1
|
Zheng W, Chen Y, Pang W, Gao J, Li T. Riverine seasonal rainfall event tracing of organic pollution sources using fluorescence fingerprint difference spectrum. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:175024. [PMID: 39059669 DOI: 10.1016/j.scitotenv.2024.175024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/02/2024] [Accepted: 07/23/2024] [Indexed: 07/28/2024]
Abstract
Elucidating the dynamics of dissolved organic matter (DOM) transport and transformation under seasonal rainfall events is essential for the conservation of riverine ecosystems, for mitigating the effects of climate change, and for crafting informed water management strategies. Therefore, this study aimed to investigate the evolutionary characteristics of organic pollution sources during consecutive rainfall events in early spring and to quantify their relative contributions to the process of surface water pollution. The results showed seasonal rainfall induces water quality exceedances in rivers due to the combined impacts of terrestrial inputs and endogenous releases. Humic acid (HA) (region V) and fulvic acid (FA) (region III) emerged as the predominant organic matter in the water column, with their fluorescence intensity altering as rainwater flushed the riverbed. Sources of pollution include agricultural and urban domestic sources (AS + DS) (72.29 %), industrial and urban domestic and microbial sources (IS + DS + MS) (37.71 %), and agricultural and industrial sources (AS + IS) (63.32 %), indicating that agricultural surface pollution discharges contribute significantly. The gas-chromatography-mass spectrometry (GC-MS) further confirmed that exogenous inputs were predominantly comprised of particulate pollutants. This study underscores the efficacy of fluorescence difference spectrometry in delineating the migration and transformation of river pollution sources during seasonal rainfall and facilitating the implementation of targeted management strategies for river ecosystems.
Collapse
Affiliation(s)
- Wenjing Zheng
- Key Laboratory of Yellow River Water Environment in Gansu Province, Lanzhou Jiaotong University, Lanzhou 730070, China; College of Environment and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Yan Chen
- Key Laboratory of Yellow River Water Environment in Gansu Province, Lanzhou Jiaotong University, Lanzhou 730070, China; College of Environment and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China.
| | - Weihai Pang
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Key Laboratory of Yangtze River Water Environment, Ministry of Education, Shanghai 200092, China
| | - Jianling Gao
- Key Laboratory of Yellow River Water Environment in Gansu Province, Lanzhou Jiaotong University, Lanzhou 730070, China; College of Environment and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Tian Li
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Key Laboratory of Yangtze River Water Environment, Ministry of Education, Shanghai 200092, China
| |
Collapse
|
2
|
Wu C, Zhao Y, Geng Y, Shi K, Zhou S. Characterizing the regional distribution, interaction with microorganisms, and sources of dissolved organic matter for summer rainfall: Insights from spectroscopy, community structure, and back-trajectory analyses. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:172086. [PMID: 38556025 DOI: 10.1016/j.scitotenv.2024.172086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/15/2024] [Accepted: 03/27/2024] [Indexed: 04/02/2024]
Abstract
Dissolved organic matter (DOM) in rainfall participates in many biogeochemical cycles in aquatic environments and affects biological activities in water bodies. Revealing the characteristics of rainfall DOM could broaden our understanding of the carbon cycle. Therefore, the distribution characteristics and response mechanisms of DOM to microorganisms were investigated in different regions of Hebei. The results indicated that the water quality of the northern region was worse than that of the middle and southern regions. The two protein like components (C1, C2) and one humic like component (C3) were obtained; at high molecular weight (MW), the fluorescence intensity is high in the northern region (0.03 ± 0.02 R.U.), while at low MW, the fluorescence intensity is highest in the southern region (0.50 ± 0.18 R.U.). Furthermore, C2 is significantly positively correlated with C1 (P < 0.01), while C2 is significantly negatively correlated with C3 (P < 0.05) was observed. The spectral index results indicated that rainfall DOM exhibited low humification and highly autochthonous characteristics. The southern region obtained higher richness and diversity of microbial species than northern region (P < 0.05). The community exhibits significant spatiotemporal differences, and the Acinetobacter, Enterobacter, and Massilia, were dominant genus. Redundancy and network analyses showed that the effects of C1, C2, and nitrate on microorganisms increased with decreasing MW, while low MW exhibited a more complex network between DOM and microorganisms than high MW. Meanwhile, C1, C2 had a large total effect on β-diversity and function through structural equation modeling. The backward trajectory model indicates that the sources of air masses are from the northwest, local area, and sea in the northern, middle, and southern regions, respectively. This study broadened the understanding of the composition of summer rainfall DOM and its interactions with microorganisms during rainfall.
Collapse
Affiliation(s)
- Chenbin Wu
- Pollution Prevention Biotechnology Laboratory of Hebei Province, School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, PR China
| | - Yuting Zhao
- Pollution Prevention Biotechnology Laboratory of Hebei Province, School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, PR China
| | - Yuting Geng
- Pollution Prevention Biotechnology Laboratory of Hebei Province, School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, PR China
| | - Kun Shi
- School of Civil Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, PR China
| | - Shilei Zhou
- Pollution Prevention Biotechnology Laboratory of Hebei Province, School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, PR China; School of Civil Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, PR China.
| |
Collapse
|
3
|
Wei YL, Lin XC, Liu YY, Lei YQ, Zhuang XD, Zhang HT, Wang XR. Effects of water fluoridation on early embryonic development of zebrafish. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 270:115907. [PMID: 38176185 DOI: 10.1016/j.ecoenv.2023.115907] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/25/2023] [Accepted: 12/27/2023] [Indexed: 01/06/2024]
Abstract
Fluoride has strong electronegativity and exposes diversely in nature. Water fluoridation is the most pervasive form of occurrence, representing a significant threat to human health. In this study, we investigate the morphometric and physiological alterations triggered by fluoride stimulation during the embryogenesis of zebrafish and reveal its putative effects of stage- and/or dose-dependent. Fluoride exhibits potent biological activity and can be extensively absorbed by the yolk sac, exerting significant effects on the development of multiple organs. This is primarily manifested as restricted nutrient utilization and elevated levels of lipid peroxidation, further leading to the accumulation of superoxide in the yolk sac, liver, and intestines. Moreover, pericardial edema exerts pressure on the brain and eye development, resulting in spinal curvature and reduced body length. Besides, acute fluoride exposure with varying concentrations has led to diverse teratogenic outcomes. A low dose of water fluoridation tends to induce abnormal development of the embryonic yolk sac, while vascular malformation is widely observed in all fluoride-treated groups. The effect of fluoride exposure on blood circulation is universally present, even in zebrafish larvae that do not exhibit obvious deformities. Their swimming behavior is also affected by water fluoridation, resulting in reduced activity and delayed reactions. In conclusion, this study provides valuable insights into the monitoring of environmental quality related to water fluoridation and disease prevention.
