visual and auditory feedback worn on forehead by an interventional cardiologist having experience of more than 10 years. The mean radiation dose rate for eyes of physician during arterial puncturing with real time radiation dosimeter with auditory feedback was 0.07 mSv/h (n = 15) whereas it was 0.18 mSv/h (n = 15) without visual and auditory feedback. The percentage of reduction with the device was 61% for eyes. In case of assistant the reduction was 33% for eyes (n = 15). The real time visual and auditory feedback dosimeter has reduced the eye dose rate of the physician and assistant and also helped him staying away from the X-ray source. Real time radiation dosimeters can be an effective tool to measure and reduce the dose to the eyes. The radiation eye dose rate for physician and assistant was significantly reduced by using real time radiation dosimeter with visual and auditory feedback. The real time radiation dosimeter not only helps in measuring but also help in minimizing the radiation dose rate for the physician and assistant in real time.
Collapse
Affiliation(s)
- Muhammad Umair Ahmad Khan
- Department of Biomedical Engineering, University of Engineering and Technology (UET) Lahore (Narowal) Campus, Narowal, 51600, Pakistan
| | - Byung Ju Yi
- Department of Electronics Engineering, Hanyang University, Ansan, 15588, Korea.
| |
Collapse
|
5
|
Hammett JT, Patel MN, Odisio BC, Shah K. Imaging Guidelines during Percutaneous Liver Ablation to Optimize Outcomes and Patient Safety. Semin Intervent Radiol 2024; 41:258-262. [PMID: 39165652 PMCID: PMC11333113 DOI: 10.1055/s-0044-1788058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
Image-guided ablation procedures have become a mainstay in cancer therapy. Typically performed from a percutaneous approach, thermal-based ablation procedures rely heavily on imaging guidance both prior to and during the procedure itself. Advances in imaging as they relate to ablation procedures are as important to successful treatments as advancements in the ablation technology itself. Imaging as it relates to procedural planning, targeting and monitoring, and assessment of procedural endpoint is the focus of this article.
Collapse
Affiliation(s)
- J. Tyler Hammett
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Milan N. Patel
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Bruno C. Odisio
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ketan Shah
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
6
|
Ishii H, Chida K, Inaba Y, Abe K, Onodera S, Zuguchi M. Fundamental study on diagnostic reference level quantities for endoscopic retrograde cholangiopancreatography using a C-arm fluoroscopy system. JOURNAL OF RADIOLOGICAL PROTECTION : OFFICIAL JOURNAL OF THE SOCIETY FOR RADIOLOGICAL PROTECTION 2023; 43:041510. [PMID: 37939385 DOI: 10.1088/1361-6498/ad0a9d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 11/08/2023] [Indexed: 11/10/2023]
Abstract
The diagnostic reference level (DRL) is an effective tool for optimising protection in medical exposures to patients. However regarding air kerma at the patient entrance reference point (Ka,r), one of the DRL quantities for endoscopic retrograde cholangiopancreatography (ERCP), manufacturers use a variety of the International Electrotechnical Commission and their own specific definitions of the reference point. The research question for this study was whetherKa,ris appropriate as a DRL quantity for ERCP. The purpose of this study was to evaluate the difference betweenKa,rand air kerma incident on the patient's skin surface (Ka,e) at the different height of the patient couch for a C-arm system. Fluoroscopy and radiography were performed using a C-arm system (Ultimax-i, Canon Medical Systems, Japan) and a over-couch tube system (CUREVISTA Open, Fujifilm Healthcare, Japan).Ka,ewas measured by an ion chamber placed on the entrance surface of the phantom. Kerma-area product (PKA) andKa,rwere measured by a built-inPKAmeter and displayed on the fluoroscopy system.Ka,edecreased whileKa,rincreased as the patient couch moved away from the focal spot. The uncertainty of theKa,e/Ka,rratio due to the different height of the patient couch was estimated to be 75%-94%.Ka,rmay not accurately representKa,e.PKAwas a robust DRL quantity that was independent of the patient couch height. We cautioned against optimising patient doses in ERCP with DRLs set in terms ofKa,rwithout considering the patient couch height of the C-arm system. Therefore, we recommend thatKa,ris an inappropriate DRL quantity in ERCP using the C-arm system.
