1
|
Piontek M, Czyżewska W, Mazur-Marzec H. Effects of Harmful Cyanobacteria on Drinking Water Source Quality and Ecosystems. Toxins (Basel) 2023; 15:703. [PMID: 38133207 PMCID: PMC10747749 DOI: 10.3390/toxins15120703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/12/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023] Open
Abstract
A seasonal plethora of cyanobacteria in the plankton community can have severe implications, not only for water ecosystems but also for the availability of treated water. The catchment of the Obrzyca River (a source of drinking water) is seasonally exposed to harmful cyanobacterial bloom. Previous studies (2008-2012; 2019) revealed that the most polluted water of the Obrzyca River was Uście, close to the outlet of Rudno Lake (at the sampling point). Therefore, the effect on this lake was specifically examined in this study. Sampling was performed from May to September at that site and from July to September 2020 at Rudno Lake. The conducted analysis revealed a massive growth of Aphanizomenon gracile, especially in Rudno Lake. The results showed not only the distinct impact of cyanobacterial bloom on phytoplankton biodiversity but also the presence of microcystins and other cyanopeptides in both sampling points. The maximal total concentration of microcystins (dmMC-RR, MC-RR, dmMC-LR, MC-LR, MC-LY, MC-YR) equaled 57.3 μg/L and the presence of cyanopeptides (aeruginosin, anabaenopeptin) was originally determined in Rudno Lake, August 2021. The presence of these toxins was highlighted in our results for the first time. The same samples from the lake were the most toxic in biotoxicological investigations using the planarian Dugesia tigrina. The performed bioassays proved that D. tigrina is a sensitive bioindicator for cyanotoxins. The physical and chemical indicators of water quality, i.e., color, temperature, total suspended solids, and total nitrogen and phosphorus, showed a significant correlation among each other and towards cyanobacterial abundance and microcystin concentrations.
Collapse
Affiliation(s)
- Marlena Piontek
- Institute of Environmental Engineering, University of Zielona Góra, Licealna 9, 65-417 Zielona Góra, Poland
| | - Wanda Czyżewska
- Water and Sewage Laboratory, Water and Wastewater Treatment Plant in Zielona Góra, 65-120 Zielona Gora, Poland
| | - Hanna Mazur-Marzec
- Department of Marine Biology and Ecology, University of Gdańsk, Al. Marszałka Piłsudskiego 46, 81-378 Gdynia, Poland;
| |
Collapse
|
2
|
Interannual and Spatial Variability of Cyanotoxins in the Prespa Lake Area, Greece. WATER 2021. [DOI: 10.3390/w13030357] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The Prespa Lakes area in Greece—comprised partly of lake Great and lake Lesser Prespa and the Vromolimni pond—has a global importance for biodiversity. Although the waters show regular cyanobacteria blooms, assessments of water quality threats are limited. Samples collected in 2012 revealed scattered and low microcystin (MC) concentrations in Great Prespa (<0.2 μg MC L−1) whereas considerable spatial heterogeneity in both total chlorophyll (2.4–93 µg L−1) and MC concentrations (0.04–52.4 µg MC L−1) was detected in Lesser Prespa. In 2013, there was far less spatial variability of MC concentrations in Lesser Prespa (0.4–1.53 µg L−1), however in 2014, increased concentrations were detected near the lakeshore (25–861 µg MC L−1). In Vromolimni pond the MC concentrations were on average 26.6 (±6.4) µg MC L−1 in 2012, 2.1 (±0.3) µg MC L−1 in 2013 and 12.7 (±12.5) µg MC L−1 in 2014. In 2013, no anatoxins, saxitoxins, nor cylindrospermopsins were detected in Lesser Prespa and Vromolimni waters. Tissue samples from carps, an otter and Dalmatian Pelicans contained 0.4–1.9 µg MC g−1 dry weight. These results indicate that cyanotoxins could be a threat to the ecosystem functions of particularly Lesser Prespa and Vromolimni.
