1
|
Salamanca-Fernández E, Espín-Moreno L, Olivas-Martínez A, Pérez-Cantero A, Martín-Rodríguez JL, Poyatos RM, Barbone F, Rosolen V, Mariuz M, Ronfani L, Palkovičová Murínová Ľ, Fábelová L, Szigeti T, Kakucs R, Sakhi AK, Haug LS, Lindeman B, Snoj Tratnik J, Kosjek T, Jacobs G, Voorspoels S, Jurdáková H, Górová R, Petrovičová I, Kolena B, Esteban M, Pedraza-Díaz S, Kolossa-Gehring M, Remy S, Govarts E, Schoeters G, Fernández MF, Mustieles V. Associations between Urinary Phthalate Metabolites with BDNF and Behavioral Function among European Children from Five HBM4EU Aligned Studies. TOXICS 2024; 12:642. [PMID: 39330570 PMCID: PMC11436069 DOI: 10.3390/toxics12090642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/20/2024] [Accepted: 08/30/2024] [Indexed: 09/28/2024]
Abstract
Based on toxicological evidence, children's exposure to phthalates may contribute to altered neurodevelopment and abnormal regulation of brain-derived neurotrophic factor (BDNF). We analyzed data from five aligned studies of the Human Biomonitoring for Europe (HBM4EU) project. Ten phthalate metabolites and protein BDNF levels were measured in the urine samples of 1148 children aged 6-12 years from Italy (NACII-IT cohort), Slovakia (PCB-SK cohort), Hungary (InAirQ-HU cohort) and Norway (NEBII-NO). Serum BDNF was also available in 124 Slovenian children (CRP-SLO cohort). Children's total, externalizing and internalizing behavioral problems were assessed using the Child Behavior Checklist at 7 years of age (only available in the NACII-IT cohort). Adjusted linear and negative binomial regression models were fitted, together with weighted quantile sum (WQS) regression models to assess phthalate mixture associations. Results showed that, in boys but not girls of the NACII-IT cohort, each natural-log-unit increase in mono-n-butyl phthalate (MnBP) and Mono(2-ethyl-5-oxohexyl) phthalate (MEOHP) was cross-sectionally associated with higher externalizing problems [incidence rate ratio (IRR): 1.20; 95% CI: 1.02, 1.42 and 1.26; 95% CI: 1.03, 1.55, respectively]. A suggestive mixture association with externalizing problems was also observed per each tertile mixture increase in the whole population (WQS-IRR = 1.15; 95% CI: 0.97, 1.36) and boys (IRR = 1.20; 95% CI: 0.96, 1.49). In NACII-IT, PCB-SK, InAirQ-HU and NEBII-NO cohorts together, urinary phthalate metabolites were strongly associated with higher urinary BDNF levels, with WQS regression confirming a mixture association in the whole population (percent change (PC) = 25.9%; 95% CI: 17.6, 34.7), in girls (PC = 18.6%; 95% CI: 7.92, 30.5) and mainly among boys (PC = 36.0%; 95% CI: 24.3, 48.9). Among CRP-SLO boys, each natural-log-unit increase in ∑DINCH concentration was associated with lower serum BDNF levels (PC: -8.8%; 95% CI: -16.7, -0.3). In the NACII-IT cohort, each natural-log-unit increase in urinary BDNF levels predicted worse internalizing scores among all children (IRR: 1.15; 95% CI: 1.00, 1.32). Results suggest that (1) children's exposure to di-n-butyl phthalate (DnBP) and di(2-ethylhexyl) phthalate (DEHP) metabolites is associated with more externalizing problems in boys, (2) higher exposure to DINCH may associate with lower systemic BDNF levels in boys, (3) higher phthalate exposure is associated with higher urinary BDNF concentrations (although caution is needed since the possibility of a "urine concentration bias" that could also explain these associations in noncausal terms was identified) and (4) higher urinary BDNF concentrations may predict internalizing problems. Given this is the first study to examine the relationship between phthalate metabolite exposure and BDNF biomarkers, future studies are needed to validate the observed associations.