Collapse
Affiliation(s)
- Ya-Lan Wei
- College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian 350122, China; Medical Research Center, Fujian Maternity and Child Health Hospital, Fuzhou, Fujian 350001, China
| | - Xin-Chen Lin
- College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian 350122, China; Medical Research Center, Fujian Maternity and Child Health Hospital, Fuzhou, Fujian 350001, China
| | - Ying-Ying Liu
- College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian 350122, China
| | - Yu-Qing Lei
- College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian 350122, China; Medical Research Center, Fujian Maternity and Child Health Hospital, Fuzhou, Fujian 350001, China
| | - Xu-Dong Zhuang
- College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian 350122, China; Medical Research Center, Fujian Maternity and Child Health Hospital, Fuzhou, Fujian 350001, China
| | - Hai-Tao Zhang
- College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian 350122, China; Medical Research Center, Fujian Maternity and Child Health Hospital, Fuzhou, Fujian 350001, China
| | - Xin-Rui Wang
- College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian 350122, China; Medical Research Center, Fujian Maternity and Child Health Hospital, Fuzhou, Fujian 350001, China.
| |
Collapse
|
4
|
Cruz FF, Pereira TCB, da Costa KM, Bonan CD, Bogo MR, Morrone FB. Effect of adenosine treatment on ionizing radiation toxicity in zebrafish early life stages. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:521-534. [PMID: 37480487 DOI: 10.1007/s00210-023-02617-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 07/07/2023] [Indexed: 07/24/2023]
Abstract
The danger of ionizing radiation exposure to human health is a concern. Since its wide use in medicine and industry, the development of radioprotectors has been very significant. Adenosine exerts anti-inflammatory actions and promotes tissue protection and repair, by activating the P1 receptors (A1, A2A, A2B, and A3). Zebrafish (Danio rerio) is an appropriate tool in the fields of toxicology and pharmacology, including the evaluation of radiobiological outcomes and in the search for radioprotector agents. This study aims to evaluate the effect of adenosine in the toxicity induced by radiation in zebrafish. Embryos were treated with 1, 10, or 100 µM adenosine, 30 min before the exposure to 15 Gy of gamma radiation. Adenosine potentiated the effects of radiation in heart rate, body length, and pericardial edema. We evaluated oxidative stress, tissue remodeling and inflammatory. It was seen that 100 µM adenosine reversed the inflammation induced by radiation, and that A2A2 and A2B receptors are involved in these anti-inflammatory effects. Our results indicate that P1R activation could be a promising pharmacological strategy for radioprotection.
Collapse
Affiliation(s)
- Fernanda Fernandes Cruz
- Programa de Pós-Graduação em Biologia Celular e Molecular, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
- Laboratório de Farmacologia Aplicada, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Talita Carneiro Brandão Pereira
- Programa de Pós-Graduação em Biologia Celular e Molecular, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
- Laboratório de Biologia Genômica e Molecular, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Kesiane Mayra da Costa
- Laboratório de Biologia Genômica e Molecular, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
- Programa de Pós-Graduação em Medicina e Ciências da Saúde, Escola de Medicina, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Carla Denise Bonan
- Programa de Pós-Graduação em Biologia Celular e Molecular, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
- Programa de Pós-Graduação em Medicina e Ciências da Saúde, Escola de Medicina, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Maurício Reis Bogo
- Programa de Pós-Graduação em Biologia Celular e Molecular, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
- Laboratório de Biologia Genômica e Molecular, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
- Programa de Pós-Graduação em Medicina e Ciências da Saúde, Escola de Medicina, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Fernanda Bueno Morrone
- Programa de Pós-Graduação em Biologia Celular e Molecular, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil.
- Laboratório de Farmacologia Aplicada, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil.
- Programa de Pós-Graduação em Medicina e Ciências da Saúde, Escola de Medicina, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil.
| |
Collapse
|
5
|
Chen H, Zhao Y, Zhao T, Li Y, Ren B, Liang H, Liang H. Multi-walled carbon nanotubes enhance the toxicity effects of dibutyl phthalate on early life stages of zebrafish (Danio rerio): Research in physiological, biochemical and molecular aspects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 899:165684. [PMID: 37482360 DOI: 10.1016/j.scitotenv.2023.165684] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/18/2023] [Accepted: 07/18/2023] [Indexed: 07/25/2023]
Abstract
Phthalate esters (PAEs) are widely used as plasticizers. PAEs are ubiquitous in natural water bodies, with dibutyl phthalate (DBP) being one of the most common PAEs. DBP is prone to leaching or migration into the environment, posing serious health and environmental risks. Carbon nanotubes (CNTs) have been widely used in various fields with the rapid development of nanotechnology. CNTs could alter the environmental behavior and toxicity of co-existing pollutants. CNTs have been shown to rapidly adsorb PEAs. However, current knowledge about the effects of CNTs on DBP toxicity is limited. Here we show that the toxic effects of single and combined exposure to DBP (0.1, 0.5, 1.0 mg/L) and different CNTs (MWCNTs/MWCNTs-COOH, 0.5 mg/L) on the early growth stage of zebrafish. The results suggested that a significant increase in heart rate and heart malformation rate was observed after co-exposure of DBP and MWCNTs/MWCNTs-COOH (p < 0.05). Furthermore, combined exposure increased antioxidant enzyme activity during early developmental stages in zebrafish (p < 0.05). The qRT-PCR results revealed that DBP and MWCNTs/MWCNTs-COOH co-exposure significantly interfered with the expression of genes related to oxidative stress, energy metabolism, development of cardiac function, and apoptosis (p < 0.05). In addition, for oxidative stress and cardiotoxicity, MWCNTs/MWCNTs-COOH aggravated the toxic effects of 0.5 mg/L DBP on embryos/larvae. The metabolomics results showed that co-exposure mitigated the disturbance of amino acid metabolism mediated by single DBP exposure. In general, MWCNTs/MWCNTs-COOH increased the impact of DBP in the early developmental stages of zebrafish. This study provides new insights into the toxicology of early developmental stages of aquatic organisms exposed to co-exist pollutants of DBP and CNTs.