Collapse
|
3
|
Small Floodplain Reservoirs in the Face of Climate Change—Sink or Source of Nutrients? WATER 2020. [DOI: 10.3390/w12123423] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Despite various water protection measures, good water quality and reduction of nutrient loads seem very distant goals, largely due to limited knowledge of processes occurring in river valleys. Our study aimed at establishing the role of small floodplain reservoirs in the eutrophication processes, in the face of recent climate changes. The content of phosphorus and nitrogen compounds was determined in sediments and water of small floodplain reservoirs, (the Vistula River Valley, Poland) using spectrophotometric and Kjeldahl’s method. Nutrient loads in sediments were linked to the texture and total organic carbon content. Seasonal changes in water quality were strictly connected to changing weather conditions, flood and drought. The concentrations of PO43− and NO3− were found to rise after summer flooding. Increases in NH4+, total phosphorus (TP) and total nitrogen (TN) were correlated with the surface water area reduction in the reservoirs, which during the year of the study was on average 62%. Therefore, small floodplain reservoirs could be considered simultaneously as sinks and sources of nutrients. On the one hand, they accumulate P and N compounds carried by the river during the flood. On the other hand, climate change cause that small floodplain reservoirs may be responsible for enhanced biomass production.
Collapse
|
4
|
Filatova D, Núñez O, Farré M. Ultra-Trace Analysis of Cyanotoxins by Liquid Chromatography Coupled to High-Resolution Mass Spectrometry. Toxins (Basel) 2020; 12:toxins12040247. [PMID: 32290413 PMCID: PMC7232229 DOI: 10.3390/toxins12040247] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/07/2020] [Accepted: 04/07/2020] [Indexed: 12/19/2022] Open
Abstract
The increasing frequency of episodes of harmful algal blooms of cyanobacterial origin is a risk to ecosystems and human health. The main human hazard may arise from drinking water supply and recreational water use. For this reason, efficient multiclass analytical methods are needed to assess the level of cyanotoxins in water reservoirs and tackle these problems. This work describes the development of a fast, sensitive, and robust analytical method for multiclass cyanotoxins determination based on dual solid-phase extraction (SPE) procedure using a polymeric cartridge, Oasis HLB (Waters Corporation, Milford, MA, USA), and a graphitized non-porous carbon cartridge, SupelcleanTM ENVI-CarbTM (Sigma-Aldrich, St. Louis, MO, USA), followed by ultra-high-performance liquid chromatography high-resolution mass spectrometry (SPE-UHPLC-HRMS). This method enabled the analysis of cylindrospermopsin, anatoxin-a, nodularin, and seven microcystins (MC-LR, MC-RR, MC-YR, MC-LA, MC-LY, MC-LW, MC-LF). The method limits of detection (MLOD) of the validated approach were between 4 and 150 pg/L. The analytical method was applied to assess the presence of the selected toxins in 21 samples collected in three natural water reservoirs in the Ter River in Catalonia (NE of Spain) used to produce drinking water for Barcelona city (Spain).
