1
|
Jang NG, Linh TQ, Toan M, Kwon K, Shin S. Enhancing the Mechanical and Adhesive Properties of Polyurethane Adhesives with Propylene Oxide-Modified Ethylenediamine (PPO-EDA). Polymers (Basel) 2025; 17:231. [PMID: 39861302 PMCID: PMC11768345 DOI: 10.3390/polym17020231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 01/13/2025] [Accepted: 01/15/2025] [Indexed: 01/27/2025] Open
Abstract
This study explores the use of propylene oxide-modified ethylenediamine (PPO-EDA) as a novel crosslinker and chain extender in polyurethane (PU) adhesives. PPO-EDA was synthesized and compared with N,N'-dimethylethylenediamine (DMEDA) to assess its impact on mechanical properties and adhesion performance. Key parameters such as NCO conversion, tensile strength, and lap shear strength were thoroughly evaluated. The results demonstrated that incorporating PPO-EDA significantly improved NCO conversion and crosslink density, leading to notable enhancements in tensile strength and elastic modulus compared to DMEDA. Lap shear tests further revealed superior adhesion performance in PPO-EDA-modified PU adhesives, particularly on amine silane-treated steel substrates, where lap shear strength consistently outperformed other samples. This improved performance was attributed to PPO-EDA's dual role as a chain extender and crosslinker, which strengthened the adhesive's structural integrity. This study underscores the effectiveness of PPO-EDA as a modifier for enhancing both mechanical and adhesive properties in PU-based adhesives, offering a promising solution for optimizing high-performance adhesives in automotive and industrial applications.
Collapse
Affiliation(s)
- Nam Gyu Jang
- Green Chemistry & Materials Group, Korea Institute of Industrial Technology (KITECH), Cheonan 31056, Republic of Korea; (N.G.J.); (T.Q.L.); (M.T.); (K.K.)
- Department of Green Process and Energy System Engineering, University of Science & Technology (UST), Daejeon 34113, Republic of Korea
| | - Tran Quang Linh
- Green Chemistry & Materials Group, Korea Institute of Industrial Technology (KITECH), Cheonan 31056, Republic of Korea; (N.G.J.); (T.Q.L.); (M.T.); (K.K.)
- Department of Green Process and Energy System Engineering, University of Science & Technology (UST), Daejeon 34113, Republic of Korea
| | - Mai Toan
- Green Chemistry & Materials Group, Korea Institute of Industrial Technology (KITECH), Cheonan 31056, Republic of Korea; (N.G.J.); (T.Q.L.); (M.T.); (K.K.)
| | - Kiok Kwon
- Green Chemistry & Materials Group, Korea Institute of Industrial Technology (KITECH), Cheonan 31056, Republic of Korea; (N.G.J.); (T.Q.L.); (M.T.); (K.K.)
| | - Seunghan Shin
- Green Chemistry & Materials Group, Korea Institute of Industrial Technology (KITECH), Cheonan 31056, Republic of Korea; (N.G.J.); (T.Q.L.); (M.T.); (K.K.)
- Department of Green Process and Energy System Engineering, University of Science & Technology (UST), Daejeon 34113, Republic of Korea
| |
Collapse
|
2
|
Brzoska J, Datta J, Konefał R, Pokorný V, Beneš H. The influence of bio-based monomers on the structure and thermal properties of polyurethanes. Sci Rep 2024; 14:29042. [PMID: 39580483 PMCID: PMC11585547 DOI: 10.1038/s41598-024-80358-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 11/18/2024] [Indexed: 11/25/2024] Open
Abstract
Most polyurethanes (PU) are currently produced through the polyaddition reaction of polyisocyanates with polyols and chain extenders, using components of petrochemical origin. From an environmental and geopolitical point of view, and with regard to the problems of oil supply and processing, the replacement of petrochemical PU raw materials with renewable resources is highly desirable. It is also one of the principles of sustainable development and an important challenge for chemical companies and market competitiveness. Current research studies focus mainly on the use of bio-based polyols for PUs, while other PU components, in particular polyisocyanates, remain of petrochemical origin. In this work, a series of PUs have been synthesized by polyaddition reactions of different types of renewable polyols and bio-based polyisocyanates. The effects of the bio-derived components on the structure, thermal stability and phase transformations of the PU were studied using FTIR and NMR spectroscopy, SWAXS, TGA, DSC, DMTA and TGA-FTIR. A full conversion of the bio-based monomers was achieved in all cases, indicating good compatibility and reactivity of all bio-based components. It was observed that bio-based PU exhibited a lower degree of phase separation and slightly lower thermal stability compared to PUs from petrochemical monomers.
