1
|
Zhang G, Wang Y, Jiang H, Wang Y. Genomic and transcriptomic analyses of Heteropoda venatoria reveal the expansion of P450 family for starvation resistance in spiders. Gigascience 2025; 14:giaf019. [PMID: 40117180 PMCID: PMC11927401 DOI: 10.1093/gigascience/giaf019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 12/09/2024] [Accepted: 02/06/2025] [Indexed: 03/23/2025] Open
Abstract
BACKGROUND Research on the mechanism of starvation resistance can help reveal how animals adjust their physiology and behavior to adapt to the uncertainty of food resources. A low metabolic rate is a significant characteristic of spider physiological activity and can increase spider starvation resistance and adapt to complex ecological environments. RESULTS We sequenced the genome of Heteropoda venatoria and discovered significant expansions in gene families related to lipid metabolism, such as cytochrome P450 and steroid hormone biosynthesis genes, through comparative genomic analysis. We also systematically analyzed the gene expression characteristics of H. venatoria at different starvation resistance stages and reported that the fat body plays a crucial role during starvation in spiders. This study indicates that during the early stages of starvation, H. venatoria relies on glucose metabolism to meet its energy demands. In the middle stage, gene expression stabilizes, whereas in the late stage of starvation, pathways for fatty acid metabolism and protein degradation are significantly activated, and autophagy is increased, serving as a survival strategy under extreme starvation. Notably, analysis of expanded P450 gene families revealed that H. venatoria has many duplicated CYP3 clan genes that are highly expressed in the fat body, which may help maintain a low-energy metabolic state, allowing H. venatoria to endure longer periods of starvation. We also observed that the motifs of P450 families in H. venatoria are less conserved than those in insects are, which may be related to the greater polymorphism of spider genomes. CONCLUSIONS This research not only provides important genetic and transcriptomic evidence for understanding the starvation mechanisms of spiders but also offers new insights into the adaptive evolution of arthropods.
Collapse
Affiliation(s)
- Guoqing Zhang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400715, China
| | - Yiru Wang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400715, China
| | - Hongcen Jiang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400715, China
| | - Yi Wang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400715, China
| |
Collapse
|
2
|
Zhao L, Zhang S, Li J, Zhang C, Xiao R, Bai X, Xu H, Zhang F. Unveiling Diversity and Function: Venom-Associated Microbes in Two Spiders, Heteropoda venatoria and Chilobrachys guangxiensis. MICROBIAL ECOLOGY 2024; 87:156. [PMID: 39708146 DOI: 10.1007/s00248-024-02476-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 12/04/2024] [Indexed: 12/23/2024]
Abstract
Spiders are natural predators of agricultural pests, primarily due to the potent venom in their venom glands. Spider venom is compositionally complex and holds research value. This study analyzes the diversity of symbiotic bacteria in spider venom glands and venom, as well as the biological activity of culturable symbiotic bacteria. Focusing on the venom glands and venom of Heteropoda venatoria and Chilobrachys guangxiensis, we identified a diverse array of microorganisms. High-throughput sequencing detected 2151 amplicon sequence variants (ASVs), spanning 31 phyla, 75 classes, and 617 genera. A total of 125 strains of cultivable bacteria were isolated. Using the Oxford cup method, crude extracts from 46 of these strains exhibited inhibitory effects against at least one indicator bacterium. MTT (Thiazolyl blue) assays revealed that the crude extracts from 43 strains had inhibitory effects on tumor cell line MGC-803 growth. Additionally, DAPI (4',6-diamidino-2'-phenylindole) staining and flow cytometry were employed to detect cell apoptosis. The anti-inflammatory activity of nine bacterial strains was assessed using a NO assay kit and enzyme-linked immunosorbent assay (ELISA). This study further investigated the biological activity of venom, exploring the relationship between the venom and the functional activity of venom-associated bacteria.
Collapse
Affiliation(s)
- Likun Zhao
- The Key Laboratory of Microbial Diversity Research and Application of Hebei Province, Baoding, 071002, Hebei, China
- Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding, 071002, Hebei, China
| | - Shanfeng Zhang
- The Key Laboratory of Microbial Diversity Research and Application of Hebei Province, Baoding, 071002, Hebei, China
- Engineering Research Center of Ecological Safety and Conservation in Beijing-Tianjin-Hebei (Xiong'an New Area) of MOE, Baoding, China
| | - Jingchen Li
- The Key Laboratory of Microbial Diversity Research and Application of Hebei Province, Baoding, 071002, Hebei, China
- Engineering Research Center of Ecological Safety and Conservation in Beijing-Tianjin-Hebei (Xiong'an New Area) of MOE, Baoding, China
| | - Chao Zhang
- Key Laboratory of Zoological Systematics and Application, College of Life Sciences, Hebei University, Baoding, 071002, Hebei, China
| | - Ruoyi Xiao
- Key Laboratory of Zoological Systematics and Application, College of Life Sciences, Hebei University, Baoding, 071002, Hebei, China
| | - Xinyuan Bai
- The Key Laboratory of Microbial Diversity Research and Application of Hebei Province, Baoding, 071002, Hebei, China
| | - Hongkang Xu
- Key Laboratory of Zoological Systematics and Application, College of Life Sciences, Hebei University, Baoding, 071002, Hebei, China
| | - Feng Zhang
- Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding, 071002, Hebei, China.