Collapse
Affiliation(s)
- Daria Filatova
- Department of Environmental Chemistry, IDAEA-CSIC, 08034 Barcelona, Spain;
| | - Oscar Núñez
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, 08028 Barcelona, Spain;
- Serra Húnter Professor, Generalitat de Catalunya, 08007 Barcelona, Spain
| | - Marinella Farré
- Department of Environmental Chemistry, IDAEA-CSIC, 08034 Barcelona, Spain;
- Correspondence:
| |
Collapse
|
5
|
Maliaka V, Verstijnen YJM, Faassen EJ, Smolders AJP, Lürling M. Effects of guanotrophication and warming on the abundance of green algae, cyanobacteria and microcystins in Lake Lesser Prespa, Greece. PLoS One 2020; 15:e0229148. [PMID: 32160215 PMCID: PMC7065754 DOI: 10.1371/journal.pone.0229148] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 01/30/2020] [Indexed: 11/18/2022] Open
Abstract
Lake Lesser Prespa in Greece is a vital breeding habitat for the Dalmatian and Great White Pelican and a shelter for numerous rare and endemic species. However, eutrophication processes are distressing the lake system and the outbreaks of cyanobacterial blooms during the warm months may pose a threat to aquatic organisms due to the presence of microcystins (MCs). In this study we hypothesize that nutrients (eutrophication), nutrient-rich pelican droppings (guanotrophication) and warming (climate change) can affect the algal growth and MCs production in the water layer of Lake Lesser Prespa. Seston collected from three lake sites was incubated at ambient (20°C) and high (30°C) temperature with or without the addition of nutrients (nitrogen (N), phosphorus (P)), or pelican droppings. Results showed increased chlorophyll-a at higher temperature (30°C). N addition yielded higher chlorophyll-a levels than the non-treated water or when only P was added. The addition of both N and P as well as the addition of pelican dropping resulted in the highest chlorophyll-a at both temperatures. Notably, in the dropping-treatments, cyanobacteria and MCs were promoted while changes were evoked in the relative contribution of toxic MC-variants. Guanotrophication may thus influence the cyanobacterial dynamics and most likely their toxicity profile at Lesser Prespa.
Collapse
Affiliation(s)
- Valentini Maliaka
- Aquatic Ecology and Water Quality Management Group, Department of Environmental Sciences, Wageningen University, Wageningen, The Netherlands
- Department of Aquatic Ecology and Environmental Biology, Institute for Water and Wetland Research, Radboud University, Nijmegen, The Netherlands
- Society for the Protection of Prespa, Agios Germanos, Greece
| | - Yvon J. M. Verstijnen
- Aquatic Ecology and Water Quality Management Group, Department of Environmental Sciences, Wageningen University, Wageningen, The Netherlands
- Department of Aquatic Ecology and Environmental Biology, Institute for Water and Wetland Research, Radboud University, Nijmegen, The Netherlands
- B-WARE Research Centre, Radboud University, Nijmegen, The Netherlands
| | - Elisabeth J. Faassen
- Aquatic Ecology and Water Quality Management Group, Department of Environmental Sciences, Wageningen University, Wageningen, The Netherlands
- Research Institute RIKILT, BU Contaminants & Toxins, Wageningen University, Wageningen, The Netherlands
| | - Alfons J. P. Smolders
- Department of Aquatic Ecology and Environmental Biology, Institute for Water and Wetland Research, Radboud University, Nijmegen, The Netherlands
- B-WARE Research Centre, Radboud University, Nijmegen, The Netherlands
| | - Miquel Lürling
- Aquatic Ecology and Water Quality Management Group, Department of Environmental Sciences, Wageningen University, Wageningen, The Netherlands
- Department of Aquatic Ecology, Netherlands Institute of Ecology, Wageningen, The Netherlands
| |
Collapse
|
6
|
Wang Z, Zhang Y, Huang S, Peng C, Hao Z, Li D. Nitrogen limitation significantly reduces the competitive advantage of toxic Microcystis at high light conditions. CHEMOSPHERE 2019; 237:124508. [PMID: 31408798 DOI: 10.1016/j.chemosphere.2019.124508] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 07/31/2019] [Accepted: 08/02/2019] [Indexed: 06/10/2023]
Abstract
Microcystis is a notorious cyanobacterial genus due to its rapid growth rate, huge biomass, and producing toxins in some eutrophic freshwater environments. To reveal the regulatory factors of interspecific competition between toxic and non-toxic Microcystis, three dominant Microcystis strains were selected, and their photosynthesis, population dynamics and microcystins (MCYST) production were measured. The results suggested that nitrogen-limitation (N-limitation) had a greater restriction for the growth of toxic Microcystis than that of non-toxic Microcystis, especially when cultured at high light or high temperature based on the weight analysis of key factors. Comparison of photosynthesis showed that low light or N-rich would favor the competitive advantage of toxic Microcystis while high light combined with N-limitation would promote the competitive advantage of non-toxic Microcystis, and these two competitive advantages could be further amplified by temperature increase. Mixed competitive experiments of toxic and non-toxic Microcystis were conducted, and the results of absorption spectrum (A485/A665) and qPCR (real-time quantitative PCR) suggested that the proportion of toxic Microcystis and the half-time of succession process were significantly reduced by 69.4% and 28.4% (p < 0.01) respectively by combining N-limitation with high light intensity than that measured under N-limitation condition. N-limitation led to a significant decrease of MCYST cellular quota in Microcystis biomass, which would be further decreased to a lower level by the high light. Based on above mentioned analysis, to decrease the MCYST production of Microcystis blooms, we should control nutrient, especial nitrogen through pollutant intercepting and increase the light intensity through improving water transparency.