Collapse
Affiliation(s)
- Joanna Brzoska
- Faculty of Chemistry, Department of Polymer Technology, Gdansk University of Technology, 11/12 Gabriela Narutowicza Street, Gdansk, 80-233, Poland
| | - Janusz Datta
- Faculty of Chemistry, Department of Polymer Technology, Gdansk University of Technology, 11/12 Gabriela Narutowicza Street, Gdansk, 80-233, Poland.
| | - Rafał Konefał
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, Prague, 162 00, Czech Republic
| | - Václav Pokorný
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, Prague, 162 00, Czech Republic
| | - Hynek Beneš
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, Prague, 162 00, Czech Republic
| |
Collapse
|
3
|
Risangud N, Mama J, Sungkhaphan P, Pananusorn P, Termkunanon O, Arkana MS, Sripraphot S, Lertwimol T, Thongkham S. Synthesis and Characterization of Furan-Based Methacrylate Oligomers Containing the Imine Functional Group for Stereolithography. ACS OMEGA 2024; 9:30771-30781. [PMID: 39035923 PMCID: PMC11256344 DOI: 10.1021/acsomega.4c03274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/25/2024] [Accepted: 06/27/2024] [Indexed: 07/23/2024]
Abstract
Herein, a furan-based methacrylate oligomer (FBMO) featuring imine functional groups was synthesized for application in stereolithography. The preparation involved the imination reaction of 5-hydroxymethylfurfural (5-HMF) and amino ethanol. Utilizing 5-HMF as a sustainable building block for furan-based polymers, FBMO was formulated and subsequently integrated into photosensitive resin formulations along with methacrylate-containing diluents, such as PEGDMA and TEGDMA. The synthesized furan-based methacrylate oligomers underwent comprehensive characterization using FTIR, 1H NMR spectroscopy, and size exclusion chromatography. The impact of methacrylate-containing diluents on various properties of the formulated resins and the resulting 3D-printed specimens was systematically evaluated. This assessment included an analysis of rheological behavior, printing fidelity, mechanical properties, thermal stability, surface morphology, and cytotoxicity. By adjusting the ratios of FBMO to methacrylate-containing diluents within the range of 50:50 to 90:10, the viscosity of the resulting resins was controlled to fall within 0.04 to 0.28 Pa s at a shear rate of 10 s-1. The 3D-printed specimens exhibited precise conformity to the computer-aided design (CAD) model and demonstrated compressive moduli ranging from 0.53 ± 0.04 to 144 ± 6.70 MPa, dependent on the resin formulation and internal structure. Furthermore, cytotoxicity assessments revealed that the 3D-printed specimens were noncytotoxic to porcine chondrocytes. In conclusion, we introduce a new strategy to prepare the furan-based methacrylate oligomer (FBMO) and 3D-printed specimens with adjustable properties using stereolithography, which can be further utilized for appropriate applications.
