1
|
Nino-Suastegui S, Painter E, Sprankle JW, Morrison JJ, Faust JA, Gray R. Non-targeted analysis and suspect screening of organic contaminants in temperate snowfall using liquid chromatography high-resolution mass spectrometry. ENVIRONMENTAL RESEARCH 2025; 266:120494. [PMID: 39622354 DOI: 10.1016/j.envres.2024.120494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 11/05/2024] [Accepted: 11/29/2024] [Indexed: 12/06/2024]
Abstract
Contaminants released into the atmosphere that undergo regional and long-range transport can deposit back to Earth through snowfall. When snow melts, these contaminants re-enter the environment, sometimes far from their original emission sources. Here we present the first comprehensive characterization of organic contaminants in snow from North America. Fresh snowfall samples were collected in the central United States over a three-year period and measured by liquid chromatography high-resolution mass spectrometry for suspect screening and non-targeted analysis. The resulting data set was screened against experimental MS/MS libraries and underwent supplemental in silico MS/MS analysis. In total, 91 possible compounds were tentatively identified in snow, and 17 were successfully confirmed and semi-quantified with reference standards. These contaminants were mostly anthropogenic in origin and included six herbicides, three insect repellants, one insecticide metabolite, and one fungicide. The most prominent compounds present in all samples were N-cyclohexylformamide (known contaminant in tire leachate), DEET (insect repellent), and dimethyl phthalate (plasticizer), with median deposition fluxes of 4032, 284, and 262 ng m-2, respectively. Three additional compounds were detected in 100% of samples: coumarin (phytochemical and fragrance additive), 5-methylbenzotriazole (antifreeze component), and quinoline (heterocyclic aromatic). The Peto-Peto test revealed statistically significant differences in deposition fluxes for these six contaminants (p < 0.05), with weak but statistically significant positive associations between coumarin and DEET and between coumarin and quinoline according to a Kendall's tau correlation analysis. These findings demonstrate the utility of in silico analysis to complement MS/MS matching with experimental databases. Even so, thousands of unidentified features remained in the data set, highlighting the limitations of current strategies in non-targeted analysis of environmental samples.
Collapse
Affiliation(s)
| | - Eve Painter
- The College of Wooster, Department of Chemistry, 943 College Mall, Wooster, OH, 44691, USA
| | - Jameson W Sprankle
- The College of Wooster, Department of Chemistry, 943 College Mall, Wooster, OH, 44691, USA; The College of Wooster, Department of Earth Sciences, 944 College Mall, Wooster, OH, 44691, USA
| | - Jillian J Morrison
- The Ohio State University, Department of Statistics, 1958 Neil Ave, Columbus, OH, 43210, USA
| | - Jennifer A Faust
- The College of Wooster, Department of Chemistry, 943 College Mall, Wooster, OH, 44691, USA
| | - Rebekah Gray
- The College of Wooster, Department of Chemistry, 943 College Mall, Wooster, OH, 44691, USA; Goucher College, Department of Chemistry, 1021 Dulaney Valley Rd, Baltimore, MD, 21204, USA.
| |
Collapse
|
2
|
Song Z, Zhang L, Tian C, Li K, Chen P, Jia Z, Hu P, Cui S. Chemical characteristics, distribution patterns, and source apportionment of particulate elements and inorganic ions in snowpack in Harbin, China. CHEMOSPHERE 2024; 349:140886. [PMID: 38065265 DOI: 10.1016/j.chemosphere.2023.140886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 11/29/2023] [Accepted: 12/02/2023] [Indexed: 01/10/2024]
Abstract
Snowpack, which serves as a natural archive of atmospheric deposition of multiple pollutants, is a practical environmental media that can be used for assessing atmospheric records and input of the pollutants to the surface environments and ecosystems. A total of 29 snowpack samples were collected at 20 sampling sites covering three different functional areas of a major city (Harbin) in Northeast China. Two samples at the "snow layer" and one or two samples at the "particulate layer" were collected at each sampling site in the industrial areas characterized by multi-layer snowpack, and only one sample at the "snow layer" was collected at each sampling site in the cultural and recreational as well as agricultural areas. The snow contents of 31 elements (Na, Mg, Al, K, Ca, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Y, Cd, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, and Pb) and six major water-soluble inorganic ions (WSIIs, NH4+, K+, Ca2+, NO2-, NO3-, and SO42-) were analyzed. The total mass of the measured elements is dominated (95.8%-99.2%) by crustal elements. Heavy metals only account for 0.77%-4.07% of the total mass of the elements, but are occasionally close to or even above the standard limit in the "Environmental Quality Standards for Surface Water" of China (GB3838-2002). SO42- and Ca2+ are the main anion and cation, accounting for 34.9%-81.1% and 1.43%-29.9%, respectively, of the measured total ions. Total atmospheric deposition of crustal elements and heavy metals is dominated by wet deposition in areas near the petrochemical plant and by dry deposition in areas near the cement plant. Coal combustion, industrial emissions, and traffic-related activities lead to the enrichment of heavy metals in the snowpacks of urban and suburban areas, while coal combustion and biomass burning contribute to pollution in rural areas. The cities and regions situated in the western, northwestern, northern, and northeastern directions from Harbin are potential source regions of these pollutant species.