Collapse
Affiliation(s)
- Haiyue Chen
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Yuexing Zhao
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Tingting Zhao
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Yanhong Li
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Bo Ren
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Hanlin Liang
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Hongwu Liang
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China.
| |
Collapse
|
6
|
Interdonato L, Impellizzeri D, D’Amico R, Cordaro M, Siracusa R, D’Agostino M, Genovese T, Gugliandolo E, Crupi R, Fusco R, Cuzzocrea S, Di Paola R. Modulation of TLR4/NFκB Pathways in Autoimmune Myocarditis. Antioxidants (Basel) 2023; 12:1507. [PMID: 37627502 PMCID: PMC10451772 DOI: 10.3390/antiox12081507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/14/2023] [Accepted: 07/26/2023] [Indexed: 08/27/2023] Open
Abstract
Myocarditis is an inflammatory and oxidative disorder characterized by immune cell recruitment in the damaged tissue and organ dysfunction. In this paper, we evaluated the molecular pathways involved in myocarditis using a natural compound, Coriolus versicolor, in an experimental model of autoimmune myocarditis (EAM). Animals were immunized with an emulsion of pig cardiac myosin and complete Freund's adjuvant supplemented with mycobacterium tuberculosis; thereafter, Coriolus versicolor (200 mg/Kg) was orally administered for 21 days. At the end of the experiment, blood pressure and heart rate measurements were recorded and the body and heart weights as well. From the molecular point of view, the Coriolus versicolor administration reduced the activation of the TLR4/NF-κB pathway and the levels of pro-inflammatory cytokines (INF-γ, TNF-α, IL-6, IL-17, and IL-2) and restored the levels of anti-inflammatory cytokines (IL-10). These anti-inflammatory effects were accompanied with a reduced lipid peroxidation and nitrite levels and restored the antioxidant enzyme activities (SOD and CAT) and GSH levels. Additionally, it reduced the histological injury and the immune cell recruitment (CD4+ and CD68+ cells). Moreover, we observed an antiapoptotic activity in both intrinsic (Fas/FasL/caspase-3) and extrinsic (Bax/Bcl-2) pathways. Overall, our data showed that Coriolus versicolor administration modulates the TLR4/NF-κB signaling in EAM.
Collapse
Affiliation(s)
- Livia Interdonato
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Daniela Impellizzeri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Ramona D’Amico
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Marika Cordaro
- Department of Biomedical, Dental and Morphological and Functional Imaging, University of Messina, Consolare Valeria, 98100 Messina, Italy
| | - Rosalba Siracusa
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Melissa D’Agostino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Tiziana Genovese
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Enrico Gugliandolo
- Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy
| | - Rosalia Crupi
- Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy
| | - Roberta Fusco
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Rosanna Di Paola
- Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy
| |
Collapse
|
7
|
Interdonato L, Marino Y, D'Amico R, Cordaro M, Siracusa R, Impellizzeri D, Macrì F, Fusco R, Cuzzocrea S, Di Paola R. Modulation of the Proliferative Pathway, Neuroinflammation and Pain in Endometriosis. Int J Mol Sci 2023; 24:11741. [PMID: 37511500 PMCID: PMC10380329 DOI: 10.3390/ijms241411741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/14/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
Endometriosis is a chronic disease characterized by pelvic inflammation. This study aimed at investigating the molecular mechanisms underlying the pathology and how they can be modulated by the administration of a natural compound, Actaea racemosa (AR). We employed an in vivo model of endometriosis in which rats were intraperitoneally injected with uterine fragments from donor animals. During the experiment, rats were monitored by abdominal high-frequency ultrasound analysis. AR was able to reduce the lesion's size and histological morphology. From a molecular point of view, AR reduced hyperproliferation, as shown by Ki-67 and PCNA expression and MAPK phosphorylation. The impaired apoptosis pathway was also restored, as shown by the TUNEL assay and RT-PCR for Bax, Bcl-2, and Caspase levels. AR also has important antioxidant (reduced Nox expression, restored SOD activity and GSH levels, and reduced MPO activity and MDA levels) and anti-inflammatory (reduced cytokine levels) properties. Moreover, AR demonstrated its ability to reduce the pain-like behaviors associated with the pathology, the neuro-sensitizing mediators (c-FOS and NGF) expression, and the related central astrogliosis (GFAP expression in the spinal cord, brain cortex, and hippocampus). Overall, our data showed that AR was able to manage several pathways involved in endometriosis suppression.
Collapse
Affiliation(s)
- Livia Interdonato
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Ylenia Marino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Ramona D'Amico
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Marika Cordaro
- Department of Biomedical, Dental and Morphological and Functional Imaging, University of Messina, Consolare Valeria, 98100 Messina, Italy
| | - Rosalba Siracusa
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Daniela Impellizzeri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Francesco Macrì
- Department of Veterinary Sciences, University of Messina, Viale Anunziata, 98168 Messina, Italy
| | - Roberta Fusco
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Rosanna Di Paola
- Department of Veterinary Sciences, University of Messina, Viale Anunziata, 98168 Messina, Italy
| |
Collapse
|
8
|
Marino Y, Arangia A, D'Amico R, Cordaro M, Siracusa R, Impellizzeri D, Gugliandolo E, Fusco R, Cuzzocrea S, Di Paola R. Aggravation of TGFβ1-Smad Pathway and Autoimmune Myocarditis by Fungicide (Tebuconazole) Exposure. Int J Mol Sci 2023; 24:11510. [PMID: 37511266 PMCID: PMC10380223 DOI: 10.3390/ijms241411510] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/29/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
Myocarditis is an inflammatory cardiac disorder and the primary cause of heart failure in young adults. Its origins can be attributed to various factors, including bacterial or viral infections, exposure to toxins or drugs, endocrine disruptors (EDs), and autoimmune processes. Tebuconazole (TEB), which is a member of the triazole fungicide family, is utilized to safeguard agricultural crop plants against fungal pathogens. Although TEB poses serious threats to mammal health, the information about how it induces toxic effects through various pathways, particularly in autoimmune diseases, are still limited. Thus, the aim of this paper was to evaluate the effect of TEB exposure in autoimmune myocarditis (AM). To induce AM, rats were immunized with porcine cardiac myosin and exposed to TEB for 21 days. Thereafter, animals were sacrificed, and histological, biochemical, and molecular analyses were performed. TEB exposure increased heart weight, systolic blood pressure and heart rate already augmented by AM. Additionally, it significantly increased creatine phosphokinase heart (CK-MB), creatine phosphokinase (CPK), cardiac troponin T (cTnT), and cardiac troponin I (cTnI), as compared to the control. From the histological perspective, TEB exacerbates the histological damage induced by AM (necrosis, inflammation and cell infiltration) and increased fibrosis and collagen deposition. TEB exposure strongly increased pro-inflammatory cytokines and prooxidant levels (O2-, H2O2, NO2-, lipid peroxidation) and reduced antioxidant enzyme levels, which were already dysregulated by AM. Additionally, TEB increased NOX-4 expression and the TGFβ1-Smads pathway already activated by AM. Overall, our results showed that TEB exposure strongly aggravated the cardiotoxicity induced by AM.