Collapse
Affiliation(s)
- Nuttapol Risangud
- National
Metal and Materials Technology Center, National
Science and Technology Development Agency, 111 Thailand Science Park, Phahonyothin Road, Klong Luang, Pathum Thani 12120, Thailand
- Petroleum
and Petrochemical College, Chulalongkorn
University, Bangkok 10330, Thailand
| | - Jittima Mama
- National
Nanotechnology Center, National Science
and Technology Development Agency, 111 Thailand Science Park, Paholyothin Road, Klong
1, Klong Luang, Pathumthani 12120, Thailand
| | - Piyarat Sungkhaphan
- National
Metal and Materials Technology Center, National
Science and Technology Development Agency, 111 Thailand Science Park, Phahonyothin Road, Klong Luang, Pathum Thani 12120, Thailand
| | - Puttipong Pananusorn
- Department
of Materials Science and Engineering, School of Molecular Science
and Engineering, Vidyasirimedhi Institute
of Science and Technology (VISTEC), Wangchan, Rayong 21210, Thailand
| | - Orawan Termkunanon
- National
Nanotechnology Center, National Science
and Technology Development Agency, 111 Thailand Science Park, Paholyothin Road, Klong
1, Klong Luang, Pathumthani 12120, Thailand
| | | | - Supang Sripraphot
- National
Nanotechnology Center, National Science
and Technology Development Agency, 111 Thailand Science Park, Paholyothin Road, Klong
1, Klong Luang, Pathumthani 12120, Thailand
| | - Tareerat Lertwimol
- National
Metal and Materials Technology Center, National
Science and Technology Development Agency, 111 Thailand Science Park, Phahonyothin Road, Klong Luang, Pathum Thani 12120, Thailand
| | - Somprasong Thongkham
- National
Nanotechnology Center, National Science
and Technology Development Agency, 111 Thailand Science Park, Paholyothin Road, Klong
1, Klong Luang, Pathumthani 12120, Thailand
| |
Collapse
|
4
|
Song W, Muhammad S, Dang S, Ou X, Fang X, Zhang Y, Huang L, Guo B, Du X. The state-of-art polyurethane nanoparticles for drug delivery applications. Front Chem 2024; 12:1378324. [PMID: 38476653 PMCID: PMC10929011 DOI: 10.3389/fchem.2024.1378324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 02/06/2024] [Indexed: 03/14/2024] Open
Abstract
Nowadays, polyurethanes (PUs) stand out as a promising option for drug delivery owing to their versatile properties. PUs have garnered significant attention in the biomedical sector and are extensively employed in diverse forms, including bulk devices, coatings, particles, and micelles. PUs are crucial in delivering various therapeutic agents such as antibiotics, anti-cancer medications, dermal treatments, and intravaginal rings. Effective drug release management is essential to ensure the intended therapeutic impact of PUs. Commercially available PU-based drug delivery products exemplify the adaptability of PUs in drug delivery, enabling researchers to tailor the polymer properties for specific drug release patterns. This review primarily focuses on the preparation of PU nanoparticles and their physiochemical properties for drug delivery applications, emphasizing how the formation of PUs affects the efficiency of drug delivery systems. Additionally, cutting-edge applications in drug delivery using PU nanoparticle systems, micelles, targeted, activatable, and fluorescence imaging-guided drug delivery applications are explored. Finally, the role of artificial intelligence and machine learning in drug design and delivery is discussed. The review concludes by addressing the challenges and providing perspectives on the future of PUs in drug delivery, aiming to inspire the design of more innovative solutions in this field.
Collapse
Affiliation(s)
- Wencong Song
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
- Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong, China
| | - Saz Muhammad
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen, China
| | - Shanxing Dang
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
- Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong, China
| | - Xingyan Ou
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
- Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong, China
| | - Xingzi Fang
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
- Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong, China
| | - Yinghe Zhang
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen, China
| | - Lihe Huang
- Center for Educational Technology, Yulin Normal University, Yulin, China
| | - Bing Guo
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen, China
| | - XueLian Du
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
- Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong, China
| |
Collapse
|
5
|
Kavimani V, Lakkaboyana SK, Trilaksana H, Atanase LI. Mechanical Properties and Degradation Rate of Poly(Sorbitol Adipate-Co-Dioladipate) Copolymers Obtained with a Catalyst-Free Melt Polycondensation Method. Polymers (Basel) 2024; 16:499. [PMID: 38399877 PMCID: PMC10893197 DOI: 10.3390/polym16040499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/07/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
A new family of polyester-based copolymers-poly(sorbitol adipate-co-ethylene glycol adipate) (PSAEG), poly(sorbitol adipate-co-1,4 butane diol adipate) (PSABD), and poly (sorbitol adipate-co-1,6 hexane diol adipate) (PSAHD)-was obtained with a catalyst-free melt polycondensation procedure using the multifunctional non-toxic monomer sorbitol, adipic acid, and diol, which are acceptable to the human metabolism. Synthesized polyesters were characterized by FTIR and 1H NMR spectroscopy. The molecular weight and thermal properties of the polymers were determined by MALDI mass spectroscopy, differential scanning calorimetry (DSC), and thermogravimetric analysis. The degradation rate was investigated, at 37 °C, in 0.1M NaOH (pH 13) and in phosphate-buffered solution (PBS) at pH 7.4. It was found that the polymers degraded faster in NaOH (i.e., in a day) compared to their degradation in PBS, which was much slower (in a week). The highest degradation rate was noticed for the PSAEG sample in both media, whereas PSAHD was the most stable polymer at pH 7.4 and 13. A reduced hydrophilicity of the polymers with diol length was indicated by low swelling percentage and sol content in water and DMSO. Mechanical studies prove that all the polymers are elastomers whose flexibility increases with diol length, shown by the increase in percentage of elongation at break and the decrease in tensile stress and Young's modulus. These biodegradable copolymers with adaptable physicochemical characteristics might be useful for a broad variety of biological applications by merely varying the length of the diol.