Collapse
Affiliation(s)
- Zhicong Wang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, PR China.
| | - Yun Zhang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China.
| | - Shun Huang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China.
| | - Chengrong Peng
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, PR China.
| | - Zhixiang Hao
- Tianjin Institute of Water Conservancy Science, Tianjin, 300061, PR China.
| | - Dunhai Li
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, PR China.
| |
Collapse
|
7
|
Bui T, Dao TS, Vo TG, Lürling M. Warming Affects Growth Rates and Microcystin Production in Tropical Bloom-Forming Microcystis Strains. Toxins (Basel) 2018; 10:E123. [PMID: 29538312 PMCID: PMC5869411 DOI: 10.3390/toxins10030123] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Revised: 02/27/2018] [Accepted: 03/12/2018] [Indexed: 01/27/2023] Open
Abstract
Warming climate is predicted to promote cyanobacterial blooms but the toxicity of cyanobacteria under global warming is less well studied. We tested the hypothesis that raising temperature may lead to increased growth rates but to decreased microcystin (MC) production in tropical Microcystis strains. To this end, six Microcystis strains were isolated from different water bodies in Southern Vietnam. They were grown in triplicate at 27 °C (low), 31 °C (medium), 35 °C (high) and 37 °C (extreme). Chlorophyll-a-, particle- and MC concentrations as well as dry-weights were determined. All strains yielded higher biomass in terms of chlorophyll-a concentration and dry-weight at 31 °C compared to 27 °C and then either stabilised, slightly increased or declined with higher temperature. Five strains easily grew at 37 °C but one could not survive at 37 °C. When temperature was increased from 27 °C to 37 °C total MC concentration decreased by 35% in strains with MC-LR as the dominant variant and by 94% in strains with MC-RR. MC quota expressed per particle, per unit chlorophyll-a and per unit dry-weight significantly declined with higher temperatures. This study shows that warming can prompt the growth of some tropical Microcystis strains but that these strains become less toxic.
Collapse
Affiliation(s)
- Trung Bui
- Aquatic Ecology & Water Quality Management Group, Wageningen University, P.O. Box 47, 6700 AA Wageningen, The Netherlands.
- Institute for Environment and Resources, Vietnam National University, Hochiminh City, Linh Trung Ward, Thu Duc District, 700000 Ho Chi Minh City, Vietnam.
| | - Thanh-Son Dao
- Hochiminh City University of Technology, Vietnam National University, Hochiminh City, 268 Ly Thuong Kiet Street, District 10, 700000 Ho Chi Minh City, Vietnam.
| | - Truong-Giang Vo
- National Breeding Center for Southern Marine Aquaculture, 167 Thuy Van Street, Vung Tau Town, Ba Ria 790000, Vung Tau Province, Vietnam.
| | - Miquel Lürling
- Aquatic Ecology & Water Quality Management Group, Wageningen University, P.O. Box 47, 6700 AA Wageningen, The Netherlands.
- Department of Aquatic Ecology, Netherlands Institute of Ecology (NIOO-KNAW), P.O. Box 50, 6700 AB Wageningen, The Netherlands.
| |
Collapse
|