Collapse
Affiliation(s)
- Hiroki Ishii
- Department of Radiological Technology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
- Department of Radiology, Tohoku University Hospital, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan
| | - Koichi Chida
- Department of Radiological Technology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
- Division of Disaster Medical Science, International Research Institute of Disaster Science, Tohoku University, 468-1 Aoba, Aramaki, Aoba-ku, Sendai 980-8572, Japan
| | - Yohei Inaba
- Department of Radiological Technology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
- Division of Disaster Medical Science, International Research Institute of Disaster Science, Tohoku University, 468-1 Aoba, Aramaki, Aoba-ku, Sendai 980-8572, Japan
| | - Keisuke Abe
- Department of Radiology, Tohoku University Hospital, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan
| | - Shu Onodera
- Department of Radiology, Tohoku University Hospital, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan
| | - Masayuki Zuguchi
- Department of Radiological Technology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| |
Collapse
|
7
|
Yamada A, Haga Y, Sota M, Abe M, Kaga Y, Inaba Y, Suzuki M, Tada N, Zuguchi M, Chida K. Eye Lens Radiation Dose to Nurses during Cardiac Interventional Radiology: An Initial Study. Diagnostics (Basel) 2023; 13:3003. [PMID: 37761370 PMCID: PMC10528633 DOI: 10.3390/diagnostics13183003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/12/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
Although interventional radiology (IVR) is preferred over surgical procedures because it is less invasive, it results in increased radiation exposure due to long fluoroscopy times and the need for frequent imaging. Nurses engaged in cardiac IVR receive the highest lens radiation doses among medical workers, after physicians. Hence, it is important to measure the lens exposure of IVR nurses accurately. Very few studies have evaluated IVR nurse lens doses using direct dosimeters. This study was conducted using direct eye dosimeters to determine the occupational eye dose of nurses engaged in cardiac IVR, and to identify simple and accurate methods to evaluate the lens dose received by nurses. Over 6 months, in a catheterization laboratory, we measured the occupational dose to the eyes (3 mm dose equivalent) and neck (0.07 mm dose equivalent) of nurses on the right and left sides. We investigated the relationship between lens and neck doses, and found a significant correlation. Hence, it may be possible to estimate the lens dose from the neck badge dose. We also evaluated the appropriate position (left or right) of eye dosimeters for IVR nurses. Although there was little difference between the mean doses to the right and left eyes, that to the right eye was slightly higher. In addition, we investigated whether it is possible to estimate doses received by IVR nurses from patient dose parameters. There were significant correlations between the measured doses to the neck and lens, and the patient dose parameters (fluoroscopy time and air kerma), implying that these parameters could be used to estimate the lens dose. However, it may be difficult to determine the lens dose of IVR nurses accurately from neck badges or patient dose parameters because of variation in the behaviors of nurses and the procedure type. Therefore, neck doses and patient dose parameters do not correlate well with the radiation eye doses of individual IVR nurses measured by personal eye dosimeters. For IVR nurses with higher eye doses, more accurate measurement of the radiation doses is required. We recommend that a lens dosimeter be worn near the eyes to measure the lens dose to IVR nurses accurately, especially those exposed to relatively high doses.
Collapse
Affiliation(s)
- Ayumi Yamada
- Course of Radiological Technology, Health Sciences, Tohoku University Graduate School of Medicine, 2-1 Seiryo, Aoba-ku, Sendai 980-8575, Japan; (A.Y.); (Y.H.); (M.S.); (Y.I.); (M.S.); (M.Z.)
| | - Yoshihiro Haga
- Course of Radiological Technology, Health Sciences, Tohoku University Graduate School of Medicine, 2-1 Seiryo, Aoba-ku, Sendai 980-8575, Japan; (A.Y.); (Y.H.); (M.S.); (Y.I.); (M.S.); (M.Z.)
- Department of Radiology, Sendai Kousei Hospital, 4-5 Hirose-machi, Aoba-ku, Sendai 980-0873, Japan; (M.A.); (Y.K.)
| | - Masahiro Sota
- Course of Radiological Technology, Health Sciences, Tohoku University Graduate School of Medicine, 2-1 Seiryo, Aoba-ku, Sendai 980-8575, Japan; (A.Y.); (Y.H.); (M.S.); (Y.I.); (M.S.); (M.Z.)
- Department of Radiology, Sendai Kousei Hospital, 4-5 Hirose-machi, Aoba-ku, Sendai 980-0873, Japan; (M.A.); (Y.K.)
| | - Mitsuya Abe
- Department of Radiology, Sendai Kousei Hospital, 4-5 Hirose-machi, Aoba-ku, Sendai 980-0873, Japan; (M.A.); (Y.K.)
| | - Yuji Kaga
- Department of Radiology, Sendai Kousei Hospital, 4-5 Hirose-machi, Aoba-ku, Sendai 980-0873, Japan; (M.A.); (Y.K.)
| | - Yohei Inaba
- Course of Radiological Technology, Health Sciences, Tohoku University Graduate School of Medicine, 2-1 Seiryo, Aoba-ku, Sendai 980-8575, Japan; (A.Y.); (Y.H.); (M.S.); (Y.I.); (M.S.); (M.Z.)
- Department of Radiation Disaster Medicine, International Research Institute of Disaster Science, Tohoku University, 468-1 Aramaki Aza-Aoba, Aoba-ku, Sendai 980-0845, Japan
| | - Masatoshi Suzuki
- Course of Radiological Technology, Health Sciences, Tohoku University Graduate School of Medicine, 2-1 Seiryo, Aoba-ku, Sendai 980-8575, Japan; (A.Y.); (Y.H.); (M.S.); (Y.I.); (M.S.); (M.Z.)