Collapse
Affiliation(s)
- V. Kavimani
- Department of Chemistry, Prathyusha Engineering College, Chennai 600025, India;
| | - Sivarama Krishna Lakkaboyana
- Department of Chemistry, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Avadi, Chennai 600062, India;
| | - Herri Trilaksana
- Department of Physics, Faculty of Science and Technology, Airlangga University, Surabaya 60115, Indonesia
| | - Leonard I. Atanase
- Faculty of Medical Dentistry, Apollonia University of Iasi, 700511 Iasi, Romania
- Academy of Romanian Scientists, 050045 Bucharest, Romania
| |
Collapse
|
6
|
Ozimek J, Malarz K, Mrozek-Wilczkiewicz A, Hebda E, Pielichowski K. Thermoplastic polyurethane/POSS nanohybrids: Synthesis, morphology, and biological properties. J Biomed Mater Res B Appl Biomater 2024; 112:e35381. [PMID: 38348489 DOI: 10.1002/jbm.b.35381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/21/2023] [Accepted: 01/09/2024] [Indexed: 02/15/2024]
Abstract
Recent studies show good osteoinductive properties of polyurethanes modified with polyhedral oligomeric silsesquioxanes (POSS). In this work, three types of POSS; propanediolisobutyl-POSS (PHI-POSS), disilanolisobutyl-POSS (DSI-POSS), and octahydroxybutyl-POSS (OCTA-POSS) were chemically incorporated into linear polyurethane based on an aliphatic isocyanate, hexamethylene diisocyanate (HDI), to obtain new nanohybrid PU-POSS materials. The full conversion of POSS was confirmed by Fourier transform infrared spectroscopy (FTIR-ATR) spectra of the model reactions with pure HDI. The materials obtained were investigated by FTIR, SEM-EDS, and DSC. The DSC studies showed the thermoplasticity of the obtained materials and apparently good recovery. 30-day immersion in SBF (simulated body fluid) revealed an increase in the rate of deposition of hydroxyapatite (HAp) for the highest POSS loadings, resulting in thick layers of hydroxyapatite (~60-40 μm), and the Ca/P ratio 1.67 (even 1.785). The structure and properties of the inorganic layer depend on the type of POSS, the number of hard segments, and those containing POSS, which can be tailored by changing the HDI/poly(tetramethylene glycol) (PTMG) ratio. Furthermore, the obtained composites revealed good biocompatibility, as confirmed by cytotoxicity tests conducted on two cell lines; normal human dermal fibroblasts (NHDF) and primary human osteoblasts (HOB). Adherent cells seeded on the tested materials showed viability even after a 48-h incubation. After this time, the population of viable, and proliferating cells exceeded 90%. Bioimaging studies have shown the fibroblast and osteoblast cells were well attached to the surface of the tested materials.
