1
|
Zhao J, Ji H, Li K, Yu G, Zhou S, Xiao Q, Dunlop M, Theodoratou E, Li X, Ding K. Decoding the genetic and environmental forces in propelling the surge of early-onset colorectal cancer. Chin Med J (Engl) 2025:00029330-990000000-01522. [PMID: 40251115 DOI: 10.1097/cm9.0000000000003601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Indexed: 04/20/2025] Open
Abstract
ABSTRACT Early-onset colorectal cancer (EOCRC) shows a different epidemiological trend compared to later-onset colorectal cancer, with its incidence rising in most regions and countries worldwide. However, the reasons behind this trend remain unclear. The etiology of EOCRC is complex and could involve both genetic and environmental factors. Apart from Lynch syndrome and Familial Adenomatous Polyposis, sporadic EOCRC exhibits a broad spectrum of pathogenic germline mutations, genetic polymorphisms, methylation changes, and chromosomal instability. Early-life exposures and environmental risk factors, including lifestyle and dietary risk factors, have been found to be associated with EOCRC risk. Meanwhile, specific chronic diseases, such as inflammatory bowel disease, diabetes, and metabolic syndrome, have been associated with EOCRC. Interactions between genetic and environmental risk factors in EOCRC have also been explored. Here we present findings from a narrative review of epidemiological studies on the assessment of early-life exposures, of EOCRC-specific environmental factors, and their interactions with susceptible loci. We also present results from EOCRC-specific genome-wide association studies that could be used to perform Mendelian randomization analyses to ascertain potential causal links between environmental factors and EOCRC.
Collapse
Affiliation(s)
- Jianhui Zhao
- School of Public Health, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Haosen Ji
- School of Public Health, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Kangning Li
- School of Public Health, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Guirong Yu
- School of Public Health, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Siyun Zhou
- School of Public Health, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Qian Xiao
- Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang 310009, China
| | - Malcolm Dunlop
- Centre for Global Health, Usher Institute, University of Edinburgh, Edinburgh EH8 9DX, United Kingdom
- Colon Cancer Genetics Group, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom
| | - Evropi Theodoratou
- Centre for Global Health, Usher Institute, University of Edinburgh, Edinburgh EH8 9DX, United Kingdom
- Colon Cancer Genetics Group, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom
| | - Xue Li
- School of Public Health, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
- Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang 310009, China
| | - Kefeng Ding
- Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang 310009, China
| |
Collapse
|
2
|
Hong P, Pang Y, Xu J, Wang Q, Lin H, Ruan Y, Shu Y, Zhang K, Yee Leung KM. Transformation fate of bisphenol A in aerobic denitrifying cultures and its coercive mechanism on the nitrogen transformation pathway. ENVIRONMENTAL RESEARCH 2025; 268:120816. [PMID: 39800300 DOI: 10.1016/j.envres.2025.120816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/07/2025] [Accepted: 01/08/2025] [Indexed: 01/18/2025]
Abstract
Bisphenol A (BPA) is a commonly used endocrine-disrupting chemical found in high levels in wastewater worldwide. Aerobic denitrification is a promising alternative to conventional nitrogen removal processes. However, the effects of BPA on this novel nitrogen removal process have rarely been reported. Herein, we investigated the removal and interaction effects of BPA (0, 0.1, 1, and 10 mg/L) in aerobic denitrifying cultures. Our experimental results demonstrated that the aerobic denitrification system could remove 66%-86% of BPA from wastewater. Fourier transform infrared spectroscopy revealed that polysaccharides and amides were the primary sites for adsorption. An increase in the type and number of intermolecular hydrogen bonds might enhance the ability of aerobic denitrifying cultures to adsorb BPA. Adsorption kinetics analysis demonstrated that inhomogeneous multilayer adsorption was the leading cause of BPA removal. Adsorbed BPA decreased the sedimentation, flocculation, and hydrophobicity of aerobic denitrifying cultures, triggering changes in the levels of proteins and polysaccharides in extracellular polymeric substances. As the influent BPA increased from 0 to 10 mg/L, the nitrate-nitrogen and total organic carbon in the reactor effluent increased from 0.4 ± 0.2 and 26 ± 7.9 mg/L to 18.8 ± 9.3 and 116.2 ± 55.6 mg/L, respectively. BPA (initial concentration range: 1-10 mg/L) significantly influenced the abundance of genes involved in the nitrogen transformation pathway, contributing to the increase in the abundance of gaseous NOx-transformed genes and altering the relative abundance of denitrifying bacteria, particularly Thauera. Correlation analyses revealed that Pseudomonas, Thauera, and AKYH767 are important for maintaining systemic nitrogen transformations and BPA adsorption.