Collapse
Affiliation(s)
- Zihan Song
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China; Research Center for Eco-Environment Protection of Songhua River Basin, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Leiming Zhang
- Air Quality Research Division, Science and Technology Branch, Environment and Climate Change Canada, Toronto, Ontario, M3H 5T4, Canada
| | - Chongguo Tian
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, 264003, China
| | - Kunyang Li
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China; Research Center for Eco-Environment Protection of Songhua River Basin, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Pengyu Chen
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China; Research Center for Eco-Environment Protection of Songhua River Basin, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Zhaoyang Jia
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China; Research Center for Eco-Environment Protection of Songhua River Basin, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Peng Hu
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing, 100038, China.
| | - Song Cui
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China; Research Center for Eco-Environment Protection of Songhua River Basin, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China.
| |
Collapse
|
3
|
Mamontova EA, Mamontov AA. Persistent Organic Pollutants and Suspended Particulate Matter in Snow of Eastern Siberia in 2009-2023: Temporal Trends and Effects of Meteorological Factors and Recultivation Activities at Former Industrial Area. TOXICS 2023; 12:11. [PMID: 38250967 PMCID: PMC10819055 DOI: 10.3390/toxics12010011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/18/2023] [Accepted: 12/20/2023] [Indexed: 01/23/2024]
Abstract
Suspended particulate matter (SPM), polychlorinated biphenyls (PCBs), and organochlorine pesticides (OCP) were studied in the snow cover at urban and suburban localities in the Irkutsk region, Eastern Siberia for their temporal variations in 2009-2023, daily deposition fluxes (DDFs), and effects of some meteorological factors, as well as the effects of different technogenic activities in the industrial area of the former organochlorine enterprises of Usol'ekhimprom. SPM loads at both stations were found to be at a low level of pollution. The levels of HCB, α + γ-HCH, and ∑p,p'-DDX were lower than Russian maximum permissible levels (MPLs) in drinking water, groundwater, and surface water for household drinking and cultural purposes. The sums of all organochlorine compounds studied in snow were higher than the MPL in freshwater water bodies for fishery purposes. The levels of the DDFs of HCHs, DDTs, and heptachlorinated PCB decreased, di- and trichlorinated PCB levels increased, and HCB levels changed at a polynomial line during 2009-2023. The change in the relative composition of PCBs was found as a result of recultivation activities at the industrial area of the former organochlorine enterprise of Usol'ekhimprom. The air humidity and temperature are the key meteorological factors affecting the DDFs of PCBs and OCPs.
Collapse
|
4
|
Moskovchenko DV, Pozhitkov RY, Minkina TM, Sushkova SN. Trace Metals and Polycyclic Aromatic Hydrocarbons in the Snow Cover of the City of Nizhnevartovsk (Western Siberia, Russia). ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2023; 84:101-118. [PMID: 36580131 DOI: 10.1007/s00244-022-00974-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 12/14/2022] [Indexed: 06/17/2023]
Abstract
The city of Nizhnevartovsk is one of the centers of oil production in Western Siberia (Russia). A survey of the contents of trace metals and metalloids (TMMs) and polycyclic aromatic hydrocarbons (PAHs) in the snow cover was conducted there. It was aimed to study insoluble particles in the snow where the predominant fraction of pollutants in urban areas is concentrated. In contrast to the background area, the deposition of TMMs in Nizhnevartovsk increases by 1-2 orders of magnitude. The deposition of V and Mn increases by 37 and 88 times, respectively, and the deposition of W increases at most (by 98 times). Abrasion of spikes of winter tires, abrasion of metal parts of vehicles, and combustion of motor fuels cause the pollution with W, Co, and V, respectively. The total content of 12 EPA PAHs in the particulate fraction of snow in the urban area averaged 148.2 ng l-1, and the deposition rate was 17.0 μg/m2. In contrast to the background area, the fraction of high molecular weight 5-6-ring PAHs significantly increases in the city, especially dibenzo(a,h)anthracene (DahA). The indicative ratios of PAHs showed that the snowpack composition was influenced by both petrogenic and pyrogenic sources. The proportion of pyrogenic sources is the highest in the low-rise residential area due to fuel combustion to produce heat and burning of household waste. The impact of motor transport is also major and is manifested in the maximum pollution in areas of heavy traffic. No emissions of PAHs from oil spills from the nearby Samotlor oil field have been identified. It is concluded that the hydrocarbon pollution of the atmosphere from the field weakens during the winter period compared to the warm season. Application of the integral TDF index characterizes the majority (72%) of the studied samples as lowly polluted, 24% of the observation sites are classified as moderately polluted, and one (4%), as highly polluted. The maximum TDF values are observed in the industrial area. The data obtained during the study allowed us to identify the central areas and sites along the roads with the heaviest traffic as the most contaminated areas of the city. This study can be a reference for air pollution monitoring in Nizhnevartovsk.
Collapse
Affiliation(s)
- D V Moskovchenko
- Tyumen State University, Volodarskogo St., Tyumen, Russia, 625003.
- Tyumen Scientific Centre, Malygina St., Tyumen, Russia, 625026.
| | - R Y Pozhitkov
- Tyumen Scientific Centre, Malygina St., Tyumen, Russia, 625026
| | - T M Minkina
- Southern Federal University, Rostov-On-Don, Russia
| | - S N Sushkova
- Southern Federal University, Rostov-On-Don, Russia
| |
Collapse
|