Collapse
Affiliation(s)
- Jan Ozimek
- Department of Chemistry and Technology of Polymers, Cracow University of Technology, Kraków, Poland
| | - Katarzyna Malarz
- Biotechnology Center, Silesian University of Technology, Gliwice, Poland
- A. Chelkowski Institute of Physics, Faculty of Science and Technology, University of Silesia in Katowice, Chorzow, Poland
| | - Anna Mrozek-Wilczkiewicz
- Biotechnology Center, Silesian University of Technology, Gliwice, Poland
- A. Chelkowski Institute of Physics, Faculty of Science and Technology, University of Silesia in Katowice, Chorzow, Poland
| | - Edyta Hebda
- Department of Chemistry and Technology of Polymers, Cracow University of Technology, Kraków, Poland
| | - Krzysztof Pielichowski
- Department of Chemistry and Technology of Polymers, Cracow University of Technology, Kraków, Poland
| |
Collapse
|
7
|
Alsaleh NB, Aljarbou AM, Assal ME, Assiri MA, Almutairi MM, As Sobeai HM, Alshamrani AA, Almudimeegh S, Hatshan MR, Adil SF. Synthesis, Characterization, and Toxicity Assessment of Zinc Oxide-Doped Manganese Oxide Nanoparticles in a Macrophage Model. Pharmaceuticals (Basel) 2024; 17:168. [PMID: 38399383 PMCID: PMC10892842 DOI: 10.3390/ph17020168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/20/2024] [Accepted: 01/23/2024] [Indexed: 02/25/2024] Open
Abstract
The doping of engineered nanomaterials (ENMs) is a key tool for manipulating the properties of ENMs (e.g., electromagnetic, optical, etc.) for different therapeutic applications. However, adverse health outcomes and the cellular biointeraction of doped ENMs, compared to undoped counterparts, are not fully understood. Previously, we have shown that doping manganese oxide nanoparticles with ZnO (ZnO-MnO2 NPs) improved their catalytic properties. In this study, we assessed the toxicity of ZnO-MnO2 NPs in Raw 264.7 cells. NPs were prepared via an eco-friendly, co-precipitation method and characterized by several techniques, including transmission and scanning electron microscopy, X-ray diffraction, and Fourier transform infrared. The physicochemical properties of ZnO-MnO2 NPs, including size, morphology, and crystalline structure, were almost identical to MnO2 NPs. However, ZnO-MnO2 NPs showed slightly larger particle aggregates and negative charge in cell culture media. Exposure to ZnO-MnO2 NPs resulted in lower toxicity based on the cell viability and functional assay (phagocytosis) data. Exposure to both NPs resulted in the activation of the cell inflammatory response and the generation of reactive oxygen species (ROS). Despite this, exposure to ZnO-MnO2 NPs was associated with a lower toxicity profile, and it resulted in a higher ROS burst and the activation of the cell antioxidant system, hence indicating that MnO2 NP-induced toxicity is potentially mediated via other ROS-independent pathways. Furthermore, the cellular internalization of ZnO-MnO2 NPs was lower compared to MnO2 NPs, and this could explain the lower extent of toxicity of ZnO-MnO2 NPs and suggests Zn-driven ROS generation. Together, the findings of this report suggest that ZnO (1%) doping impacts cellular biointeraction and the consequent toxicological outcomes of MnO2 NPs in Raw 264.7 cells.
Collapse
Affiliation(s)
- Nasser B. Alsaleh
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia; (A.M.A.); (M.A.A.); (M.M.A.); (H.M.A.S.); (A.A.A.); (S.A.)
| | - Anas M. Aljarbou
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia; (A.M.A.); (M.A.A.); (M.M.A.); (H.M.A.S.); (A.A.A.); (S.A.)
| | - Mohamed E. Assal
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (M.E.A.); (M.R.H.)
| | - Mohammed A. Assiri
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia; (A.M.A.); (M.A.A.); (M.M.A.); (H.M.A.S.); (A.A.A.); (S.A.)
| | - Mohammed M. Almutairi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia; (A.M.A.); (M.A.A.); (M.M.A.); (H.M.A.S.); (A.A.A.); (S.A.)
| | - Homood M. As Sobeai
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia; (A.M.A.); (M.A.A.); (M.M.A.); (H.M.A.S.); (A.A.A.); (S.A.)
| | - Ali A. Alshamrani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia; (A.M.A.); (M.A.A.); (M.M.A.); (H.M.A.S.); (A.A.A.); (S.A.)
| | - Sultan Almudimeegh
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia; (A.M.A.); (M.A.A.); (M.M.A.); (H.M.A.S.); (A.A.A.); (S.A.)
| | - Mohammad R. Hatshan
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (M.E.A.); (M.R.H.)
| | - Syed F. Adil
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (M.E.A.); (M.R.H.)