- Department of Radiation Disaster Medicine, International Research Institute of Disaster Science, Tohoku University, 468-1 Aramaki Aza-Aoba, Aoba-ku, Sendai 980-0845, Japan
| | - Norio Tada
- Department of Cardiovascular Medicine, Sendai Kousei Hospital, 4-5 Hirose-machi, Aoba-ku, Sendai 980-0873, Japan;
| | - Masayuki Zuguchi
- Course of Radiological Technology, Health Sciences, Tohoku University Graduate School of Medicine, 2-1 Seiryo, Aoba-ku, Sendai 980-8575, Japan; (A.Y.); (Y.H.); (M.S.); (Y.I.); (M.S.); (M.Z.)
| | - Koichi Chida
- Course of Radiological Technology, Health Sciences, Tohoku University Graduate School of Medicine, 2-1 Seiryo, Aoba-ku, Sendai 980-8575, Japan; (A.Y.); (Y.H.); (M.S.); (Y.I.); (M.S.); (M.Z.)
- Department of Radiation Disaster Medicine, International Research Institute of Disaster Science, Tohoku University, 468-1 Aramaki Aza-Aoba, Aoba-ku, Sendai 980-0845, Japan
| |
Collapse
|
8
|
Kawauchi S, Chida K, Hamada Y, Tsuruta W. Image Quality and Radiation Dose of Conventional and Wide-Field High-Resolution Cone-Beam Computed Tomography for Cerebral Angiography: A Phantom Study. Tomography 2023; 9:1683-1693. [PMID: 37736987 PMCID: PMC10514806 DOI: 10.3390/tomography9050134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/24/2023] [Accepted: 08/29/2023] [Indexed: 09/23/2023] Open
Abstract
There has been an increase in the use of interventional neuroradiology procedures because of their non-invasiveness compared to surgeries and the improved image quality of fluoroscopy, digital subtraction angiography, and rotational angiography. Although cone-beam computed tomography (CBCT) images are inferior to multi-detector CT images in terms of low-contrast detectability and lower radiation doses, CBCT scans are frequently performed because of their accessibility. This study aimed to evaluate the image quality and radiation dose of two different high-resolution CBCTs (HR CBCT): conventional (C-HR CBCT) and wide-field HR CBCT (W-HR CBCT). The modulation transfer function (MTF), noise power spectrum (NPS), and contrast-to-noise ratio (CNR) were used to evaluate the image quality. On comparing the MTF of C-HR CBCT with a 256 × 256 matrix and that of W-HR CBCT with a 384 × 384 matrix, the MTF of W-HR CBCT with the 384 × 384 matrix was larger. A comparison of the NPS and CNR of C-HR CBCT with a 256 × 256 matrix and W-HR CBCT with a 384 × 384 matrix showed that both values were comparable. The reference air kerma values were equal for C-HR CBCT and W-HR CBCT; however, the value of the kerma area product was 1.44 times higher for W-HR CBCT compared to C-HR CBCT. The W-HR CBCT allowed for improved spatial resolution while maintaining the image noise and low-contrast detectability by changing the number of image matrices from 256 × 256 to 384 × 384. Our study revealed the image characteristics and radiation dose of W-HR CBCT. Given its advantages of low-contrast detectability and wide-area imaging with high spatial resolution, W-HR CBCT may be useful in interventional neuroradiology for acute ischemic stroke.
Collapse
Affiliation(s)
- Satoru Kawauchi
- Department of Radiology, Toranomon Hospital, 2-2-2 Toranomon, Minato-ku, Tokyo 105-8470, Japan; (S.K.); (Y.H.)
- Department of Radiological Technology, Tohoku University Graduate School of Medicine, 2-1 Seiryo, Aoba-ku, Sendai 980-8575, Miyagi, Japan
- Okinaka Memorial Institute for Medical Research, 2-2-2 Toranomon, Minato-ku, Tokyo 105-8470, Japan
| | - Koichi Chida
- Department of Radiological Technology, Tohoku University Graduate School of Medicine, 2-1 Seiryo, Aoba-ku, Sendai 980-8575, Miyagi, Japan
- Department of Radiation Disaster Medicine, International Research Institute of Disaster Science, Tohoku University, 468-1 Aramaki Aza-Aoba, Aoba-ku, Sendai 980-0845, Miyagi, Japan
| | - Yusuke Hamada
- Department of Radiology, Toranomon Hospital, 2-2-2 Toranomon, Minato-ku, Tokyo 105-8470, Japan; (S.K.); (Y.H.)
| | - Wataro Tsuruta
- Department of Endovascular Neurosurgery, Toranomon Hospital, 2-2-2 Toranomon, Minato-ku, Tokyo 105-8470, Japan;
| |
Collapse
|
9
|
Quaia E. Editor's Review of Key Research Papers Published in Tomography during the Last Year. Tomography 2023; 9:857-858. [PMID: 37104140 PMCID: PMC10143836 DOI: 10.3390/tomography9020069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 04/10/2023] [Accepted: 04/12/2023] [Indexed: 04/28/2023] Open
Abstract
Tomography is an open access journal dedicated to all aspects of imaging science from basic research to clinical applications and imaging trials [...].