Collapse
Affiliation(s)
- Elena Salamanca-Fernández
- Biomedical Research Center (CIBM), Department of Radiology and Physical Medicine, University of Granada, 18012 Granada, Spain
- Instituto de Investigación Biosanitaria (ibs.GRANADA), 18012 Granada, Spain
| | | | | | - Ainhoa Pérez-Cantero
- Biomedical Research Center (CIBM), Department of Radiology and Physical Medicine, University of Granada, 18012 Granada, Spain
| | - José L Martín-Rodríguez
- Instituto de Investigación Biosanitaria (ibs.GRANADA), 18012 Granada, Spain
- Servicio de Radiodiagnóstico, Hospital Universitario Clínico San Cecilio, 18012 Granada, Spain
| | - Rafael M Poyatos
- Unidad de Gestión Clínica de Laboratorios, Hospital Universitario Clínico San Cecilio, 18012 Granada, Spain
| | - Fabio Barbone
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Strada di Fiume 447, 34149 Trieste, Italy
| | - Valentina Rosolen
- Central Directorate for Health, Social Policies and Disability, Friuli Venezia Giulia Region, Via Cassa di Risparmio 10, 34121 Trieste, Italy
| | - Marika Mariuz
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Strada di Fiume 447, 34149 Trieste, Italy
| | - Luca Ronfani
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Strada di Fiume 447, 34149 Trieste, Italy
| | - Ľubica Palkovičová Murínová
- Department of Environmental Medicine, Faculty of Public Health, Slovak Medical University, 831 04 Bratislava, Slovakia
| | - Lucia Fábelová
- Department of Environmental Medicine, Faculty of Public Health, Slovak Medical University, 831 04 Bratislava, Slovakia
| | - Tamás Szigeti
- Center for Public Health and Pharmacy, Albert Flórián út 2-6, 1097 Budapest, Hungary
| | - Réka Kakucs
- Center for Public Health and Pharmacy, Albert Flórián út 2-6, 1097 Budapest, Hungary
| | - Amrit K Sakhi
- Norwegian Institute of Public Health, P.O. Box 222, Skøyen, N-0213 Oslo, Norway
| | - Line S Haug
- Norwegian Institute of Public Health, P.O. Box 222, Skøyen, N-0213 Oslo, Norway
| | - Birgitte Lindeman
- Norwegian Institute of Public Health, P.O. Box 222, Skøyen, N-0213 Oslo, Norway
| | | | - Tina Kosjek
- Jožef Stefan Institute, 1000 Ljubljana, Slovenia
| | - Griet Jacobs
- VITO GOAL, Flemish Institute for Technological Research (VITO), Boeretang 200, 2400 Mol, Belgium
| | - Stefan Voorspoels
- VITO GOAL, Flemish Institute for Technological Research (VITO), Boeretang 200, 2400 Mol, Belgium
| | - Helena Jurdáková
- Department of Analytical Chemistry, Faculty of Natural Sciences, Comenius University, Ilkovičova 6, Mlynská Dolina, 84215 Bratislava, Slovakia
| | - Renáta Górová
- Department of Analytical Chemistry, Faculty of Natural Sciences, Comenius University, Ilkovičova 6, Mlynská Dolina, 84215 Bratislava, Slovakia
| | - Ida Petrovičová
- Department of Zoology and Anthropology, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, Nabrezie mladeze 91, 94974 Nitra, Slovakia
| | - Branislav Kolena
- Department of Zoology and Anthropology, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, Nabrezie mladeze 91, 94974 Nitra, Slovakia
| | - Marta Esteban
- National Centre for Environmental Health, Instituto de Salud Carlos III, 28034 Madrid, Spain
| | - Susana Pedraza-Díaz
- National Centre for Environmental Health, Instituto de Salud Carlos III, 28034 Madrid, Spain
| | | | - Sylvie Remy
- VITO Health, Flemish Institute for Technological Research (VITO), 2400 Mol, Belgium
| | - Eva Govarts
- VITO Health, Flemish Institute for Technological Research (VITO), 2400 Mol, Belgium
| | - Greet Schoeters
- Department of Biomedical Sciences, University of Antwerp, 2610 Antwerp, Belgium
| | - Mariana F Fernández
- Biomedical Research Center (CIBM), Department of Radiology and Physical Medicine, University of Granada, 18012 Granada, Spain
- Instituto de Investigación Biosanitaria (ibs.GRANADA), 18012 Granada, Spain
- CIBER de Epidemiología y Salud Pública (CIBERESP), 28034 Madrid, Spain
| | - Vicente Mustieles
- Biomedical Research Center (CIBM), Department of Radiology and Physical Medicine, University of Granada, 18012 Granada, Spain
- Instituto de Investigación Biosanitaria (ibs.GRANADA), 18012 Granada, Spain
- CIBER de Epidemiología y Salud Pública (CIBERESP), 28034 Madrid, Spain
- Servicio de Radiodiagnóstico, Hospital Universitario Clínico San Cecilio, 18012 Granada, Spain
| |
Collapse
|
2
|