Collapse
Affiliation(s)
- Pei Hong
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, Provincial Key Laboratory of Biotic Environment and Ecological Safety in Anhui, School of Ecology and Environment, Anhui Normal University, Wuhu, 241002, China; State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Hong Kong, Kowloon, 999077, China
| | - Yu Pang
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, Provincial Key Laboratory of Biotic Environment and Ecological Safety in Anhui, School of Ecology and Environment, Anhui Normal University, Wuhu, 241002, China
| | - Jing Xu
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Hong Kong, Kowloon, 999077, China
| | - Qi Wang
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Hong Kong, Kowloon, 999077, China
| | - Huiju Lin
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Hong Kong, Kowloon, 999077, China
| | - Yuefei Ruan
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Hong Kong, Kowloon, 999077, China
| | - Yilin Shu
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, Provincial Key Laboratory of Biotic Environment and Ecological Safety in Anhui, School of Ecology and Environment, Anhui Normal University, Wuhu, 241002, China
| | - Kai Zhang
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Hong Kong, Kowloon, 999077, China; National Observation and Research Station of Coastal Ecological Environments in Macao, Macao Environmental Research Institute, Macau University of Science and Technology, Macao, 999078, China
| | - Kenneth Mei Yee Leung
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Hong Kong, Kowloon, 999077, China; School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Hong Kong, Kowloon, 999077, China
| |
Collapse
|
3
|
Shin MW, Kim SH. Hidden link between endocrine-disrupting chemicals and pediatric obesity. Clin Exp Pediatr 2025; 68:199-222. [PMID: 39608365 PMCID: PMC11884955 DOI: 10.3345/cep.2024.00556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 10/22/2024] [Accepted: 10/22/2024] [Indexed: 11/30/2024] Open
Abstract
The increasing prevalence of pediatric obesity has emerged as a significant public health concern. Among various contributing factors, exposure to endocrine-disrupting chemicals (EDCs) has gained recognition for its potential role. EDCs, including bisphenols, phthalates, per- and polyfluoroalkyl substances, polycyclic aromatic hydrocarbons, and organochlorines, disrupt hormonal regulation and metabolic processes, contributing to alterations in fat storage, appetite regulation, and insulin sensitivity. This study offers a comprehensive review of the current research linking EDC exposure to pediatric obesity by integrating the findings from experimental and epidemiological studies. It also addresses the complexities of interpreting this evidence in the context of public health, highlighting the urgent need for further research.
Collapse
Affiliation(s)
- Min Won Shin
- Department of Pediatrics, Inje University Sanggye Paik Hospital, Seoul, Korea
| | - Shin-Hye Kim
- Department of Pediatrics, Inje University Sanggye Paik Hospital, Seoul, Korea
| |
Collapse
|
4
|
Wulczynski M, Brooks SPJ, Green J, Matias F, Kalmokoff M, Green-Johnson JM, Clarke ST. Environmental enrichment with nylon gnaw sticks introduces variation in Sprague Dawley rat immune and lower gastrointestinal parameters with differences between sexes. Anim Microbiome 2025; 7:12. [PMID: 39891232 PMCID: PMC11786542 DOI: 10.1186/s42523-024-00369-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 12/18/2024] [Indexed: 02/03/2025] Open
Abstract
BACKGROUND Environmental enrichment (EE) is commonly included as an important component of animal housing to promote well being of laboratory animals; however, much remains to be learned about the impact of chewable forms of EE on experimental outcomes in the context of nutritional and microbiome-related studies, and whether outcomes differ between sexes. In the present study, nylon chew bones (gnaw sticks, GS) were evaluated for their effects on fermentation profiles, microbial community structure, and cytokine profiles of gastrointestinal and systemic tissues in pair-housed female and male Sprague Dawley (SD) rats. RESULTS Food consumption and weight gain were not significantly altered by access to GS. Cecal short-chain fatty acid and branched-chain fatty acid profiles significantly differed between sexes in rats with access to GS, and alpha diversity of the microbiome decreased in females provided GS. Sex-related tissue cytokine profiles also significantly differed between rats with and without access to GS. CONCLUSIONS These findings indicate that including GS can influence microbiota and immune-related parameters, in a sex dependent manner. This shows that environmental enrichment strategies need to be clearly reported in publications to properly evaluate and compare experimental results, especially with respect to the use of chewable EE in the context of studies examining diet, microbiome and immune parameters.
