1
|
Ren B, Geng J, Qin D, Yang B, Wang P. Distribution of polycyclic aromatic hydrocarbons in key fishing ports of Hainan Island, China. MARINE POLLUTION BULLETIN 2025; 218:118162. [PMID: 40381446 DOI: 10.1016/j.marpolbul.2025.118162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 05/12/2025] [Accepted: 05/13/2025] [Indexed: 05/20/2025]
Abstract
The widespread distribution and toxicity of polycyclic aromatic hydrocarbons (PAHs) pose significant environmental challenges for achieving sustainable development goals. Significant uncertainties exist in their emission sources driven by the complex social and economic activities. This study systematically quantified 16 priority PAHs in the aquatic environment of 10 key fishing ports around Hainan Island in China. The total PAH concentrations (∑16PAHs) were up to 3310 (mean: 569 ± 1050) ng L-1 in water and 3890 (mean: 1060 ± 1330) ng g-1 dry weight in sediment, respectively. A significant correlation was found between the concentrations of PAHs with fewer than 5 rings in water and dissolved oxygen. PAHs with 4 rings were predominant in all media, and they were used for source identification with diagnostic ratios. Results indicated small fishing boats as the primary emission source, and the emission pathways were delineated accordingly. The ecological risk assessment revealed that phenanthrene (Phe) and benzo[a]pyrene (BaP) posed potential chronic ecological risks, whereas anthracene (Ant) and pyrene (Pyr) presented potential acute ecological risks, varying by site. This study underscores the urgent need to ensure a balance between fishery activities and environmental sustainability.
Collapse
Affiliation(s)
- Bingnan Ren
- Zhai Mingguo Academician Workstation, School of Health Industry Management, University of Sanya, Hainan 572022, China
| | - Jing Geng
- Zhai Mingguo Academician Workstation, School of Health Industry Management, University of Sanya, Hainan 572022, China
| | - Dajun Qin
- Zhai Mingguo Academician Workstation, School of Health Industry Management, University of Sanya, Hainan 572022, China
| | - Bo Yang
- Zhai Mingguo Academician Workstation, School of Health Industry Management, University of Sanya, Hainan 572022, China
| | - Pei Wang
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems and Fujian Institute for Sustainable Oceans, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
2
|
Muhsin RMM, Abd Manan TSB, Bidai J, Mangat MSA, Mohd Hanafiah Z, Gohari A, Ahmad N, Ahmad F, Beddu S, Mohd Kamal NL, Mohamad D, Aldala'in SAH, Mustafa MRU, Mohtar WHMW, Hasnain Isa M, Yusoff MS, Abdul Aziz H. Polycyclic aromatic hydrocarbons (PAHs) occurrences in water bodies, extraction techniques, detection methods, and standardized guidelines for PAHs in aqueous solutions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 972:179123. [PMID: 40088795 DOI: 10.1016/j.scitotenv.2025.179123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 02/13/2025] [Accepted: 03/11/2025] [Indexed: 03/17/2025]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are a carcinogenic compound comprised of benzene ring(s). They occur naturally. However, the occurrence of anthropogenic PAHs (originates from human activities and man-made structures) may contribute to water pollution, risking the public health and aquatic life. This review describes occurrences of PAHs in water bodies, extraction techniques, detection methods, and standardized guidelines for PAHs in aqueous solutions. Previous research identifies PAH contamination across freshwater bodies due to proximity to pollution sources and hydrological factors. Despite analytical advancements, accurately quantifying and characterizing PAHs in complex environmental matrices remains challenging. Overall, this review supports the Sustainable Development Goals (SDGs) no. 6 (clean water and sanitation public) and no. 14 life below water.
Collapse
Affiliation(s)
- Rana Muhammad Mubeen Muhsin
- Institute of Tropical Biodiversity and Sustainable Development, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Darul Iman, Malaysia
| | - Teh Sabariah Binti Abd Manan
- Institute of Tropical Biodiversity and Sustainable Development, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Darul Iman, Malaysia; School of Civil Engineering, Universiti Sains Malaysia, 14300, Nibong Tebal, Penang, Malaysia.