Morales-Grahl E, Hilz EN, Gore AC. Regrettable Substitutes and the Brain: What Animal Models and Human Studies Tell Us about the Neurodevelopmental Effects of Bisphenol, Per- and Polyfluoroalkyl Substances, and Phthalate Replacements. Int J Mol Sci 2024; 25:6887. [PMID: 38999997 PMCID: PMC11241431 DOI: 10.3390/ijms25136887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/14/2024] [Accepted: 06/19/2024] [Indexed: 07/14/2024] Open
Abstract
In recent decades, emerging evidence has identified endocrine and neurologic health concerns related to exposure to endocrine-disrupting chemicals (EDCs), including bisphenol A (BPA), certain per- and polyfluoroalkyl compounds (PFASs), and phthalates. This has resulted in consumer pressure to remove these chemicals from the market, especially in food-contact materials and personal care products, driving their replacement with structurally or functionally similar substitutes. However, these "new-generation" chemicals may be just as or more harmful than their predecessors and some have not received adequate testing. This review discusses the research on early-life exposures to new-generation bisphenols, PFASs, and phthalates and their links to neurodevelopmental and behavioral alterations in zebrafish, rodents, and humans. As a whole, the evidence suggests that BPA alternatives, especially BPAF, and newer PFASs, such as GenX, can have significant effects on neurodevelopment. The need for further research, especially regarding phthalate replacements and bio-based alternatives, is briefly discussed.
Collapse
Affiliation(s)
| | | | - Andrea C. Gore
- Division of Pharmacology and Toxicology, The University of Texas at Austin, Austin, TX 78712, USA; (E.M.-G.); (E.N.H.)
| |
Collapse
|
3
|
Gerofke A, Lange R, Vogel N, Schmidt P, Weber T, David M, Frederiksen H, Baken K, Govarts E, Gilles L, Martin LR, Martinsone Ž, Santonen T, Schoeters G, Scheringer M, Domínguez-Romero E, López ME, Calvo AC, Koch HM, Apel P, Kolossa-Gehring M. Phthalates and substitute plasticizers: Main achievements from the European human biomonitoring initiative HBM4EU. Int J Hyg Environ Health 2024; 259:114378. [PMID: 38631089 DOI: 10.1016/j.ijheh.2024.114378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 04/07/2024] [Accepted: 04/07/2024] [Indexed: 04/19/2024]
Abstract
Phthalates and the substitute plasticizer DINCH belong to the first group of priority substances investigated by the European Human Biomonitoring Initiative (HBM4EU) to answer policy-relevant questions and safeguard an efficient science-to-policy transfer of results. Human internal exposure levels were assessed using two data sets from all European regions and Israel. The first collated existing human biomonitoring (HBM) data (2005-2019). The second consisted of new data generated in the harmonized "HBM4EU Aligned Studies" (2014-2021) on children and teenagers for the ten most relevant phthalates and DINCH, accompanied by a quality assurance/quality control (QA/QC) program for 17 urinary exposure biomarkers. Exposures differed between countries, European regions, age groups and educational levels. Toxicologically derived Human biomonitoring guidance values (HBM-GVs) were exceeded in up to 5% of the participants of the HBM4EU Aligned Studies. A mixture risk assessment (MRA) including five reprotoxic phthalates (DEHP, DnBP, DiBP, BBzP, DiNP) revealed that for about 17% of the children and teenagers, health risks cannot be excluded. Concern about male reproductive health emphasized the need to include other anti-androgenic substances for MRA. Contaminated food and the use of personal care products were identified as relevant exposure determinants paving the way for new regulatory measures. Time trend analyses verified the efficacy of regulations: especially for the highly regulated phthalates exposure dropped significantly, while levels of the substitutes DINCH and DEHTP increased. The HBM4EU e-waste study, however, suggests that workers involved in e-waste management may be exposed to higher levels of restricted phthalates. Exposure-effect association studies indicated the relevance of a range of endpoints. A set of HBM indicators was derived to facilitate and accelerate science-to-policy transfer. Result indicators allow different groups and regions to be easily compared. Impact indicators allow health risks to be directly interpreted. The presented results enable successful science-to-policy transfer and support timely and targeted policy measures.