Collapse
Affiliation(s)
- Mark Wulczynski
- Applied Bioscience Graduate Program, Faculty of Science, Ontario Tech University, Oshawa, ON, Canada
| | | | - Judy Green
- Bureau of Nutritional Sciences, Health Canada, Ottawa, ON, Canada
| | - Fernando Matias
- Bureau of Nutritional Sciences, Health Canada, Ottawa, ON, Canada
| | - Martin Kalmokoff
- Kentville Research and Development Centre, Agriculture and Agri-Food Canada, Kentville, NS, Canada
| | - Julia M Green-Johnson
- Applied Bioscience Graduate Program, Faculty of Science, Ontario Tech University, Oshawa, ON, Canada
| | - Sandra T Clarke
- Applied Bioscience Graduate Program, Faculty of Science, Ontario Tech University, Oshawa, ON, Canada.
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, ON, Canada.
| |
Collapse
|
5
|
Luque G, Ortiz P, Torres-Sánchez A, Ruiz-Rodríguez A, López-Moreno A, Aguilera M. Impact of Ex Vivo Bisphenol A Exposure on Gut Microbiota Dysbiosis and Its Association with Childhood Obesity. J Xenobiot 2025; 15:14. [PMID: 39846546 PMCID: PMC11755556 DOI: 10.3390/jox15010014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/09/2025] [Accepted: 01/14/2025] [Indexed: 01/24/2025] Open
Abstract
Dietary exposure to the plasticiser bisphenol A (BPA), an obesogenic and endocrine disruptor from plastic and epoxy resin industries, remains prevalent despite regulatory restriction and food safety efforts. BPA can be accumulated in humans and animals, potentially exerting differential health effects based on individual metabolic capacity. This pilot study examines the impact of direct ex vivo BPA exposure on the gut microbiota of obese and normal-weight children, using 16S rRNA amplicon sequencing and anaerobic culturing combined methods. Results showed that direct xenobiotic exposure induced modifications in microbial taxa relative abundance, community structure, and diversity. Specifically, BPA reduced the abundance of bacteria belonging to the phylum Bacteroidota, while taxa from the phylum Actinomycetota were promoted. Consistently, Bacteroides species were classified as sensitive to BPA, whereas bacteria belonging to the class Clostridia were identified as resistant to BPA in our culturomics analysis. Some of the altered bacterial abundance patterns were common for both the BPA-exposed groups and the obese non-exposed group in our pilot study. These findings were also corroborated in a larger cohort of children. Future research will be essential to evaluate these microbial taxa as potential biomarkers for biomonitoring the effect of BPA and its role as an obesogenic substance in children.
Collapse
Affiliation(s)
- Gracia Luque
- Human Microbiota Laboratory, Institute of Nutrition and Food Technology “José Mataix” (INYTA), Centre of Biomedical Research, University of Granada, 18016 Granada, Spain; (G.L.); (P.O.); (A.T.-S.); (A.R.-R.); (M.A.)
- Department of Microbiology, Faculty of Pharmacy, University of Granada, Campus of Cartuja, 18071 Granada, Spain
| | - Pilar Ortiz
- Human Microbiota Laboratory, Institute of Nutrition and Food Technology “José Mataix” (INYTA), Centre of Biomedical Research, University of Granada, 18016 Granada, Spain; (G.L.); (P.O.); (A.T.-S.); (A.R.-R.); (M.A.)
- Department of Microbiology, Faculty of Pharmacy, University of Granada, Campus of Cartuja, 18071 Granada, Spain
| | - Alfonso Torres-Sánchez
- Human Microbiota Laboratory, Institute of Nutrition and Food Technology “José Mataix” (INYTA), Centre of Biomedical Research, University of Granada, 18016 Granada, Spain; (G.L.); (P.O.); (A.T.-S.); (A.R.-R.); (M.A.)
- Department of Microbiology, Faculty of Pharmacy, University of Granada, Campus of Cartuja, 18071 Granada, Spain
| | - Alicia Ruiz-Rodríguez
- Human Microbiota Laboratory, Institute of Nutrition and Food Technology “José Mataix” (INYTA), Centre of Biomedical Research, University of Granada, 18016 Granada, Spain; (G.L.); (P.O.); (A.T.-S.); (A.R.-R.); (M.A.)