Collapse
Affiliation(s)
- Ylenia Marino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Alessia Arangia
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Ramona D'Amico
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Marika Cordaro
- Department of Biomedical, Dental and Morphological and Functional Imaging, University of Messina, Consolare Valeria, 98100 Messina, Italy
| | - Rosalba Siracusa
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Daniela Impellizzeri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Enrico Gugliandolo
- Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy
| | - Roberta Fusco
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Rosanna Di Paola
- Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy
| |
Collapse
|
9
|
Impellizzeri D, Cordaro M, Siracusa R, Fusco R, Peritore AF, Gugliandolo E, Genovese T, Crupi R, Interdonato L, Evangelista M, Di Paola R, Cuzzocrea S, D'Amico R. Molecular targets for anti-oxidative protection of açaí berry against diabetes myocardial ischemia/reperfusion injury. Free Radic Res 2023; 57:339-352. [PMID: 37609799 DOI: 10.1080/10715762.2023.2243032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 07/21/2023] [Accepted: 07/26/2023] [Indexed: 08/24/2023]
Abstract
Myocardial ischemia/reperfusion injury (MIRI) is the principal cause of death and occurs after prolonged blockage of the coronary arteries. Diabetes represents one of the main factors aggravating myocardial injury. Restoring blood flow is the first intervention against a heart attack, although reperfusion process could cause additional damage, such as the overproduction of reacting oxygen species (ROS). In recent years, açaí berry has gained international attention as a functional food due to its antioxidant and anti-inflammatory properties; not only that but this fruit has shown glucose-lowering effects. Therefore, this study was designed to evaluate the cardioprotective effects of açaí berry on the inflammatory and oxidative responses associated with diabetic MIRI. Diabetes was induced in rats by a single intravenous inoculation of streptozotocin (60 mg/kg) and allowed to develop for 60 days. MIRI was induced by occlusion of the left anterior descending coronary artery for 30 min followed by 2 h of reperfusion. Açaí (200 mg/kg) was administered 5 min before the end of ischemia and 1 h after reperfusion. In this study, we clearly demonstrated that açaí treatment was able to reduce biomarkers of myocardial damage, infarct size, and apoptotic process. Moreover, açaí administrations reduced inflammatory and oxidative response, modulating Nf-kB and Nrf2 pathways. These results suggest that açai berry supplementation could represent a useful strategy for pathological events associated to MIRI.
Collapse
Affiliation(s)
- Daniela Impellizzeri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Marika Cordaro
- Department of Biomedical, Dental and Morphological and Functional Imaging, University of Messina, Messina, Italy
| | - Rosalba Siracusa
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Roberta Fusco
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | | | | | - Tiziana Genovese
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Rosalia Crupi
- Department of Veterinary Science, University of Messina, Messina, Italy
| | - Livia Interdonato
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Maurizio Evangelista
- Institute of Anaesthesiology and Reanimation, Catholic University of the Sacred Heart, Rome, Italy
| | - Rosanna Di Paola
- Department of Veterinary Science, University of Messina, Messina, Italy
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Ramona D'Amico
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| |
Collapse
|
10
|
Xia X, Ma X, Liang N, Duan X, Wang S, Guo W, Chang Z. QNZ exposure induces development toxicity and mechanisms of hatching inhibition in large-scale loach (Paramisgurnus dabryanus) embryos. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 253:114663. [PMID: 36805135 DOI: 10.1016/j.ecoenv.2023.114663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 02/12/2023] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
QNZ is a quinazoline-type NF-κB inhibitor and is one of the hot anti-inflammatory drug candidates in recent years. With its development and application, QNZ will inevitably enter the aquatic environment posing a threat to aquatic organisms. To investigate the potential toxicity of QNZ in the early life stages of the organism, this study exposed embryos of large-scale loach (Paramisgurnus dabryanus) to 0, 20, 40, 60, and 80 nM of QNZ. The hatching of embryos was significantly inhibited and hatching time was delayed. We explored the mechanism of hatching delay and failure. The results suggested that QNZ exposure reduced the number of hatching gland cells (HGCs) and hatching enzyme activity. Also, the frequency of spontaneous movements was inhibited by interfering with the expression of genes related to the cholinergic system and skeletal muscle development. Further, QNZ exposure induces a series of morphological changes (spine deformation, pericardial edema, tail deformation, and yolk sac edema) in embryos and newly-hatched larvae, and finally increased the deformity rate and mortality rate of newly-hatched larvae. The information presented in this study will provide a scientific basis for further studies into the potential toxicity of QNZ on aquatic organisms.