Collapse
Affiliation(s)
- Emilio Quaia
- Department of Radiology, University of Padova, Via Giustiniani 2, 35128 Padova, Italy
| |
Collapse
|
10
|
Otomo K, Inaba Y, Abe K, Onodera M, Suzuki T, Sota M, Haga Y, Suzuki M, Zuguchi M, Chida K. Spatial Scattering Radiation to the Radiological Technologist during Medical Mobile Radiography. Bioengineering (Basel) 2023; 10:bioengineering10020259. [PMID: 36829753 PMCID: PMC9952711 DOI: 10.3390/bioengineering10020259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/08/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023] Open
Abstract
Mobile radiography allows for the diagnostic imaging of patients who cannot move to the X-ray examination room. Therefore, mobile X-ray equipment is useful for patients who have difficulty with movement. However, staff are exposed to scattered radiation from the patient, and they can receive potentially harmful radiation doses during radiography. We estimated occupational exposure during mobile radiography using phantom measurements. Scattered radiation distribution during mobile radiography was investigated using a radiation survey meter. The efficacy of radiation-reducing methods for mobile radiography was also evaluated. The dose decreased as the distance from the X-ray center increased. When the distance was more than 150 cm, the dose decreased to less than 1 μSv. It is extremely important for radiological technologists (RTs) to maintain a sufficient distance from the patient to reduce radiation exposure. The spatial dose at eye-lens height increases when the bed height is high, and when the RT is short in stature and abdominal imaging is performed. Maintaining sufficient distance from the patient is also particularly effective in limiting radiation exposure of the eye lens. Our results suggest that the doses of radiation received by staff during mobile radiography are not significant when appropriate radiation protection is used. To reduce exposure, it is important to maintain a sufficient distance from the patient. Therefore, RTs should bear this is mind during mobile radiography.
Collapse
Affiliation(s)
- Kazuki Otomo
- Course of Radiological Technology, Health Sciences, Tohoku University Graduate School of Medicine, 2-1 Seiryo, Aoba-ku, Sendai 980-8575, Japan
- Department of Radiology, Tohoku University Hospital, 1-1 Seiryo, Aoba-ku, Sendai 980-8574, Japan
| | - Yohei Inaba
- Course of Radiological Technology, Health Sciences, Tohoku University Graduate School of Medicine, 2-1 Seiryo, Aoba-ku, Sendai 980-8575, Japan
- Department of Radiation Disaster Medicine, International Research Institute of Disaster Science, Tohoku University, 468-1 Aramaki Aza-Aoba, Aoba-ku, Sendai 980-0845, Japan
| | - Keisuke Abe
- Department of Radiology, Tohoku University Hospital, 1-1 Seiryo, Aoba-ku, Sendai 980-8574, Japan
| | - Mana Onodera
- Department of Radiology, Tohoku University Hospital, 1-1 Seiryo, Aoba-ku, Sendai 980-8574, Japan
| | - Tomohiro Suzuki
- Department of Radiology, Tohoku University Hospital, 1-1 Seiryo, Aoba-ku, Sendai 980-8574, Japan
| | - Masahiro Sota
- Course of Radiological Technology, Health Sciences, Tohoku University Graduate School of Medicine, 2-1 Seiryo, Aoba-ku, Sendai 980-8575, Japan
- Department of Radiology, Sendai Kousei Hospital, 4-5 Hirose-machi, Aoba-ku, Sendai, 980-0873, Japan
| | - Yoshihiro Haga
- Course of Radiological Technology, Health Sciences, Tohoku University Graduate School of Medicine, 2-1 Seiryo, Aoba-ku, Sendai 980-8575, Japan
- Department of Radiology, Sendai Kousei Hospital, 4-5 Hirose-machi, Aoba-ku, Sendai, 980-0873, Japan
| | - Masatoshi Suzuki
- Course of Radiological Technology, Health Sciences, Tohoku University Graduate School of Medicine, 2-1 Seiryo, Aoba-ku, Sendai 980-8575, Japan
- Department of Radiation Disaster Medicine, International Research Institute of Disaster Science, Tohoku University, 468-1 Aramaki Aza-Aoba, Aoba-ku, Sendai 980-0845, Japan
| | - Masayuki Zuguchi
- Course of Radiological Technology, Health Sciences, Tohoku University Graduate School of Medicine, 2-1 Seiryo, Aoba-ku, Sendai 980-8575, Japan
| | - Koichi Chida
- Course of Radiological Technology, Health Sciences, Tohoku University Graduate School of Medicine, 2-1 Seiryo, Aoba-ku, Sendai 980-8575, Japan
- Department of Radiation Disaster Medicine, International Research Institute of Disaster Science, Tohoku University, 468-1 Aramaki Aza-Aoba, Aoba-ku, Sendai 980-0845, Japan