- Department of Microbiology, Faculty of Pharmacy, University of Granada, Campus of Cartuja, 18071 Granada, Spain
| | - Ana López-Moreno
- Human Microbiota Laboratory, Institute of Nutrition and Food Technology “José Mataix” (INYTA), Centre of Biomedical Research, University of Granada, 18016 Granada, Spain; (G.L.); (P.O.); (A.T.-S.); (A.R.-R.); (M.A.)
- Department of Microbiology, Faculty of Pharmacy, University of Granada, Campus of Cartuja, 18071 Granada, Spain
- IBS: Instituto de Investigación Biosanitaria, 18012 Granada, Spain
| | - Margarita Aguilera
- Human Microbiota Laboratory, Institute of Nutrition and Food Technology “José Mataix” (INYTA), Centre of Biomedical Research, University of Granada, 18016 Granada, Spain; (G.L.); (P.O.); (A.T.-S.); (A.R.-R.); (M.A.)
- Department of Microbiology, Faculty of Pharmacy, University of Granada, Campus of Cartuja, 18071 Granada, Spain
- IBS: Instituto de Investigación Biosanitaria, 18012 Granada, Spain
| |
Collapse
|
6
|
Emanowicz P, Średnicka P, Wójcicki M, Roszko M, Juszczuk-Kubiak E. Mitigating Dietary Bisphenol Exposure Through the Gut Microbiota: The Role of Next-Generation Probiotics in Bacterial Detoxification. Nutrients 2024; 16:3757. [PMID: 39519589 PMCID: PMC11547510 DOI: 10.3390/nu16213757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/25/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
Bisphenols, such as bisphenol A and its analogs, which include bisphenol S, bisphenol F, bisphenol AF, and tetramethyl bisphenol F, are chemical contaminants commonly found in food that raise serious health concerns. These xenobiotics can potentially have harmful effects on human health. The gut microbiota plays a crucial role in metabolizing and neutralizing these substances, which is essential for their detoxification and elimination. Probiotic supplementation has been studied for its ability to modulate the gut microbiota's composition and function, enhancing detoxification processes. Next-Generation Probiotics (NGPs) may exhibit better properties than traditional strains and are designed for targeted action on specific conditions, such as obesity. By modulating inflammatory responses and reducing the secretion of pro-inflammatory cytokines, they can significantly improve host health. Research on NGPs' ability to neutralize obesogenic bisphenols remains limited, but their potential makes this a promising area for future exploration. This review aims to understand the mechanisms of the chemical transformation of bisphenol through its interactions with the gut microbiota and the role of probiotics, particularly NGPs, in these processes. Understanding the interplay between bisphenols, gut microbiota, and NGPs may pave the way for strategies to counteract the negative health effects associated with daily and chronic exposure to bisphenols, which is crucial for food safety and consumer health protection.
Collapse
Affiliation(s)
- Paulina Emanowicz
- Laboratory of Biotechnology and Molecular Engineering, Department of Microbiology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology–State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland; (P.Ś.); (M.W.); (E.J.-K.)
| | - Paulina Średnicka
- Laboratory of Biotechnology and Molecular Engineering, Department of Microbiology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology–State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland; (P.Ś.); (M.W.); (E.J.-K.)
| | - Michał Wójcicki
- Laboratory of Biotechnology and Molecular Engineering, Department of Microbiology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology–State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland; (P.Ś.); (M.W.); (E.J.-K.)
| | - Marek Roszko
- Department of Food Safety and Chemical Analysis, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology–State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland;
| | - Edyta Juszczuk-Kubiak
- Laboratory of Biotechnology and Molecular Engineering, Department of Microbiology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology–State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland; (P.Ś.); (M.W.); (E.J.-K.)