- Key Laboratory of Zoological Systematics and Application, College of Life Sciences, Hebei University, Baoding, 071002, Hebei, China.
| |
Collapse
|
3
|
Wang X, Li W, Yang X, Yang M, Gu Y, Du Z, Yang J, Wen M, Park Y, Huang C, He Y. Insecticidal activities of three recombinant venom proteins of the predatory stink bug, Arma custos. PEST MANAGEMENT SCIENCE 2024; 80:6473-6482. [PMID: 39166741 DOI: 10.1002/ps.8382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 08/04/2024] [Accepted: 08/07/2024] [Indexed: 08/23/2024]
Abstract
BACKGROUND Widespread resistance of insect pests to insecticides and transgenic crops in the field is a significant challenge for sustainable agriculture, and calls for the development of novel alternative strategies to control insect pests. One potential resource for the discovery of novel insecticidal molecules is natural toxins, particularly those derived from the venoms of insect predators. RESULTS In this study, we identified three insecticidal proteinaceous toxins from the venom glands (VGs) of the predatory stink bug, Arma custos (Hemiptera: Asopinae). Transcriptomic analysis of A. custos VGs revealed 151 potentially secreted VG-rich venom proteins. Three VG-rich venom proteins (designated AcVP1 ~ 3) were produced by overexpression in Escherichia coli. Injection of the recombinant proteins into tobacco cutworm (Spodoptera litura) larvae showed that all of the three recombinant proteins caused paralysis, liquefaction and death. Injection of recombinant proteins into rice brown planthopper (Nilaparvata lugens) nymphs showed higher insecticidal activities, among which a trypsin (AcVP2) caused 100% mortality postinjection at 1.27 pmol mg-1 body weight. CONCLUSION A natural toolkit for the discovery of insecticidal toxins from predatory insects has been revealed by the present study. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xinyi Wang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Wenhong Li
- Institute of Plant Protection, Guizhou Academy of Agricultural Sciences, Guiyang, China
| | - Xiang Yang
- Guizhou Provincial Tobacco Company Zunyi Branch, Zunyi, China
| | - Mingwei Yang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yucheng Gu
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zhao Du
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jingyi Yang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Mingxia Wen
- Guizhou Provincial Tobacco Company Zunyi Branch, Zunyi, China
| | - Yoonseong Park
- Department of Entomology, Kansas State University, Manhattan, KS, USA
| | - Chunyang Huang
- Guizhou Provincial Tobacco Company Zunyi Branch, Zunyi, China
| | - Yueping He
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- National Engineering Research Center of Microbial Pesticides, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
4
|
Lin C, Qin H, Liao Y, Chen J, Gao B. Chemical Synthesis and Insecticidal Activity Research Based on α-Conotoxins. Molecules 2024; 29:2846. [PMID: 38930912 PMCID: PMC11206848 DOI: 10.3390/molecules29122846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
The escalating resistance of agricultural pests to chemical insecticides necessitates the development of novel, efficient, and safe biological insecticides. Conus quercinus, a vermivorous cone snail, yields a crude venom rich in peptides for marine worm predation. This study screened six α-conotoxins with insecticidal potential from a previously constructed transcriptome database of C. quercinus, characterized by two disulfide bonds. These conotoxins were derived via solid-phase peptide synthesis (SPPS) and folded using two-step iodine oxidation for further insecticidal activity validation, such as CCK-8 assay and insect bioassay. The final results confirmed the insecticidal activities of the six α-conotoxins, with Qc1.15 and Qc1.18 exhibiting high insecticidal activity. In addition, structural analysis via homology modeling and functional insights from molecular docking offer a preliminary look into their potential insecticidal mechanisms. In summary, this study provides essential references and foundations for developing novel insecticides.