- Correspondence: ; Tel.: +81-22-717-7943
| |
Collapse
|
11
|
Su SY, Li YW, Wen FH, Yao CY, Wang JY. Associations among Health Status, Occupation, and Occupational Injuries or Diseases: A Multi-Level Analysis. Diagnostics (Basel) 2023; 13:diagnostics13030381. [PMID: 36766485 PMCID: PMC9914676 DOI: 10.3390/diagnostics13030381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 01/20/2023] Open
Abstract
PURPOSE The present study used a hierarchical generalized linear model to explore the effects of physical and mental health and occupational categories on occupational injuries and diseases. METHODS The data were obtained from the Registry for Beneficiaries of the 2002-2013 National Health Insurance Research Database. The benefit categories involved adults with occupational injuries and diseases. Six major occupational categories and 28 subcategories were used. The main analysis methods were binary logistic regression (BLR) and hierarchical generalized linear model (HGLM). RESULTS After adjustment for relevant factors, the three major occupation subcategories most likely to develop occupational injuries and diseases were Subcategory 12 "employees with fixed employers" of Category 1 "civil servants, employees in public or private schools, laborers, and self-employed workers"; Subcategory 2 "employees in private organizations" of Category 1; and "sangha and religionists" of Category 6 "other citizens." Conditions such as mental disorders and obesity increased the risk of occupational injuries and diseases. CONCLUSION A portion of the occupational categories had a higher risk of occupational injuries and diseases. Physical and mental health issues were significantly correlated with occupational injuries and diseases. To the authors' knowledge, this is the first study to use HGLM to analyze differences in occupational categories in Taiwan.
Collapse
Affiliation(s)
- Shu-Yuan Su
- Public Health, China Medical University, Taichung 406040, Taiwan
| | - Yu-Wen Li
- Department of Human Resource, Wu Feng Cheng Ching Hospital, Taichung 412031, Taiwan
| | - Fur-Hsing Wen
- School of Business, Soochow University, Taipei 100006, Taiwan
| | - Chi-Yu Yao
- Department of Psychiatry, An Nan Hospital, Tainan City 709204, Taiwan
| | - Jong-Yi Wang
- Department of Health Services Administration, China Medical University, Taichung 406040, Taiwan
- Correspondence: ; Tel.: +886-4-22053366 (ext. 6313)
| |
Collapse
|
12
|
Hattori K, Inaba Y, Kato T, Fujisawa M, Yasuno H, Yamada A, Haga Y, Suzuki M, Zuguchi M, Chida K. Evaluation of a New Real-Time Dosimeter Sensor for Interventional Radiology Staff. SENSORS (BASEL, SWITZERLAND) 2023; 23:512. [PMID: 36617110 PMCID: PMC9823962 DOI: 10.3390/s23010512] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/20/2022] [Accepted: 12/28/2022] [Indexed: 06/01/2023]
Abstract
In 2011, the International Commission on Radiological Protection (ICRP) recommended a significant reduction in the lens-equivalent radiation dose limit, thus from an average of 150 to 20 mSv/year over 5 years. In recent years, the occupational dose has been rising with the increased sophistication of interventional radiology (IVR); management of IVR staff radiation doses has become more important, making real-time radiation monitoring of such staff desirable. Recently, the i3 real-time occupational exposure monitoring system (based on RaySafeTM) has replaced the conventional i2 system. Here, we compared the i2 and i3 systems in terms of sensitivity (batch uniformity), tube-voltage dependency, dose linearity, dose-rate dependency, and angle dependency. The sensitivity difference (batch uniformity) was approximately 5%, and the tube-voltage dependency was <±20% between 50 and 110 kV. Dose linearity was good (R2 = 1.00); a slight dose-rate dependency (~20%) was evident at very high dose rates (250 mGy/h). The i3 dosimeter showed better performance for the lower radiation detection limit compared with the i2 system. The horizontal and vertical angle dependencies of i3 were superior to those of i2. Thus, i3 sensitivity was higher over a wider angle range compared with i2, aiding the measurement of scattered radiation. Unlike the i2 sensor, the influence of backscattered radiation (i.e., radiation from an angle of 180°) was negligible. Therefore, the i3 system may be more appropriate in areas affected by backscatter. In the future, i3 will facilitate real-time dosimetry and dose management during IVR and other applications.