Collapse
Affiliation(s)
- Xiaohua Xia
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, China.
| | - Xiaoyu Ma
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, China.
| | - Ning Liang
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, China.
| | - Xiangyu Duan
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, China.
| | - Songyun Wang
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, China.
| | - Wanwan Guo
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, China.
| | - Zhongjie Chang
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, China.
| |
Collapse
|
11
|
Marino Y, Arangia A, Cordaro M, Siracusa R, D’Amico R, Impellizzeri D, Cupi R, Peritore AF, Gugliandolo E, Fusco R, Cuzzocrea S, Di Paola R. Analysis of the Influence of IL-6 and the Activation of the Jak/Stat3 Pathway in Fibromyalgia. Biomedicines 2023; 11:biomedicines11030792. [PMID: 36979771 PMCID: PMC10045851 DOI: 10.3390/biomedicines11030792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/17/2023] [Accepted: 03/04/2023] [Indexed: 03/08/2023] Open
Abstract
Background: Fibromyalgia is a medical condition that affects a small percentage of the population, with no known effective treatment. There is evidence to suggest that inflammation is a key factor in the nerve sensitization that characterizes the disorder. Therefore, this paper concentrates on the role of IL-6 in fibromyalgia and the related pain-like symptoms. Methods: This work aimed to evaluate Sprague–Dawley rats, which were injected for three consecutive days with 1 mg/kg of reserpine; IL-6-R Ab was intraperitoneally injected at 1.5 mg/kg seven days after the first reserpine injection. Behavioral analyses were conducted at the beginning of the experiment and at seven and twenty-one days from the first reserpine injection. At this timepoint, the animals were sacrificed, and tissues were collected for molecular and histological analysis. Results: Our data showed the analgesic effect of IL-6-R-Ab administration on mechanical allodynia and thermal hyperalgesia. Additionally, the reserpine + IL-6-R-Ab group showed a reduced expression of the pain-related mediators cFOS and NFG and reduced levels of pro-inflammatory cytokines (TNF-α, IL-1β and IL-6) and chemokines (Cxcl5, Cxcl10 and Cx3cl1). From the molecular point of view, the IL-6-R-Ab administration reduced the gp130 phosphorylation and the activation of the Jak/STAT3 pathway. Additionally, the IL-6-R Ab reduced the activation of neuroinflammatory cells. Conclusions: Our study showed that IL-6 plays a crucial role in fibromyalgia by triggering the Jak/STAT3 pathway, leading to an increase in chemokine levels and activating glial cells.
Collapse
Affiliation(s)
- Ylenia Marino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, n 31, 98166 Messina, Italy
| | - Alessia Arangia
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, n 31, 98166 Messina, Italy
| | - Marika Cordaro
- Department of Biomedical, Dental and Morphological and Functional Imaging, University of Messina, Via Consolare Valeria, 98125 Messina, Italy
| | - Rosalba Siracusa
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, n 31, 98166 Messina, Italy
| | - Ramona D’Amico
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, n 31, 98166 Messina, Italy
| | - Daniela Impellizzeri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, n 31, 98166 Messina, Italy
| | - Rosalia Cupi
- Department of Veterinary Sciences, University of Messina, Viale Annunzita, 98168 Messina, Italy
| | - Alessio Filippo Peritore
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, n 31, 98166 Messina, Italy
| | - Enrico Gugliandolo
- Department of Veterinary Sciences, University of Messina, Viale Annunzita, 98168 Messina, Italy
| | - Roberta Fusco
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, n 31, 98166 Messina, Italy
- Correspondence:
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, n 31, 98166 Messina, Italy
| | - Rosanna Di Paola
- Department of Veterinary Sciences, University of Messina, Viale Annunzita, 98168 Messina, Italy
| |
Collapse
|
12
|
Zhang P, Liu N, Xue M, Zhang M, Liu W, Xu C, Fan Y, Meng Y, Zhang Q, Zhou Y. Anti-Inflammatory and Antioxidant Properties of β-Sitosterol in Copper Sulfate-Induced Inflammation in Zebrafish ( Danio rerio). Antioxidants (Basel) 2023; 12:391. [PMID: 36829951 PMCID: PMC9952786 DOI: 10.3390/antiox12020391] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 02/09/2023] Open
Abstract
β-Sitosterol, which is used extensively in pharmaceuticals, nutraceuticals, and cosmetics, has high nutritional value along with immunomodulatory and anti-inflammatory properties. In this study, we investigated the antioxidant and anti-inflammatory effects of β-sitosterol in zebrafish and explored the associated molecular mechanisms. In an in vivo antioxidant experiment, zebrafish (Danio rerio) larvae were treated with different concentrations of β-sitosterol and then exposed to a nonlethal concentration of CuSO4 to induce oxidative stress. Treatment with β-sitosterol at 70 or 100 μg/mL significantly reduced CuSO4-induced oxidative stress in the zebrafish, demonstrating the strong antioxidant activity of β-sitosterol. Treatment with β-sitosterol protected zebrafish larvae against oxidative damage from CuSO4 by upregulating the expressions of sod and gpx4b. In a zebrafish model of inflammation, pretreatment with β-sitosterol before CuSO4 exposure inhibited neutrophil recruitment and damage to lateral line neuromasts, indicating a potent anti-inflammatory effect derived from reductions in the expressions of il-8 and myd88. The results demonstrate the antioxidative and anti-inflammatory activities of β-sitosterol and suggest that β-sitosterol may be useful for the treatment of various inflammatory diseases.
Collapse
Affiliation(s)
- Peng Zhang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai 201306, China
| | - Naicheng Liu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai 201306, China
| | - Mingyang Xue
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Mengjie Zhang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai 201306, China
| | - Wei Liu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Chen Xu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Yuding Fan
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Yan Meng
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Qinghua Zhang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai 201306, China
| | - Yong Zhou
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| |
Collapse
|
13
|
D’Amico R, Impellizzeri D, Cordaro M, Siracusa R, Interdonato L, Marino Y, Crupi R, Gugliandolo E, Macrì F, Di Paola D, Peritore AF, Fusco R, Cuzzocrea S, Di Paola R. Complex Interplay between Autophagy and Oxidative Stress in the Development of Endometriosis. Antioxidants (Basel) 2022; 11:antiox11122484. [PMID: 36552692 PMCID: PMC9774576 DOI: 10.3390/antiox11122484] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
Endometriosis (Endo) is a chronic gynecological disease. This paper aimed to evaluate the modulation of autophagy, oxidative stress and apoptosis with Açai Berries in a rat model of endometriosis. Endometriosis was induced with an intraperitoneal injection of minced uterus tissue from a donor rat into a recipient one. The abdominal high-frequency ultrasound (hfUS) analysis was performed at 7 and 14 days from the endometriosis induction to evaluate the growth of the lesion during the experiment. Seven days from the induction, once the lesions were implanted, an Açai Berry was administered daily by gavage for the next seven days. At the end of the experiment, the hfUS analysis showed a reduced lesion diameter in animals given the Açai Berry. A macroscopical and histological analysis confirmed this result. From the molecular point of view, Western blot analyses were conducted to evaluate the autophagy induction. Samples collected from the Endo group showed impaired autophagy, while the Açai Berry administration inhibited PI3K and AKT and ERK1/2 phosphorylation and promoted autophagy by inactivating mTOR. Additionally, Açai Berry administration dephosphorylated ATG1, promoting the activity of the ATG1/ULK1 complex that recruited Ambra1/Beclin1 and Atg9 to promote autophagosome nucleation and LC3II expression. Açai Berry administration also restored mitophagy, which increased Parkin cytosolic expression. The Açai Berry increased the expression of NRF2 in the nucleus and the expression of its downstream antioxidant proteins as NQO-1 and HO-1, thereby restoring the oxidative imbalance. It also restored the impaired apoptotic pathway by reducing BCL-2 and increasing BAX expression. This result was also confirmed by the TUNEL assay. Overall, our results displayed that Açai Berry administration was able to modulate autophagy, oxidative stress and apoptosis during endometriosis.