| |
Collapse
|
7
|
AlZaabi A, Younus HA, Al-Reasi HA, Al-Hajri R. Could environmental exposure and climate change Be a key factor in the rising incidence of early onset colorectal cancer? Heliyon 2024; 10:e35935. [PMID: 39258208 PMCID: PMC11386049 DOI: 10.1016/j.heliyon.2024.e35935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 08/02/2024] [Accepted: 08/06/2024] [Indexed: 09/12/2024] Open
Abstract
The emergence of early onset colorectal cancer (EOCRC) is believed to result from the complex interplay between external environmental factors and internal molecular processes. This review investigates the potential association between environmental exposure to chemicals and climate change and the increased incidence of EOCRC, focusing on their effects on gut microbiota (GM) dynamics. The manuscript explores the birth cohort effect, suggesting that individuals born after 1950 may be at higher risk of developing EOCRC due to cumulative environmental exposures. Furthermore, we also reviewed the impact of environmental pollution, including particulate matter and endocrine disrupting chemicals (EDCs), as well as global warming, on GM disturbance. Environmental exposures have the potential to disrupt GM composition and diversity, leading to dysbiosis, chronic inflammation, and oxidative stress, which are known risk factors associated with EOCRC. Particulate matter can enter the gastrointestinal tract, modifying GM composition and promoting the proliferation of pathogenic bacteria while diminishing beneficial bacteria. Similarly, EDCs, can induce GM alterations and inflammation, further increasing the risk of EOCRC. Additionally, global warming can influence GM through shifts in gut environmental conditions, affecting the host's immune response and potentially increasing EOCRC risk. To summarize, environmental exposure to chemicals and climate change since 1950 has been implicated as contributing factors to the rising incidence of EOCRC. Disruptions in gut microbiota homeostasis play a crucial role in mediating these associations. Consequently, there is a pressing need for enhanced environmental policies aimed at minimizing exposure to pollutants, safeguarding public health, and mitigating the burden of EOCRC.
Collapse
Affiliation(s)
- Adhari AlZaabi
- College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Sultanate of Oman
| | - Hussein A Younus
- Nanotechnology Research Center, Sultan Qaboos University, PO Box 17, Al-Khoud, PC 123 Oman
| | - Hassan A Al-Reasi
- Department of Biology, College of Science, Sultan Qaboos University, PO Box 36, PC 123, Al-Khoud, Muscat, Oman
- Faculty of Education and Arts, Sohar University, PO Box 44, PC 311, Sohar, Oman
| | - Rashid Al-Hajri
- Department of Petrolleum and Chemical Engineering, College of Engineering, Sultan Qaboos University, P. O. Box 33, Al Khoud, Muscat, PC 123, Oman
| |
Collapse
|
8
|
Khoo SC, Zhang N, Luang-In V, Goh MS, Sonne C, Ma NL. Exploring environmental exposomes and the gut-brain nexus: Unveiling the impact of pesticide exposure. ENVIRONMENTAL RESEARCH 2024; 250:118441. [PMID: 38350544 DOI: 10.1016/j.envres.2024.118441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 01/20/2024] [Accepted: 02/06/2024] [Indexed: 02/15/2024]
Abstract
This review delves into the escalating concern of environmental pollutants and their profound impact on human health in the context of the modern surge in global diseases. The utilisation of chemicals in food production, which results in residues in food, has emerged as a major concern nowadays. By exploring the intricate relationship between environmental pollutants and gut microbiota, the study reveals a dynamic bidirectional interplay, as modifying microbiota profile influences metabolic pathways and subsequent brain functions. This review will first provide an overview of potential exposomes and their effect to gut health. This paper is then emphasis the connection of gut brain function by analysing microbiome markers with neurotoxicity responses. We then take pesticide as example of exposome to elucidate their influence to biomarkers biosynthesis pathways and subsequent brain functions. The interconnection between neuroendocrine and neuromodulators elements and the gut-brain axis emerges as a pivotal factor in regulating mental health and brain development. Thus, manipulation of gut microbiota function at the onset of stress may offer a potential avenue for the prevention and treatment for mental disorder and other neurodegenerative illness.
Collapse
Affiliation(s)
- Shing Ching Khoo
- Biological Security and Sustainability (BioSES) Research Interest Group, Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia
| | - Nan Zhang
- Synerk Biotech, BioBay, Suzhou, 215000, China; Neuroscience Program, Department of Neurology, Houston Methodist Research Institute, TX, 77030, USA; Department of Neurology, Weill Cornell Medicine, New York, 10065, USA
| | - Vijitra Luang-In
- Natural Antioxidant Innovation Research Unit, Department of Biotechnology, Faculty of Technology, Mahasarakham University, Khamriang, Kantharawichai, Mahasarakham, 44150, Thailand
| | - Meng Shien Goh
- Biological Security and Sustainability (BioSES) Research Interest Group, Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia
| | - Christian Sonne
- Aarhus University, Faculty of Science and Technology, Department of Bioscience, Arctic Research Centre (ARC), Danish Centre for Environment and Energy (DCE), Frederiksborgvej 399, PO Box 358, DK-4000, Roskilde, Denmark
| | - Nyuk Ling Ma
- Biological Security and Sustainability (BioSES) Research Interest Group, Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia; Center for Global Health Research (CGHR), Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, India.