Collapse
Affiliation(s)
- Kenshin Hattori
- Course of Radiological Technology, Health Sciences, Graduate School of Medicine, Tohoku University, 2-1 Seiryo, Aoba-ku, Sendai 980-8575, Japan
| | - Yohei Inaba
- Course of Radiological Technology, Health Sciences, Graduate School of Medicine, Tohoku University, 2-1 Seiryo, Aoba-ku, Sendai 980-8575, Japan
- Department of Radiation Disaster Medicine, International Research Institute of Disaster Science, Tohoku University, 468-1 Aramaki Aza-Aoba, Aoba-ku, Sendai 980-0845, Japan
| | - Toshiki Kato
- Course of Radiological Technology, Health Sciences, Graduate School of Medicine, Tohoku University, 2-1 Seiryo, Aoba-ku, Sendai 980-8575, Japan
| | - Masaki Fujisawa
- Course of Radiological Technology, Health Sciences, Graduate School of Medicine, Tohoku University, 2-1 Seiryo, Aoba-ku, Sendai 980-8575, Japan
| | - Hikaru Yasuno
- Course of Radiological Technology, Health Sciences, Graduate School of Medicine, Tohoku University, 2-1 Seiryo, Aoba-ku, Sendai 980-8575, Japan
| | - Ayumi Yamada
- Course of Radiological Technology, Health Sciences, Graduate School of Medicine, Tohoku University, 2-1 Seiryo, Aoba-ku, Sendai 980-8575, Japan
| | - Yoshihiro Haga
- Course of Radiological Technology, Health Sciences, Graduate School of Medicine, Tohoku University, 2-1 Seiryo, Aoba-ku, Sendai 980-8575, Japan
- Department of Radiology, Sendai Kousei Hospital, 4-5 Hirose-machi, Aoba-ku, Sendai 980-0873, Japan
| | - Masatoshi Suzuki
- Course of Radiological Technology, Health Sciences, Graduate School of Medicine, Tohoku University, 2-1 Seiryo, Aoba-ku, Sendai 980-8575, Japan
- Department of Radiation Disaster Medicine, International Research Institute of Disaster Science, Tohoku University, 468-1 Aramaki Aza-Aoba, Aoba-ku, Sendai 980-0845, Japan
| | - Masayuki Zuguchi
- Course of Radiological Technology, Health Sciences, Graduate School of Medicine, Tohoku University, 2-1 Seiryo, Aoba-ku, Sendai 980-8575, Japan
| | - Koichi Chida
- Course of Radiological Technology, Health Sciences, Graduate School of Medicine, Tohoku University, 2-1 Seiryo, Aoba-ku, Sendai 980-8575, Japan
- Department of Radiation Disaster Medicine, International Research Institute of Disaster Science, Tohoku University, 468-1 Aramaki Aza-Aoba, Aoba-ku, Sendai 980-0845, Japan
| |
Collapse
|
13
|
Morishima Y, Chida K, Meguro T, Hirota M, Chiba H, Fukuda H. LENS EQUIVALENT DOSE OF STAFF DURING ENDOSCOPIC RETROGRADE CHOLANGIOPANCREATOGRAPHY: DOSE COMPARISON USING TWO TYPES OF DOSEMETERS. RADIATION PROTECTION DOSIMETRY 2022; 198:1368-1376. [PMID: 36055968 DOI: 10.1093/rpd/ncac160] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 05/30/2022] [Accepted: 06/12/2022] [Indexed: 06/15/2023]
Abstract
This study aimed to compare the lens equivalent dose (LED) measured during endoscopic retrograde cholangiopancreatography (ERCP) using DOSIRIS™ as a dedicated dosemeter to that measured using glass badges to determine if glass badges can be alternative tools for LED measurement. LEDs for physicians during ERCP were measured using the DOSIRIS™ [3-mm dose equivalent] worn on the outer edge of the eyes and personal dosemeters (glass badges) [0.07-mm dose equivalent] worn on the right and left sides of the neck. The cumulated doses over 6 months for the left eye using DOSIRIS™ were 9.5 and 11.8 mSv for physicians A and B, whereas doses measured using glass badges were 7.5 and 11.6 mSv, respectively. The LEDs of the physicians at the left eye and left neck side showed almost similar values and were significantly correlated (r = 0.95; p < 0.01). For an accurate LED measurement during ERCP, using a dosemeter such as DOSIRIS™ is recommended, although similar LED estimation values were reported using glass badges on the left neck side.