| |
Collapse
|
8
|
Stefanescu K, Timlin CL, Moy AS, Zapotoczny G. Reduced Isocyanate Release Using a Waterproof, Resin-Based Cast Alternative Relative to Fiberglass Casts. TOXICS 2023; 11:1002. [PMID: 38133403 PMCID: PMC10747184 DOI: 10.3390/toxics11121002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/03/2023] [Accepted: 12/05/2023] [Indexed: 12/23/2023]
Abstract
The effects of occupational isocyanate exposure range from asthma and contact dermatitis to neurotoxicity and cancer. Respiratory sensitization due to orthopedic cast application has been well documented. This study aims to compare the safety of standard-of-care fiberglass casts and a novel waterproof cast alternative by measuring the amount of isocyanate released during off-gassing over time. A 3D-printed arm simulator with comparable casing material amounts was placed in a sealed chamber. An isocyanate-sensing color-changing (SafeAir) tag was used to measure the levels of toxic exposure. Triplicate trials were conducted across all time periods (15 min, 1 h, and 24 h) and conditions. The bare arm simulator and freshly opened tags served as negative controls. Normalized pixel intensity indexes and isocyanate release estimates in ppb were derived from ImageJ-analyzed SafeAir tag photos. Fiberglass casts exhibited greater isocyanate release than both the waterproof alternative (p = 0.0002) and no-cast controls (p = 0.0006), particularly at 24 h. The waterproof alternative and no-cast control did not statistically differ (p = 0.1603). Therefore, the waterproof alternative released less isocyanate than the fiberglass casts. Waterproof cast alternatives may be safer than fiberglass by limiting medical professionals' exposure to toxic isocyanates and, thus, decreasing their risk of suffering occupational asthma.
Collapse
Affiliation(s)
- Kristen Stefanescu
- Keck School of Medicine of the University of Southern California, 1975 Zonal Ave., Los Angeles, CA 90033, USA;
| | | | | | - Grzegorz Zapotoczny
- Consortium for Technology & Innovation in Pediatrics, Lurie Children’s Hospital, 225 E Chicago Ave., Chicago, IL 60611, USA;
| |
Collapse
|
9
|
Pino-Otín MR, Lorca G, Langa E, Roig F, Terrado EM, Ballestero D. Assessing the Ecotoxicity of Eight Widely Used Antibiotics on River Microbial Communities. Int J Mol Sci 2023; 24:16960. [PMID: 38069283 PMCID: PMC10707202 DOI: 10.3390/ijms242316960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/20/2023] [Accepted: 11/24/2023] [Indexed: 12/18/2023] Open
Abstract
Global prevalence of antibiotic residues (ABX) in rivers requires ecotoxicological impact assessment. River microbial communities serve as effective bioindicators for this purpose. We quantified the effects of eight commonly used ABXs on a freshwater river microbial community using Biolog EcoPlates™, enabling the assessment of growth and physiological profile changes. Microbial community characterization involved 16S rRNA gene sequencing. The river community structure was representative of aquatic ecosystems, with the prevalence of Cyanobacteria, Proteobacteria, Actinobacteria, and Bacteroidetes. Our findings reveal that all ABXs at 100 µg/mL reduced microbial community growth and metabolic capacity, particularly for polymers, carbohydrates, carboxylic, and ketonic acids. Chloramphenicol, erythromycin, and gentamicin exhibited the highest toxicity, with chloramphenicol notably impairing the metabolism of all studied metabolite groups. At lower concentrations (1 µg/mL), some ABXs slightly enhanced growth and the capacity to metabolize substrates, such as carbohydrates, carboxylic, and ketonic acids, and amines, except for amoxicillin, which decreased the metabolic capacity across all metabolites. We explored potential correlations between physicochemical parameters and drug mechanisms to understand drug bioavailability. Acute toxicity effects at the river-detected low concentrations (ng/L) are unlikely. However, they may disrupt microbial communities in aquatic ecosystems. The utilization of a wide array of genetically characterized microbial communities, as opposed to a single species, enables a better understanding of the impact of ABXs on complex river ecosystems.
Collapse
Affiliation(s)
- María Rosa Pino-Otín
- Faculty of Health Sciences, San Jorge University, 50830 Zaragoza, Spain; (G.L.); (E.L.); (F.R.); (E.M.T.); (D.B.)
| | | | | | | | | | | |
Collapse
|