| | - Joseph Bidai
- Institute of Oceanography and Environment, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Darul Iman, Malaysia
| | - Muhammad Sarfraz Ahmad Mangat
- Institute of Tropical Biodiversity and Sustainable Development, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Darul Iman, Malaysia
| | - Zarimah Mohd Hanafiah
- Civil Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor Darul Ehsan, Malaysia; Environmental Management Centre, Institute of Climate Change, Universiti Kebangsaan Malaysia, Bangi, Selangor Darul Ehsan, Malaysia
| | - Adel Gohari
- Faculty of Maritime Studies, Universiti Malaysia Terengganu, 21030 Kuala Terengganu, Malaysia
| | - Naveed Ahmad
- Department of Chemical and Materials Engineering, College of Engineering, Northern Border University, Arar, Saudi Arabia
| | - Farooq Ahmad
- Department of Chemical and Materials Engineering, College of Engineering, Northern Border University, Arar, Saudi Arabia
| | - Salmia Beddu
- Department of Civil Engineering, Universiti Tenaga Nasional, Jalan Ikram-Uniten, 43000 Kajang, Selangor Darul Ehsan, Malaysia
| | - Nur Liyana Mohd Kamal
- Department of Civil Engineering, Universiti Tenaga Nasional, Jalan Ikram-Uniten, 43000 Kajang, Selangor Darul Ehsan, Malaysia
| | - Daud Mohamad
- Department of Civil Engineering, Universiti Tenaga Nasional, Jalan Ikram-Uniten, 43000 Kajang, Selangor Darul Ehsan, Malaysia
| | | | - Muhammad Raza Ul Mustafa
- Civil and Environmental Engineering Department, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia
| | - Wan Hanna Melini Wan Mohtar
- Institute of Oceanography and Environment, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Darul Iman, Malaysia; Civil Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor Darul Ehsan, Malaysia
| | - Mohamed Hasnain Isa
- Civil Engineering Programme, Faculty of Engineering, Universiti Teknologi Brunei, Tungku Highway, Gadong, BE1410, Brunei Darussalam
| | - Mohd Suffian Yusoff
- School of Civil Engineering, Universiti Sains Malaysia, 14300, Nibong Tebal, Penang, Malaysia
| | - Hamidi Abdul Aziz
- School of Civil Engineering, Universiti Sains Malaysia, 14300, Nibong Tebal, Penang, Malaysia
| |
Collapse
|
3
|
El Zokm GM, El-Said GF, El-Gharabawy S, Okbah MA, Hamouda A. Worst case scenario for chronic mixed ecotoxicity, assessment of ecological and human health risks from contaminants in an important economic harbor connected to the Mediterranean Sea, Egypt. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 970:178975. [PMID: 40023878 DOI: 10.1016/j.scitotenv.2025.178975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 02/05/2025] [Accepted: 02/24/2025] [Indexed: 03/04/2025]
Abstract
This study is a preliminary assessment of the worst-case scenario of chronic cumulative toxicity of pollutants to marine life in Abu-Qir Bay, Egypt. In addition, human health risks from ingestion, ingestion during swimming, and dermal contact with contaminants were evaluated for children, females and males. Five heavy metals, thirteen polyaromatic hydrocarbons (PAHs), twenty pesticides (OCPs) and five polychlorinated biphenyls (PCBs) were measured in the seawater column and sediments. The average cumulative pollution indices, including the Heavy Metal Pollution Index (HPI: 3.44 ± 0.24) and the Heavy Metal Evaluation Index (HEI: 0.46 ± 0.04), reflected low impacts of heavy metal pollution in seawater, while the Mean Effect Range Medium Quotient (mERMQ: 0.123 ± 0.024) demonstrated low-moderate potential adverse biological effects in sediments. Among PAHs, Benzo[a]pyrene was the most abundant in the seawater (56.0 ng/L). Individual chronic RQSpecies(MEC/PNEC) (>1) values revealed high ecotoxicological sensitivity of invertebrates to Hg, Pb, and PAHs (Pyrene and Anthracene), fish to Pb, Cr, Hg, Cd, and PAHs (Benzo[k]fluoranthene, Fluoranthene, and Benzo[a]pyrene), and algae to Benzo[a]pyrene in sediments. The worst-case scenario of chronic ecotoxicity of a mixture of pollutants was evaluated by using Risk Quotients based on Predicted no Effect Concentration (RQMixture (MEC/PNEC)), Sum of Toxic Units (RQMixture(STU)), Relative Contribution (mixture RC) and %STU to algae, invertebrates and fish along the seawater and sediments in the study area. RQMixture (MEC/PNEC) and (mixture RC) values reflected that invertebrates were the most sensitive species to the pollutant mixture in seawater, while algae were the most sensitive species in sediments. In general, non-cancer and carcinogenic health risks to humans from exposure to a mixture of pollutants have not been shown to have any harmful effects, with the exception of chromium in seawater for children. Hazard Ratio (HR) values for children, females and males also demonstrated the potential carcinogenic effects of OCPs in seawater.