Collapse
Affiliation(s)
- Antje Gerofke
- German Environment Agency (UBA), Corrensplatz 1, 14195, Berlin, Germany.
| | - Rosa Lange
- German Environment Agency (UBA), Corrensplatz 1, 14195, Berlin, Germany
| | - Nina Vogel
- German Environment Agency (UBA), Corrensplatz 1, 14195, Berlin, Germany
| | - Phillipp Schmidt
- German Environment Agency (UBA), Corrensplatz 1, 14195, Berlin, Germany
| | - Till Weber
- German Environment Agency (UBA), Corrensplatz 1, 14195, Berlin, Germany
| | - Madlen David
- German Environment Agency (UBA), Corrensplatz 1, 14195, Berlin, Germany
| | - Hanne Frederiksen
- Department of Growth and Reproduction, Copenhagen University Hospital-Rigshospitalet, 2100, Copenhagen, Denmark; International Centre for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Copenhagen University Hospital-Rigshospitalet, 2100, Copenhagen, Denmark
| | - Kirsten Baken
- Brabant Advies, Brabantlaan 3, 5216 TV 's, Hertogenbosch, the Netherlands
| | - Eva Govarts
- VITO Health, Flemish Institute for Technological Research (VITO), 2400 Mol, Belgium
| | - Liese Gilles
- VITO Health, Flemish Institute for Technological Research (VITO), 2400 Mol, Belgium
| | | | - Žanna Martinsone
- Institute of Occupational Safety and Environmental Health, Rīga Stradiņš University, Dzirciema 16, LV-1007, Riga, Latvia
| | - Tiina Santonen
- Finnish Institute of Occupational Health (FIOH), P.O. Box 40, FI-00032, Tyoterveyslaitos, Finland
| | - Greet Schoeters
- VITO Health, Flemish Institute for Technological Research (VITO), 2400 Mol, Belgium; University of Antwerp, Toxicological Center, Universiteitsplein 1, 2610, Wilrijk, Belgium; Department of Biomedical Sciences, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
| | - Martin Scheringer
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, 611 37, Czech Republic
| | - Elena Domínguez-Romero
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, 611 37, Czech Republic
| | - Marta Esteban López
- Environmental Toxicology Unit, National Centre for Environmental Health, Instituto de Salud Carlos III (ISCIII), 28220, Majadahonda, Spain
| | - Argelia Castaño Calvo
- Environmental Toxicology Unit, National Centre for Environmental Health, Instituto de Salud Carlos III (ISCIII), 28220, Majadahonda, Spain
| | - Holger M Koch
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance - Institute of the Ruhr-University Bochum (IPA), Bürkle-de-la-Camp-Platz 1, 44789 Bochum, Germany
| | - Petra Apel
- German Environment Agency (UBA), Corrensplatz 1, 14195, Berlin, Germany
| | | |
Collapse
|
4
|
Rosolen V, Giordani E, Mariuz M, Parpinel M, Mustieles V, Gilles L, Govarts E, Rodriguez Martin L, Baken K, Schoeters G, Sepai O, Sovcikova E, Fabelova L, Kohoutek J, Jensen TK, Covaci A, Roggeman M, Melymuk L, Klánová J, Castano A, Esteban López M, Barbone F. Cognitive Performance and Exposure to Organophosphate Flame Retardants in Children: Evidence from a Cross-Sectional Analysis of Two European Mother-Child Cohorts. TOXICS 2023; 11:878. [PMID: 37999530 PMCID: PMC10675051 DOI: 10.3390/toxics11110878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 10/12/2023] [Accepted: 10/19/2023] [Indexed: 11/25/2023]
Abstract
The knowledge of the effects of organophosphate flame retardants on children's neurodevelopment is limited. The purpose of the present research is to evaluate the association between exposure to organophosphate flame retardants and children's neurodevelopment in two European cohorts involved in the Human Biomonitoring Initiative Aligned Studies. The participants were school-aged children belonging to the Odense Child Cohort (Denmark) and the PCB cohort (Slovakia). In each cohort, the children's neurodevelopment was assessed through the Full-Scale Intelligence Quotient score of the Wechsler Intelligence Scale for Children, using two different editions. The children's urine samples, collected at one point in time, were analyzed for several metabolites of organophosphate flame retardants. The association between neurodevelopment and each organophosphate flame retardant metabolite was explored by applying separate multiple linear regressions based on the approach of MM-estimation in each cohort. In the Danish cohort, the mean ± standard deviation for the neurodevelopment score was 98 ± 12; the geometric mean (95% confidence interval (95% CI)) of bis(1,3-dichloro-2-propyl) phosphate (BDCIPP) standardized by creatinine (crt) was 0.52 µg/g crt (95% CI = 0.49; 0.60), while that of diphenyl phosphate (DPHP) standardized by crt was 1.44 µg/g crt (95% CI = 1.31; 1.58). The neurodevelopment score showed a small, negative, statistically imprecise trend with BDCIPP standardized by crt (β = -1.30; 95%CI = -2.72; 0.11; p-value = 0.07) and no clear association with DPHP standardized by crt (β = -0.98; 95%CI = -2.96; 0.99; p-value = 0.33). The neurodevelopment score showed a negative trend with BDCIPP (β = -1.42; 95% CI = -2.70; -0.06; p-value = 0.04) and no clear association with DPHP (β = -1.09; 95% CI = -2.87; 0.68; p-value = 0.23). In the Slovakian cohort, the mean ± standard deviation for the neurodevelopment score was 81 ± 15; the geometric mean of BDCIPP standardized by crt was 0.18 µg/g crt (95% CI = 0.16; 0.20), while that of DPHP standardized by crt was 2.24 µg/g crt (95% CI = 2.00; 3.52). The association of the neurodevelopment score with BDCIPP standardized by crt was -0.49 (95%CI = -1.85; 0.87; p-value = 0.48), and with DPHP standardized by crt it was -0.35 (95%CI = -1.90; 1.20; p-value = 0.66). No clear associations were observed between the neurodevelopment score and BDCIPP/DPHP concentrations that were not standardized by crt. No clear associations were observed with bis(1-chloro-2-propyl) phosphate (BCIPP) in either cohort, due to the low detection frequency of this compound. In conclusion, this study provides only limited evidence of an inverse association between neurodevelopment and exposure to BDCIPP and DPHP. The timing of exposure and effect modification of other organophosphate flame retardant metabolites and other substances should be the subject of further investigations that address this scientific hypothesis.
Collapse
Affiliation(s)
- Valentina Rosolen
- Central Directorate for Health, Social Policies and Disability, Friuli Venezia Giulia Region, Via Cassa Di Risparmio 10, 34121 Trieste, Italy
| | - Elisa Giordani
- Department of Medicine, University of Udine, Via Colugna 50, 33100 Udine, Italy
| | - Marika Mariuz
- Department of Medicine, University of Udine, Via Colugna 50, 33100 Udine, Italy
| | - Maria Parpinel
- Department of Medicine, University of Udine, Via Colugna 50, 33100 Udine, Italy
| | - Vicente Mustieles
- Center for Biomedical Research, University of Granada, 18012 Granada, Spain
- Instituto de Investigación Biosanitaria de Granada, 18012 Granada, Spain
- Consortium for Biomedical Research in Epidemiology and Public Health, 28029 Madrid, Spain
| | - Liese Gilles
- VITO Health, Flemish Institute for Technological Research (VITO), 2400 Mol, Belgium
| | - Eva Govarts
- VITO Health, Flemish Institute for Technological Research (VITO), 2400 Mol, Belgium
| | | | - Kirsten Baken
- BrabantAdvies, Brabantlaan 3, 5216 TV ‘s-Hertogenbosch, The Netherlands
| | - Greet Schoeters
- Department of Biomedical Sciences & Toxicological Centre, University of Antwerp—Campus Drie Eiken, Universiteitsplein 1, Wilrijk, 2610 Antwerp, Belgium
| | - Ovnair Sepai
- Toxicology Department, Science Group, UK Health Security Agency, Harwell Science and Innovation Campus, Didcot OX11 0RQ, UK
| | - Eva Sovcikova
- Department of Environmental Medicine, Faculty of Public Health, Slovak Medical University, 83303 Bratislava, Slovakia
| | - Lucia Fabelova
- Department of Environmental Medicine, Faculty of Public Health, Slovak Medical University, 83303 Bratislava, Slovakia
| | - Jiři Kohoutek
- RECETOX, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| | - Tina Kold Jensen
- Department of Clinical Pharmacology, Pharmacy and Environmental Medicine, Institute of Public Health, University of Southern Denmark, 5000 Odense, Denmark
| | - Adrian Covaci
- Toxicological Centre, University of Antwerp, Wilrijk, 2610 Antwerp, Belgium
| | - Maarten Roggeman
- Toxicological Centre, University of Antwerp, Wilrijk, 2610 Antwerp, Belgium
| | - Lisa Melymuk
- RECETOX, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| | - Jana Klánová
- RECETOX, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| | - Argelia Castano
- National Centre for Environmental Health, Instituto de Salud Carlos III, 28220 Majadahonda, Spain
| | - Marta Esteban López
- National Centre for Environmental Health, Instituto de Salud Carlos III, 28220 Majadahonda, Spain
| | - Fabio Barbone
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Strada di Fiume, 447, 34149 Trieste, Italy
| |
Collapse
|