Collapse
Affiliation(s)
- Ramona D’Amico
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, n 31, 98166 Messina, Italy
| | - Daniela Impellizzeri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, n 31, 98166 Messina, Italy
| | - Marika Cordaro
- Department of Biomedical, Dental and Morphological and Functional Imaging, University of Messina, Via Consolare Valeria, 98125 Messina, Italy
| | - Rosalba Siracusa
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, n 31, 98166 Messina, Italy
| | - Livia Interdonato
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, n 31, 98166 Messina, Italy
| | - Ylenia Marino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, n 31, 98166 Messina, Italy
| | - Rosalia Crupi
- Department of Veterinary Sciences, University of Messina, Viale Annunzita, 98168 Messina, Italy
| | - Enrico Gugliandolo
- Department of Veterinary Sciences, University of Messina, Viale Annunzita, 98168 Messina, Italy
| | - Francesco Macrì
- Department of Veterinary Sciences, University of Messina, Viale Annunzita, 98168 Messina, Italy
| | - Davide Di Paola
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, n 31, 98166 Messina, Italy
| | - Alessio Filippo Peritore
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, n 31, 98166 Messina, Italy
| | - Roberta Fusco
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, n 31, 98166 Messina, Italy
- Correspondence:
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, n 31, 98166 Messina, Italy
| | - Rosanna Di Paola
- Department of Veterinary Sciences, University of Messina, Viale Annunzita, 98168 Messina, Italy
| |
Collapse
|
14
|
Siracusa R, D’Amico R, Fusco R, Impellizzeri D, Peritore AF, Gugliandolo E, Crupi R, Interdonato L, Cordaro M, Cuzzocrea S, Di Paola R. Açai Berry Attenuates Cyclophosphamide-Induced Damage in Genitourinary Axis-Modulating Nrf-2/HO-1 Pathways. Antioxidants (Basel) 2022; 11:antiox11122355. [PMID: 36552563 PMCID: PMC9774754 DOI: 10.3390/antiox11122355] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
Cyclophosphamide (CYP) is used to treat different malignancies and autoimmune disorders in men. This chemotherapy frequently reduces tumors, which is beneficial, but also causes infertility because of severe oxidative stress, inflammation, and apoptosis in the bladder and testes brought on by its metabolite, acrolein. The goal of this study was to assess the efficacy of a novel food, açai berry, in preventing CYP-induced damage in the bladder and testes. METHODS CYP was administered intraperitoneally once during the experiment at a dose of 200 mg/kg body weight diluted in 10 mL/kg b.w. of water. Açai berry was administered orally at a dose of 500 mg/kg. RESULTS The administration of açai berry was able to reduce inflammation, oxidative stress, lipid peroxidation, apoptosis, and histological changes in the bladder and testes after CYP injection. CONCLUSIONS Our findings show for the first time that açai berry modulates physiological antioxidant defenses to protect the bladder and testes against CYP-induced changes.
Collapse
Affiliation(s)
- Rosalba Siracusa
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy
| | - Ramona D’Amico
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy
| | - Roberta Fusco
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy
| | - Daniela Impellizzeri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy
| | - Alessio Filippo Peritore
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy
| | - Enrico Gugliandolo
- Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy
| | - Rosalia Crupi
- Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy
| | - Livia Interdonato
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy
| | - Marika Cordaro
- Department of Biomedical Dental and Morphological and Functional Imaging, University of Messina, Via Consolare Valeria, 98125 Messina, Italy
- Correspondence:
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, Saint Louis, MO 63104, USA
| | - Rosanna Di Paola
- Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy
| |
Collapse
|
15
|
Mawed SA, Centoducati G, Farag MR, Alagawany M, Abou-Zeid SM, Elhady WM, El-Saadony MT, Di Cerbo A, Al-Zahaby SA. Dunaliella salina Microalga Restores the Metabolic Equilibrium and Ameliorates the Hepatic Inflammatory Response Induced by Zinc Oxide Nanoparticles (ZnO-NPs) in Male Zebrafish. BIOLOGY 2022; 11:biology11101447. [PMID: 36290351 PMCID: PMC9598141 DOI: 10.3390/biology11101447] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 09/28/2022] [Accepted: 09/28/2022] [Indexed: 11/06/2022]
Abstract
Microalgae are rich in bioactive compounds including pigments, proteins, lipids, polyunsaturated fatty acids, carbohydrates, and vitamins. Due to their non-toxic and nutritious characteristics, these are suggested as important food for many aquatic animals. Dunaliella salina is a well-known microalga that accumulates valuable amounts of carotenoids. We investigated whether it could restore the metabolic equilibrium and mitigate the hepatic inflammation induced by zinc oxide nanoparticles (ZnO-NPs) using male zebrafish which were exposed to 1/5th 96 h-LC50 for 4 weeks, followed by dietary supplementation with D. salina at two concentrations (15% and 30%) for 2 weeks. Collectively, ZnO-NPs affected fish appetite, whole body composition, hepatic glycogen and lipid contents, intestinal bacterial and Aeromonas counts, as well as hepatic tumor necrosis factor- α (TNF-α). In addition, the mRNA expression of genes related to gluconeogenesis (pck1, gys2, and g6pc3), lipogenesis (srepf1, acaca, fasn, and cd36), and inflammatory response (tnf-α, tnf-β, nf-kb2) were modulated. D. salina reduced the body burden of zinc residues, restored the fish appetite and normal liver architecture, and mitigated the toxic impacts of ZnO-NPs on whole-body composition, intestinal bacteria, energy metabolism, and hepatic inflammatory markers. Our results revealed that the administration of D. salina might be effective in neutralizing the hepatotoxic effects of ZnO-NPs in the zebrafish model.