Collapse
Affiliation(s)
- Gehan M El Zokm
- National Institute of Oceanography and Fisheries, NIOF, Cairo, Egypt
| | - Ghada F El-Said
- National Institute of Oceanography and Fisheries, NIOF, Cairo, Egypt.
| | | | - Mohamed A Okbah
- National Institute of Oceanography and Fisheries, NIOF, Cairo, Egypt
| | - Amr Hamouda
- National Institute of Oceanography and Fisheries, NIOF, Cairo, Egypt
| |
Collapse
|
4
|
Verhagen R, Veal C, O’Malley E, Gallen M, Sturm K, Bartkow M, Kaserzon S. Impact of ultraviolet filters and polycyclic aromatic hydrocarbon from recreational activities on water reservoirs in southeast Queensland Australia. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2025; 44:674-682. [PMID: 39953706 PMCID: PMC11864206 DOI: 10.1093/etojnl/vgaf007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 11/12/2024] [Accepted: 12/09/2024] [Indexed: 02/17/2025]
Abstract
Water reservoirs and lakes are gaining popularity for recreation activities as populations increase and green spaces become in high demand. However, these activities may cause contamination to critical water resources. This study investigates the impact of recreational activities on the presence and concentration of polycyclic aromatic hydrocarbons (PAHs) and ultraviolet (UV) filters in drinking water reservoirs in Southeast Queensland, Australia. Polydimethylsiloxane passive samplers were used to monitor 14 lakes over a 3-year period, focusing on seasonal variations and the influence of recreational activities such as petrol-powered boating and swimming. A total of 15 PAHs and six UV filters were detected, with chrysene (97%) and octyl salicylate (34%) being the most prevalent PAH and UV filter, respectively. Polycyclic aromatic hydrocarbon levels were statistically significantly higher in lakes permitting petrol-powered boating, especially during summer (p = 0.005 to 0.05). Lake Maroon and Lake Moogerah were the only sites that showed significantly higher PAH levels in summer (3.9 ± 1.1 and 4.0 ± 1.2 ng L-1, respectively) than winter (1.6 ± 0.61 and 1.5 ± 0.84, respectively). Ultraviolet filters were generally detected in higher levels in lakes allowing swimming, with Lake Moogerah and Lake Sommerset measuring UV filter concentrations of 20 ± 4.1 and 20 ± 11 ng L-1 in summer, respectively. Other lakes that do not permit swimming, such as Lake Maroon and Lake Samsonvale, also exhibited elevated UV filter levels, suggesting illegal swimming. These findings highlight the complexity of PAH and UV filter presence, influenced by multiple factors including lake size, recreational activity type, and seasonal variations. The levels of individual PAHs and UV filters in this study were below established freshwater guidelines. However, when considering their bioaccumulation potential and mixture toxicity, mitigating the impact of these substances on our environment and the organisms within it should be of priority.