Collapse
Affiliation(s)
- Yoshiaki Morishima
- Department of Radiological Technology, Tohoku Medical and Pharmaceutical University Hospital, 1-12-1 Fukumuro, Miyagino-ku, Sendai 983-8512, Japan
- Department of Radiological Technology, Tohoku University School of Health Sciences, Sendai 980-8575, Japan
| | - Koichi Chida
- Department of Radiological Technology, Tohoku University School of Health Sciences, Sendai 980-8575, Japan
| | - Takayoshi Meguro
- Gastroenterology Center, Tohoku Medical and Pharmaceutical University Hospital, Sendai 983-8512, Japan
| | - Morihisa Hirota
- Gastroenterology Center, Tohoku Medical and Pharmaceutical University Hospital, Sendai 983-8512, Japan
| | - Hiroo Chiba
- Department of Radiological Technology, Tohoku Medical and Pharmaceutical University Hospital, 1-12-1 Fukumuro, Miyagino-ku, Sendai 983-8512, Japan
| | - Hiroshi Fukuda
- Department of Radiology Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai 983-8356, Japan
| |
Collapse
|
14
|
Sato T, Eguchi Y, Yamazaki C, Hino T, Saida T, Chida K. Development of a New Radiation Shield for the Face and Neck of IVR Physicians. Bioengineering (Basel) 2022; 9:354. [PMID: 36004878 PMCID: PMC9404996 DOI: 10.3390/bioengineering9080354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 07/20/2022] [Accepted: 07/23/2022] [Indexed: 11/20/2022] Open
Abstract
Interventional radiology (IVR) procedures are associated with increased radiation exposure and injury risk. Furthermore, radiation eye injury (i.e., cataract) in IVR staff have also been reported. It is crucial to protect the eyes of IVR physicians from X-ray radiation exposure. Many IVR physicians use protective Pb eyeglasses to reduce occupational eye exposure. However, the shielding effects of Pb eyeglasses are inadequate. We developed a novel shield for the face (including eyes) of IVR physicians. The novel shield consists of a neck and face guard (0.25 mm Pb-equivalent rubber sheet, nonlead protective sheet). The face shield is positioned on the left side of the IVR physician. We assessed the shielding effects of the novel shield using a phantom in the IVR X-ray system; a radiophotoluminescence dosimeter was used to measure the radiation exposure. In this phantom study, the effectiveness of the novel device for protecting against radiation was greater than 80% in almost all measurement situations, including in terms of eye lens exposure. A large amount of scattered radiation reaches the left side of IVR physicians. The novel radiation shield effectively protects the left side of the physician from this scattered radiation. Thus, the device can be used to protect the face and eyes of IVR physicians from occupational radiation exposure. The novel device will be useful for protecting the face (including eyes) of IVR physicians from radiation, and thus could reduce the rate of radiation injury. Based on the positive results of this phantom study, we plan to perform a clinical experiment to further test the utility of this novel radiation shield for IVR physicians.
Collapse
Affiliation(s)
- Toshimitsu Sato
- Department of Radiology, Yamagata University Hospital, 2-2-2 Iida-nishi, Yamagata 990-9585, Japan; (T.S.); (C.Y.); (T.H.)
| | - Yoichi Eguchi
- Course of Radiological Technology, Health Sciences, Graduate School of Medicine, Tohoku University, 2-1 Seiryo, Sendai 980-8575, Japan;
| | - Chika Yamazaki
- Department of Radiology, Yamagata University Hospital, 2-2-2 Iida-nishi, Yamagata 990-9585, Japan; (T.S.); (C.Y.); (T.H.)
| | - Takanobu Hino
- Department of Radiology, Yamagata University Hospital, 2-2-2 Iida-nishi, Yamagata 990-9585, Japan; (T.S.); (C.Y.); (T.H.)
| | - Toshikazu Saida
- Department of Central Radiology, Nara Prefecture Seiwa Medical Center, 1-14-16 Mimuro, Nara 636-0802, Japan;
| | - Koichi Chida
- Course of Radiological Technology, Health Sciences, Graduate School of Medicine, Tohoku University, 2-1 Seiryo, Sendai 980-8575, Japan;
- Department of Radiation Disaster Medicine, International Research Institute of Disaster Science, Tohoku University, 468-1 Aramaki Aza-Aoba, Sendai 980-0845, Japan
| |
Collapse
|
15
|
Floridi C, Cellina M, Irmici G, Bruno A, Rossini N, Borgheresi A, Agostini A, Bruno F, Arrigoni F, Arrichiello A, Candelari R, Barile A, Carrafiello G, Giovagnoni A. Precision Imaging Guidance in the Era of Precision Oncology: An Update of Imaging Tools for Interventional Procedures. J Clin Med 2022; 11:4028. [PMID: 35887791 PMCID: PMC9322069 DOI: 10.3390/jcm11144028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/02/2022] [Accepted: 07/08/2022] [Indexed: 02/05/2023] Open
Abstract
Interventional oncology (IO) procedures have become extremely popular in interventional radiology (IR) and play an essential role in the diagnosis, treatment, and supportive care of oncologic patients through new and safe procedures. IR procedures can be divided into two main groups: vascular and non-vascular. Vascular approaches are mainly based on embolization and concomitant injection of chemotherapeutics directly into the tumor-feeding vessels. Percutaneous approaches are a type of non-vascular procedures and include percutaneous image-guided biopsies and different ablation techniques with radiofrequency, microwaves, cryoablation, and focused ultrasound. The use of these techniques requires precise imaging pretreatment planning and guidance that can be provided through different imaging techniques: ultrasound, computed tomography, cone-beam computed tomography, and magnetic resonance. These imaging modalities can be used alone or in combination, thanks to fusion imaging, to further improve the confidence of the operators and the efficacy and safety of the procedures. This article aims is to provide an overview of the available IO procedures based on clinical imaging guidance to develop a targeted and optimal approach to cancer patients.