Collapse
Affiliation(s)
- Suzan Attia Mawed
- Zoology Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt
- Correspondence: (S.A.M.); (G.C.)
| | - Gerardo Centoducati
- Department of Veterinary Medicine, University of Bari Aldo Moro, Casamassima km 3, 70010 Valenzano, Italy
- Correspondence: (S.A.M.); (G.C.)
| | - Mayada R. Farag
- Forensic Medicine and Toxicology Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Mahmoud Alagawany
- Poultry Department, Faculty of Agriculture, Zagazig University, Zagazig 44519, Egypt
| | - Shimaa M. Abou-Zeid
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, University of Sadat City, Sadat 6012201, Egypt
| | - Walaa M. Elhady
- Forensic Medicine and Toxicology Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Mohamed T. El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Alessandro Di Cerbo
- School of Biosciences and Veterinary Medicine, University of Camerino, 62024 Matelica, Italy
| | - Sheren A. Al-Zahaby
- Zoology Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt
| |
Collapse
|
16
|
Chronic Exposure to Endocrine Disruptor Vinclozolin Leads to Lung Damage Via Nrf2–Nf-kb Pathway Alterations. Int J Mol Sci 2022; 23:ijms231911320. [PMID: 36232623 PMCID: PMC9569619 DOI: 10.3390/ijms231911320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/16/2022] [Accepted: 09/21/2022] [Indexed: 11/24/2022] Open
Abstract
Endocrine-disrupting substances (EDS) are common and pervasive in our environment and pose a serious risk to both human and animal health. Endocrine-disrupting compounds (EDCs) have been associated with a variety of detrimental human health effects, including respiratory issues, as a result of their ability to disrupt cell physiology. Vinclozolin ((RS)-3-(3,5-Dichlorophenyl)-5-methyl-5-vinyloxazolidine-2,4-dione) is a common dicarboximide fungicide used to treat plant diseases. Several studies have analyzed the effects of vinclozolin exposure on the reproductive system, but less is known about its effect on other organs such as the lung. Mice were exposed for 28 days to orally administered vinclozolin at a dose of 100 mg/kg. Vinclozolin exposure induced histological alterations and collagen depositions in the lung. Additionally, vinclozolin induced inflammation and oxidative stress that led to lung apoptosis. Our study demonstrates for the first time that the toxicological effects of vinclozolin are not limited to the reproductive system but also involve other organs such as the lung.
Collapse
|
17
|
Chronic Exposure to Vinclozolin Induced Fibrosis, Mitochondrial Dysfunction, Oxidative Stress, and Apoptosis in Mice Kidney. Int J Mol Sci 2022; 23:ijms231911296. [PMID: 36232596 PMCID: PMC9570110 DOI: 10.3390/ijms231911296] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 11/17/2022] Open
Abstract
Vinclozolin is one of the most used fungicides in the control of fungi in fruits, vegetables, and ornamental plants. The effects of its exposure on different organs have been described, but information regarding its relevance to vinclozolin-induced nephrotoxicity is largely missing. This study focuses on the potential mechanism of vinclozolin-induced nephrotoxicity. CD1 male mice were administered vinclozolin (100 mg/kg) by oral gavage for 28 days. Vinclozolin administration decreased body weight over the treatment period and at the end of the experiment, increased the ratio of kidney weight to body weight and increased serum urea nitrogen and creatinine contents. Vinclozolin also induced histopathological alterations, including tubular dilatation and necrosis and impaired the integrity of the renal-tubular architecture and kidney fibrosis. The analyses conducted showed that vinclozolin administration altered the mRNA levels of mitochondrial function-related proteins (SIRT3, SIRT1, PGC-1α, TFAM, NRF1, VDAC-1, and Cyt c) and oxidative stress (increased lipid peroxidation and decreased total antioxidative capacity, catalase, and superoxide dismutase activities, glutathione levels, and glutathione peroxidase activity) in the kidneys. Furthermore, vinclozolin induced toxicity that altered Nrf2 signalling and the related proteins (HO-1 and NQO-1). Vinclozolin administration also affected both the extrinsic and intrinsic apoptotic pathways, upregulating the expression of proapoptotic factors (Bax, Caspase 3, and FasL) and downregulating antiapoptotic factor (Bcl-2) levels. This study suggests that vinclozolin induced nephrotoxicity by disrupting the transcription of mitochondrial function-related factors, the Nrf2 signalling pathway, and the extrinsic and intrinsic apoptotic pathways.
Collapse
|
18
|
Interdonato L, D’amico R, Cordaro M, Siracusa R, Fusco R, Peritore AF, Gugliandolo E, Crupi R, Coaccioli S, Genovese T, Impellizzeri D, Di Paola R, Cuzzocrea S. Aerosol-Administered Adelmidrol Attenuates Lung Inflammation in a Murine Model of Acute Lung Injury. Biomolecules 2022; 12:biom12091308. [PMID: 36139146 PMCID: PMC9496587 DOI: 10.3390/biom12091308] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/06/2022] [Accepted: 09/14/2022] [Indexed: 11/16/2022] Open
Abstract
Acute lung injury (ALI) is a common and devastating clinical disorder with a high mortality rate and no specific therapy. The pathophysiology of ALI is characterized by increased alveolar/capillary permeability, lung inflammation, oxidative stress and structural damage to lung tissues, which can progress to acute respiratory distress syndrome (ARDS). Adelmidrol (ADM), an analogue of palmitoylethanolamide (PEA), is known for its anti-inflammatory and antioxidant functions, which are mainly due to down-modulating mast cells (MCs) and promoting endogenous antioxidant defense. The aim of this study is to evaluate the protective effects of ADM in a mice model of ALI, induced by intratracheal administration of lipopolysaccharide (LPS) at the dose of 5 mg/kg. ADM 2% was administered by aerosol 1 and 6 h after LPS instillation. In this study, we clearly demonstrated that ADM reduced lung damage and airway infiltration induced by LPS instillation. At the same time, ADM counteracted the increase in MC number and the expression of specific markers of MC activation, i.e., chymase and tryptase. Moreover, ADM reduced oxidative stress by upregulating antioxidant enzymes as well as modulating the Nf-kB pathway and the resulting pro-inflammatory cytokine release. These results suggest that ADM could be a potential candidate in the management of ALI.