Collapse
Affiliation(s)
- Rory Verhagen
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, Woolloongabba, QLD, Australia
| | - Cameron Veal
- Seqwater, Ipswich, QLD, Australia
- School of Civil Engineering, The University of Queensland, St Lucia, QLD, Australia
| | - Elissa O’Malley
- Australian Rivers Institute, School of Environment and Science, Griffith University, Southport, QLD, Australia
| | - Michael Gallen
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, Woolloongabba, QLD, Australia
| | | | | | - Sarit Kaserzon
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, Woolloongabba, QLD, Australia
- Queensland Public Health and Scientific Services Division, Queensland Health, Herston, QLD, Australia
| |
Collapse
|
5
|
Fu B, Li E, Yan Y, Jiang S, Wu Y, Ma Y. Ecological criteria for antibiotics in aquatic environments based on species sensitivity distribution. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 287:117261. [PMID: 39476651 DOI: 10.1016/j.ecoenv.2024.117261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/24/2024] [Accepted: 10/26/2024] [Indexed: 11/24/2024]
Abstract
Due to the substantial production and use of antibiotics, they inevitably remain in aquatic environments, posing a serious threat to aquatic ecosystems. However, there are currently no criteria of antibiotics for ecological risk in the water environment. In the present study, three types of antibiotics (tetracyclines, sulfonamides and quinolones) that are often detected in water environments were investigated. Toxicity data regarding bacteria, algae, plants, invertebrates and vertebrates were selected, and the species sensitivity distribution was used to obtain the ecological risk criteria of antibiotics to aquatic organisms. Animals are the least sensitive to antibiotics. The overall toxicity of antibiotics is most sensitive to bacteria and cyanobacteria, followed by green algae and plants. The recommended ecological criteria for tetracyclines, quinolones, and sulfonamides are 22, 17, and 94 μg/L, respectively. Ofloxacin needs to be used with caution because it has a small acute predicted no-effect concentration (PNEC) of 0.6 μg/L. The ecological risk criterion for chronic toxicity of total antibiotics was determined to be 1.4 μg/L. The PNECs measured for the quinolone, tetracycline, and sulfonamide antibiotics were 0.5, 2.2, and 2.4 μg/L, respectively. Norfloxacin had the highest chronic toxicity zone of 353, indicating that chronic poisoning is most likely to occur. Moreover, there was an exponential correlation between acute PNEC and chronic PNEC. In addition, a quantitative structure-activity relationship model was constructed for acute ecological risk criteria of antibiotics to aquatic organisms. These findings can expand the ecological risk threshold data on the effects of antibiotics on aquatic organisms, and provide a theoretical basis for the environmental risk assessment of antibiotics.
Collapse
Affiliation(s)
- Bomin Fu
- National Observation and Research Station of Coastal Ecological Environments in Macao, Macao Environmental Research Institute, Faculty of Innovation Engineering, Macau University of Science and Technology, Macao SAR 999078, China; Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Siping Rd 1239, Shanghai 200092, China
| | - Erdange Li
- National Observation and Research Station of Coastal Ecological Environments in Macao, Macao Environmental Research Institute, Faculty of Innovation Engineering, Macau University of Science and Technology, Macao SAR 999078, China
| | - Yan Yan
- National Observation and Research Station of Coastal Ecological Environments in Macao, Macao Environmental Research Institute, Faculty of Innovation Engineering, Macau University of Science and Technology, Macao SAR 999078, China
| | - Song Jiang
- National Observation and Research Station of Coastal Ecological Environments in Macao, Macao Environmental Research Institute, Faculty of Innovation Engineering, Macau University of Science and Technology, Macao SAR 999078, China; Heilongjiang Forestry Institute, Harbin 150040, China
| | - Yang Wu
- National Observation and Research Station of Coastal Ecological Environments in Macao, Macao Environmental Research Institute, Faculty of Innovation Engineering, Macau University of Science and Technology, Macao SAR 999078, China
| | - Yibing Ma
- National Observation and Research Station of Coastal Ecological Environments in Macao, Macao Environmental Research Institute, Faculty of Innovation Engineering, Macau University of Science and Technology, Macao SAR 999078, China.
| |
Collapse
|
6
|
Li S, Zhang Q, Gao M, Li H, Yang Z, Wang Y, Sun H. Polycyclic aromatic hydrocarbons and their halogenated derivatives in soil from Yellow River Delta: Distribution, source apportionment, and risk assessment. MARINE POLLUTION BULLETIN 2024; 202:116308. [PMID: 38574503 DOI: 10.1016/j.marpolbul.2024.116308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/26/2024] [Accepted: 03/26/2024] [Indexed: 04/06/2024]
Abstract
The distribution of polycyclic aromatic hydrocarbons (PAHs) and halogenated PAHs (HPAHs) in surface soils from the petroleum industrial area of the Yellow River Delta (YRD) in China were investigated. The total concentrations of 16 PAHs ranged from 19.6 to 1560 ng/g, while 22 HPAHs ranged from 2.44 to 14.9 ng/g. Moreover, a high degree of spatial distribution heterogeneity was observed for both PAHs and HPAHs, which is likely attributed to the distinct industrial activities in studied area. The combustion of biomass and petroleum were identified as primary sources of soil PAHs and HPAHs in the YRD. Furthermore, benzo[b]fluoranthene, benzo[k]fluoranthene, and benzo[g,h,i]perylene exhibited high ecological risks (with risk quotients of 1.47, 1.44, and 1.02, respectively) in specific sites within the YRD. Considering the high toxicity of HPAHs and their potential joint environmental effects with PAHs, continuous attention should be directed towards the environmental risks associated with both PAHs and HPAHs.