| |
Collapse
|
9
|
Dai R, Kelly BN, Ike A, Berger D, Chan A, Drew DA, Ljungman D, Mutiibwa D, Ricciardi R, Tumusiime G, Cusack JC. The Impact of the Gut Microbiome, Environment, and Diet in Early-Onset Colorectal Cancer Development. Cancers (Basel) 2024; 16:676. [PMID: 38339427 PMCID: PMC10854951 DOI: 10.3390/cancers16030676] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 01/26/2024] [Accepted: 02/02/2024] [Indexed: 02/12/2024] Open
Abstract
Traditionally considered a disease common in the older population, colorectal cancer is increasing in incidence among younger demographics. Evidence suggests that populational- and generational-level shifts in the composition of the human gut microbiome may be tied to the recent trends in gastrointestinal carcinogenesis. This review provides an overview of current research and putative mechanisms behind the rising incidence of colorectal cancer in the younger population, with insight into future interventions that may prevent or reverse the rate of early-onset colorectal carcinoma.
Collapse
Affiliation(s)
- Rui Dai
- Department of Radiology, Massachusetts General Hospital, Boston, MA 02114, USA
- Harvard Medical School, Harvard University, Boston, MA 02115, USA; (D.B.); (A.C.); (D.A.D.); (R.R.)
| | - Bridget N. Kelly
- Department of Surgery, Massachusetts General Hospital, Boston, MA 02114, USA (A.I.)
| | - Amarachi Ike
- Department of Surgery, Massachusetts General Hospital, Boston, MA 02114, USA (A.I.)
| | - David Berger
- Harvard Medical School, Harvard University, Boston, MA 02115, USA; (D.B.); (A.C.); (D.A.D.); (R.R.)
- Department of Surgery, Massachusetts General Hospital, Boston, MA 02114, USA (A.I.)
| | - Andrew Chan
- Harvard Medical School, Harvard University, Boston, MA 02115, USA; (D.B.); (A.C.); (D.A.D.); (R.R.)
- Department of Gastroenterology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - David A. Drew
- Harvard Medical School, Harvard University, Boston, MA 02115, USA; (D.B.); (A.C.); (D.A.D.); (R.R.)
- Department of Gastroenterology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - David Ljungman
- Sahlgrenska University Hospital, University of Gothenburg, 413 45 Gothenburg, Sweden;
| | - David Mutiibwa
- Department of Surgery, Mbarara University of Science and Technology, Mbarara P.O. Box 1410, Uganda;
| | - Rocco Ricciardi
- Harvard Medical School, Harvard University, Boston, MA 02115, USA; (D.B.); (A.C.); (D.A.D.); (R.R.)
- Department of Surgery, Massachusetts General Hospital, Boston, MA 02114, USA (A.I.)
| | - Gerald Tumusiime
- School of Medicine, Uganda Christian University, Mukono P.O. Box 4, Uganda;
| | - James C. Cusack
- Harvard Medical School, Harvard University, Boston, MA 02115, USA; (D.B.); (A.C.); (D.A.D.); (R.R.)
- Department of Surgery, Massachusetts General Hospital, Boston, MA 02114, USA (A.I.)