Collapse
Affiliation(s)
- Livia Interdonato
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Ramona D’amico
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Marika Cordaro
- Department of Biomedical, Dental and Morphological and Functional Imaging, University of Messina, Via Consolare Valeria, 98125 Messina, Italy
| | - Rosalba Siracusa
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Roberta Fusco
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Alessio Filippo Peritore
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Enrico Gugliandolo
- Department of Veterinary Science, University of Messina, 98168 Messina, Italy
| | - Rosalia Crupi
- Department of Veterinary Science, University of Messina, 98168 Messina, Italy
| | - Stefano Coaccioli
- General Medical Clinic and Medical Therapy, Rheumatology and Medical Therapy of the Pain, University of Perugia, “Polo di Terni”, “AO Santa Maria” of Terni, 06129 Perugia, Italy
| | - Tiziana Genovese
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Daniela Impellizzeri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
- Correspondence: ; Tel.: +39-090-676-5208
| | - Rosanna Di Paola
- Department of Veterinary Science, University of Messina, 98168 Messina, Italy
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| |
Collapse
|
19
|
Brinza I, Raey MAE, El-Kashak W, Eldahshan OA, Hritcu L. Sweroside Ameliorated Memory Deficits in Scopolamine-Induced Zebrafish ( Danio rerio) Model: Involvement of Cholinergic System and Brain Oxidative Stress. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27185901. [PMID: 36144637 PMCID: PMC9502219 DOI: 10.3390/molecules27185901] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/26/2022] [Accepted: 09/07/2022] [Indexed: 12/31/2022]
Abstract
Sweroside is a secoiridoid glycoside and belongs to a large group of naturally occurring monoterpenes with glucose sugar attached to C-1 in the pyran ring. Sweroside can promote different biological activities such as antifungal, antibacterial, hepatoprotective, gastroprotective, sedative and antitumor, antioxidant, and neuroprotective activities. Zebrafish were given sweroside (12.79, 8.35, and 13.95 nM) by immersion once daily for 8 days, along with scopolamine (Sco, 100 μM) 30 min before the initiation of the behavioral testing to cause anxiety and memory loss. Employing the novel tank diving test (NTT), the Y-maze, and the novel object recognition test (NOR), anxiety-like reactions and memory-related behaviors were assessed. The following seven groups (n = 10 animals per group) were used: control, Sco (100 μM), sweroside treatment (2.79, 8.35, and 13.95 nM), galantamine (GAL, 2.71 μM as the positive control in Y-maze and NOR tests), and imipramine (IMP, 63.11 μM as the positive control in NTT test). Acetylcholinesterase activity (AChE) and the antioxidant condition of the brains were also evaluated. The structure of sweroside isolated from Schenkia spicata was identified. Treatment with sweroside significantly improved the Sco-induced decrease of the cholinergic system activity and brain oxidative stress. These results suggest that sweroside exerts a significant effect on anxiety and cognitive impairment, driven in part by the modulation of the cholinergic system activity and brain antioxidant action.
Collapse
Affiliation(s)
- Ion Brinza
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, Bd. Carol I, No. 11, 700505 Iasi, Romania
| | - Mohamed A. El Raey
- Department of Phytochemistry and Plant Systematics, National Research Centre, Dokki, Cairo 12622, Egypt
| | - Walaa El-Kashak
- Department of Chemistry of Natural Compounds, National Research Centre, Dokki, Cairo 12622, Egypt
| | - Omayma A. Eldahshan
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo 11566, Egypt
- Center of Drug Discovery Research and Development, Ain Shams University, Abbassia, Cairo 11566, Egypt
- Correspondence: (O.A.E.); (L.H.); Tel.: +20-101-184-1951 (O.A.E.); +40-232-201-666 (L.H.)
| | - Lucian Hritcu
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, Bd. Carol I, No. 11, 700505 Iasi, Romania
- Correspondence: (O.A.E.); (L.H.); Tel.: +20-101-184-1951 (O.A.E.); +40-232-201-666 (L.H.)
| |
Collapse
|
20
|
Impellizzeri D, D’Amico R, Fusco R, Genovese T, Peritore AF, Gugliandolo E, Crupi R, Interdonato L, Di Paola D, Di Paola R, Cuzzocrea S, Siracusa R, Cordaro M. Açai Berry Mitigates Vascular Dementia-Induced Neuropathological Alterations Modulating Nrf-2/Beclin1 Pathways. Cells 2022; 11:cells11162616. [PMID: 36010690 PMCID: PMC9406985 DOI: 10.3390/cells11162616] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/19/2022] [Accepted: 08/20/2022] [Indexed: 12/14/2022] Open
Abstract
The second-most common cause of dementia is vascular dementia (VaD). The majority of VaD patients experience cognitive impairment, which is brought on by oxidative stress and changes in autophagic function, which ultimately result in neuronal impairment and death. In this study, we examine a novel method for reversing VaD-induced changes brought on by açai berry supplementation in a VaD mouse model. The purpose of this study was to examine the impact of açai berries on the molecular mechanisms underlying VaD in a mouse model of the disease that was created by repeated ischemia-reperfusion (IR) of the whole bilateral carotid artery. Here, we found that açai berry was able to reduce VaD-induced behavioral alteration, as well as hippocampal death, in CA1 and CA3 regions. These effects are probably due to the modulation of nuclear factor erythroid 2-related factor 2 (Nrf-2) and Beclin-1, suggesting a possible crosstalk between these molecular pathways. In conclusion, the protective effects of açai berry could be a good supplementation in the future for the management of vascular dementia.
Collapse
Affiliation(s)
- Daniela Impellizzeri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy
| | - Ramona D’Amico
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy
| | - Roberta Fusco
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy
| | - Tiziana Genovese
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy
| | - Alessio Filippo Peritore
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy
| | - Enrico Gugliandolo
- Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy
| | - Rosalia Crupi
- Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy
| | - Livia Interdonato
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy
| | - Davide Di Paola
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy
| | - Rosanna Di Paola
- Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy
- Correspondence: (R.D.P.); (S.C.)
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, Saint Louis, MO 63104, USA
- Correspondence: (R.D.P.); (S.C.)
| | - Rosalba Siracusa
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy
| | - Marika Cordaro
- Department of Biomedical, Dental and Morphological and Functional Imaging, University of Messina, Via Consolare Valeria, 98125 Messina, Italy
| |
Collapse
|