Collapse
Affiliation(s)
- Siyuan Li
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Qiuyue Zhang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Meng Gao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Hong Li
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Tai'an 271000, China
| | - Zhongkang Yang
- Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Tai'an 271000, China.
| | - Yu Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| | - Hongwen Sun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
7
|
Moon HG, Bae S, Chae Y, Kim YJ, Kim HM, Song M, Bae MS, Lee CH, Ha T, Seo JS, Kim S. Assessment of potential ecological risk for polycyclic aromatic hydrocarbons in urban soils with high level of atmospheric particulate matter concentration. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 272:116014. [PMID: 38295737 DOI: 10.1016/j.ecoenv.2024.116014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 11/06/2023] [Accepted: 01/21/2024] [Indexed: 02/25/2024]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are known to be representative carcinogenic environmental pollutants with high toxicity. However, information on the potential ecological and environmental risks of PAH contamination in soil remains scarce. Thus, this study was evaluated the potential ecological risks of PAHs in soils of five Korean areas (Gunsan (GS), Gwangju, Yeongnam, Busan, and Gangwon) using organic carbon (OC)-normalized analysis, mean effect range-median quotient (M-ERM-Q), toxic equivalent quantity (TEQ) analysis, and risk quotient (RQ) derived by the species sensitivity distribution model. In this study, atmospheric particulate matter has a significant effect on soil pollution in GS through the presence of hopanes and the similar pattern of PAHs in soil and atmospheric PAHs. From analysis of source identification, combustion sources in soils of GS were important PAH sources. For PAHs in soils of GS, the OC-normalized analysis, M-ERM-Q, and TEQ analysis have 26.78 × 105 ng/g-OC, 0.218, and 49.72, respectively. Therefore, the potential ecological risk assessment results showed that GS had moderate-high ecological risk and moderate-high carcinogenic risk, whereas the other regions had low ecological risk and low-moderate carcinogenic risk. The risk level (M-ERM-Q) of PAH contamination in GS was similar to that in Changchun and Xiangxi Bay in China. The Port Harcourt City in Nigeria for PAH has the highest risk (M-ERM-Q = 4.02 and TEQ = 7923). Especially, compared to China (RQPhe =0.025 and 0.05), and Nigeria (0.059), phenanthrene showed the highest ecological risk in Korea (0.001-0.18). Korea should focus on controlling the release of PAHs originating from the PM in GS.
Collapse
Affiliation(s)
- Hi Gyu Moon
- Ecological Risk Assessment Center, Gyeongnam Branch Institute, Korea Institute of Toxicology (KIT), Jinju 52834, the Republic of Korea
| | - Seonhee Bae
- Ecological Risk Assessment Center, Gyeongnam Branch Institute, Korea Institute of Toxicology (KIT), Jinju 52834, the Republic of Korea
| | - Yooeun Chae
- Ecological Risk Assessment Center, Gyeongnam Branch Institute, Korea Institute of Toxicology (KIT), Jinju 52834, the Republic of Korea
| | - Yong-Jae Kim
- Medical Industry Venture Center, Korea Testing Laboratory, Wonju 26495, the Republic of Korea
| | - Hyung-Min Kim
- Ecological Risk Assessment Center, Gyeongnam Branch Institute, Korea Institute of Toxicology (KIT), Jinju 52834, the Republic of Korea
| | - Mijung Song
- Department of Earth and Environmental Sciences, Jeonbuk National University, the Republic of Korea
| | - Min-Suk Bae
- Department of Environmental Engineering, Mokpo National University, Muan 58554, the Republic of Korea
| | - Chil-Hyoung Lee
- Green Energy & Nano Technology R&D Group, Korea Institute of Industrial Technology, Gwangju 61012, the Republic of Korea
| | - Taewon Ha
- Green Energy & Nano Technology R&D Group, Korea Institute of Industrial Technology, Gwangju 61012, the Republic of Korea
| | - Jong-Su Seo
- Ecological Risk Assessment Center, Gyeongnam Branch Institute, Korea Institute of Toxicology (KIT), Jinju 52834, the Republic of Korea.
| | - Sooyeon Kim
- Ecological Risk Assessment Center, Gyeongnam Branch Institute, Korea Institute of Toxicology (KIT), Jinju 52834, the Republic of Korea.
| |
Collapse
|