| |
Collapse
|
10
|
Vacca M, Calabrese FM, Loperfido F, Maccarini B, Cerbo RM, Sommella E, Salviati E, Voto L, De Angelis M, Ceccarelli G, Di Napoli I, Raspini B, Porri D, Civardi E, Garofoli F, Campiglia P, Cena H, De Giuseppe R. Maternal Exposure to Endocrine-Disrupting Chemicals: Analysis of Their Impact on Infant Gut Microbiota Composition. Biomedicines 2024; 12:234. [PMID: 38275405 PMCID: PMC10813257 DOI: 10.3390/biomedicines12010234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 01/15/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024] Open
Abstract
Endocrine disruptors (EDCs) are chemicals that interfere with the endocrine system. EDC exposure may contribute to the development of obesity, type 2 diabetes, and cardiovascular diseases by impacting the composition of an infant's gut microbiota during the first 1000 days of life. To explore the relationship between maternal urinary levels of Bisphenol-A and phthalates (UHPLC-MS/MS), and the composition of the infant gut microbiota (16S rDNA) at age 12 months (T3) and, retrospectively, at birth (T0), 1 month (T1), and 6 months (T2), stool samples from 20 infants breastfed at least once a day were analyzed. Metataxonomic bacteria relative abundances were correlated with EDC values. Based on median Bisphenol-A levels, infants were assigned to the over-exposed group (O, n = 8) and the low-exposed group (B, n = 12). The B-group exhibited higher gut colonization of the Ruminococcus torques group genus and the O-group showed higher abundances of Erysipelatoclostridium and Bifidobacterium breve. Additionally, infants were stratified as high-risk (HR, n = 12) or low-risk (LR, n = 8) exposure to phthalates, based on the presence of at least three phthalates with concentrations exceeding the cohort median values; no differences were observed in gut microbiota composition. A retrospective analysis of gut microbiota (T0-T2) revealed a disparity in β-diversity between the O-group and the B-group. Considering T0-T3, the Linear Discriminant Effect Size indicated differences in certain microbes between the O-group vs. the B-group and the HR-group vs. the LR-group. Our findings support the potential role of microbial communities as biomarkers for high EDC exposure levels. Nevertheless, further investigations are required to deeply investigate this issue.
Collapse
Affiliation(s)
- Mirco Vacca
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, 70126 Bari, Italy; (M.V.); (F.M.C.); (M.D.A.)
| | - Francesco Maria Calabrese
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, 70126 Bari, Italy; (M.V.); (F.M.C.); (M.D.A.)
| | - Federica Loperfido
- Laboratory of Dietetics and Clinical Nutrition, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy; (B.M.); (L.V.); (I.D.N.); (B.R.); (D.P.); (H.C.); (R.D.G.)
| | - Beatrice Maccarini
- Laboratory of Dietetics and Clinical Nutrition, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy; (B.M.); (L.V.); (I.D.N.); (B.R.); (D.P.); (H.C.); (R.D.G.)
| | - Rosa Maria Cerbo
- Neonatal Unit and Neonatal Intensive Care Unit, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy; (R.M.C.); (E.C.); (F.G.)
| | - Eduardo Sommella
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy; (E.S.); (E.S.); (P.C.)
| | - Emanuela Salviati
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy; (E.S.); (E.S.); (P.C.)
| | - Luana Voto
- Laboratory of Dietetics and Clinical Nutrition, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy; (B.M.); (L.V.); (I.D.N.); (B.R.); (D.P.); (H.C.); (R.D.G.)
| | - Maria De Angelis
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, 70126 Bari, Italy; (M.V.); (F.M.C.); (M.D.A.)
| | - Gabriele Ceccarelli
- Human Anatomy Unit, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy;
| | - Ilaria Di Napoli
- Laboratory of Dietetics and Clinical Nutrition, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy; (B.M.); (L.V.); (I.D.N.); (B.R.); (D.P.); (H.C.); (R.D.G.)
| | - Benedetta Raspini
- Laboratory of Dietetics and Clinical Nutrition, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy; (B.M.); (L.V.); (I.D.N.); (B.R.); (D.P.); (H.C.); (R.D.G.)
| | - Debora Porri
- Laboratory of Dietetics and Clinical Nutrition, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy; (B.M.); (L.V.); (I.D.N.); (B.R.); (D.P.); (H.C.); (R.D.G.)
| | - Elisa Civardi
- Neonatal Unit and Neonatal Intensive Care Unit, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy; (R.M.C.); (E.C.); (F.G.)
| | - Francesca Garofoli
- Neonatal Unit and Neonatal Intensive Care Unit, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy; (R.M.C.); (E.C.); (F.G.)
| | - Pietro Campiglia
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy; (E.S.); (E.S.); (P.C.)
| | - Hellas Cena
- Laboratory of Dietetics and Clinical Nutrition, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy; (B.M.); (L.V.); (I.D.N.); (B.R.); (D.P.); (H.C.); (R.D.G.)
- Clinical Nutrition Unit, General Medicine, Istituti Clinici Scientifici Maugeri IRCCS, 27100 Pavia, Italy
| | - Rachele De Giuseppe
- Laboratory of Dietetics and Clinical Nutrition, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy; (B.M.); (L.V.); (I.D.N.); (B.R.); (D.P.); (H.C.); (R.D.G.)
| |
Collapse
|