Collapse
Affiliation(s)
- Chiara Floridi
- Department of Clinical, Special and Dental Sciences, University Politecnica delle Marche, 60126 Ancona, Italy; (A.B.); (N.R.); (A.A.); (A.G.)
- Division of Special and Pediatric Radiology, Department of Radiology, University Hospital “Umberto I—Lancisi—Salesi”, 60126 Ancona, Italy;
- Division of Interventional Radiology, Department of Radiological Sciences, University Politecnica Delle Marche, 60126 Ancona, Italy;
| | - Michaela Cellina
- Radiology Department, Fatebenefratelli Hospital, ASST Fatebenefratelli Sacco, 20122 Milan, Italy;
| | - Giovanni Irmici
- Post-Graduation School in Radiodiagnostics, Università degli Studi di Milano, 20122 Milan, Italy; (G.I.); (A.A.)
| | - Alessandra Bruno
- Department of Clinical, Special and Dental Sciences, University Politecnica delle Marche, 60126 Ancona, Italy; (A.B.); (N.R.); (A.A.); (A.G.)
| | - Nicolo’ Rossini
- Department of Clinical, Special and Dental Sciences, University Politecnica delle Marche, 60126 Ancona, Italy; (A.B.); (N.R.); (A.A.); (A.G.)
| | - Alessandra Borgheresi
- Division of Special and Pediatric Radiology, Department of Radiology, University Hospital “Umberto I—Lancisi—Salesi”, 60126 Ancona, Italy;
| | - Andrea Agostini
- Department of Clinical, Special and Dental Sciences, University Politecnica delle Marche, 60126 Ancona, Italy; (A.B.); (N.R.); (A.A.); (A.G.)
| | - Federico Bruno
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (F.B.); (A.B.)
| | - Francesco Arrigoni
- Emergency and Interventional Radiology, San Salvatore Hospital, 67100 L’Aquila, Italy;
| | - Antonio Arrichiello
- Post-Graduation School in Radiodiagnostics, Università degli Studi di Milano, 20122 Milan, Italy; (G.I.); (A.A.)
| | - Roberto Candelari
- Division of Interventional Radiology, Department of Radiological Sciences, University Politecnica Delle Marche, 60126 Ancona, Italy;
| | - Antonio Barile
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (F.B.); (A.B.)
| | - Gianpaolo Carrafiello
- Operative Unit of Radiology, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico di Milano, 20122 Milan, Italy;
- Department of Health Sciences, Università degli Studi di Milano, 20122 Milan, Italy
| | - Andrea Giovagnoni
- Department of Clinical, Special and Dental Sciences, University Politecnica delle Marche, 60126 Ancona, Italy; (A.B.); (N.R.); (A.A.); (A.G.)
- Division of Special and Pediatric Radiology, Department of Radiology, University Hospital “Umberto I—Lancisi—Salesi”, 60126 Ancona, Italy;
| |
Collapse
|
16
|
Chida K. What are useful methods to reduce occupational radiation exposure among radiological medical workers, especially for interventional radiology personnel? Radiol Phys Technol 2022; 15:101-115. [PMID: 35608759 DOI: 10.1007/s12194-022-00660-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 04/20/2022] [Accepted: 04/20/2022] [Indexed: 11/24/2022]
Abstract
Protection against occupational radiation exposure in clinical settings is important. This paper clarifies the present status of medical occupational exposure protection and possible additional safety measures. Radiation injuries, such as cataracts, have been reported in physicians and staff who perform interventional radiology (IVR), thus, it is important that they use shielding devices (e.g., lead glasses and ceiling-suspended shields). Currently, there is no single perfect radiation shield; combinations of radiation shields are required. Radiological medical workers must be appropriately educated in terms of reducing radiation exposure among both patients and staff. They also need to be aware of the various methods available for estimating/reducing patient dose and occupational exposure. When the optimizing the dose to the patient, such as eliminating a patient dose that is higher than necessary, is applied, exposure of radiological medical workers also decreases without any loss of diagnostic benefit. Thus, decreasing the patient dose also reduces occupational exposure. We propose a novel four-point policy for protecting medical staff from radiation: patient dose Optimization, Distance, Shielding, and Time (pdO-DST). Patient dose optimization means that the patient never receives a higher dose than is necessary, which also reduces the dose received by the staff. The patient dose must be optimized: shielding is critical, but it is only one component of protection from radiation used in medical procedures. Here, we review the radiation protection/reduction basics for radiological medical workers, especially for IVR staff.
Collapse
Affiliation(s)
- Koichi Chida
- Department of Radiological Technology, Tohoku University Graduate School of Medicine, 2-1 Seiryo, Aoba-ku, Sendai, 980-8575, Japan. .,Division of Disaster Medicine, International Research Institute of Disaster Science, Tohoku University, 468-1 Aoba, Aramaki, Aoba-ku, Sendai, 980-8572, Japan.
| |
Collapse
|