Collapse
Affiliation(s)
| | | | | | - Jiao Chen
- Engineering Research Center of Tropical Medicine Innovation and Transformation of Ministry of Education, International Joint Research Center of Human-Machine Intelligent Collaborative for Tumor Precision Diagnosis and Treatment of Hainan Province, Hainan Key Laboratory for Research and Development of Tropical Herbs, School of Pharmacy, Hainan Medical University, Haikou 571199, China; (C.L.); (H.Q.); (Y.L.)
| | - Bingmiao Gao
- Engineering Research Center of Tropical Medicine Innovation and Transformation of Ministry of Education, International Joint Research Center of Human-Machine Intelligent Collaborative for Tumor Precision Diagnosis and Treatment of Hainan Province, Hainan Key Laboratory for Research and Development of Tropical Herbs, School of Pharmacy, Hainan Medical University, Haikou 571199, China; (C.L.); (H.Q.); (Y.L.)
| |
Collapse
|
5
|
Guo R, Guo G, Wang A, Xu G, Lai R, Jin H. Spider-Venom Peptides: Structure, Bioactivity, Strategy, and Research Applications. Molecules 2023; 29:35. [PMID: 38202621 PMCID: PMC10779620 DOI: 10.3390/molecules29010035] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/30/2023] [Accepted: 12/08/2023] [Indexed: 01/12/2024] Open
Abstract
Spiders (Araneae), having thrived for over 300 million years, exhibit remarkable diversity, with 47,000 described species and an estimated 150,000 species in existence. Evolving with intricate venom, spiders are nature's skilled predators. While only a small fraction of spiders pose a threat to humans, their venoms contain complex compounds, holding promise as drug leads. Spider venoms primarily serve to immobilize prey, achieved through neurotoxins targeting ion channels. Peptides constitute a major part of these venoms, displaying diverse pharmacological activities, and making them appealing for drug development. Moreover, spider-venom peptides have emerged as valuable tools for exploring human disease mechanisms. This review focuses on the roles of spider-venom peptides in spider survival strategies and their dual significance as pharmaceutical research tools. By integrating recent discoveries, it provides a comprehensive overview of these peptides, their targets, bioactivities, and their relevance in spider survival and medical research.
Collapse
Affiliation(s)
- Ruiyin Guo
- Center for Evolution and Conservation Biology, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China; (R.G.)
| | - Gang Guo
- The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital), Kunming 650118, China;
| | - Aili Wang
- Center for Evolution and Conservation Biology, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China; (R.G.)
| | - Gaochi Xu
- Center for Evolution and Conservation Biology, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China; (R.G.)
| | - Ren Lai
- Center for Evolution and Conservation Biology, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China; (R.G.)
- Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, Kunming-Primate Research Center, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Sino-African Joint Research Center and Engineering Laboratory of Peptides, Kunming Institute of Zoology, Kunming 650107, China
| | - Hui Jin
- Center for Evolution and Conservation Biology, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China; (R.G.)
| |
Collapse
|
6
|
Chen J, Zhang X, Lin C, Gao B. Synthesis and insecticidal activity of cysteine-free conopeptides from Conus betulinus. Toxicon 2023; 233:107253. [PMID: 37586612 DOI: 10.1016/j.toxicon.2023.107253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 07/21/2023] [Accepted: 08/10/2023] [Indexed: 08/18/2023]
Abstract
The cone snail Conus betulinus is a vermivorous species that is widely distributed in the South China Sea. Its crude venom contains various peptides used to prey on marine worms. In previous studies, a systematic analysis of the peptide toxin sequences from C. betulinus was carried out using a multiomics technique. In this study, 10 cysteine-free peptides that may possess insecticidal activity were selected from a previously constructed conopeptide library of C. betulinus using the CPY-Fe conopeptide as a template. These conopeptides were prepared by solid-phase peptide synthesis (SPPS), then characterized by the reverse-phase high performance liquid chromatography (HPLC) and mass spectrometry. Insect cytotoxicity and injection experiments revealed that these cysteine-free peptides exerted favorable insecticidal effects, and two of them (Bt010 and Bt016) exhibited high insecticidal efficacy with LD50 of 9.07 nM and 10.93 nM, respectively. In addition, the 3D structures of these peptides were predicted by homology modeling, and a phylogenetic tree was constructed based on the nucleotide data of conopeptides to analyze the relationships among structures, functions, and evolution. A preliminary mechanism for the insecticidal activity of the cysteine-free conopeptides was predicted by molecular docking. To the best of our knowledge, this is the first study to report the insecticidal activity of cysteine-free conopeptides derived from Conus betulinus, signaling that they could potentially be developed into bioinsecticides with desirable properties such as easy preparation, low cost, and high potency.
Collapse
Affiliation(s)
- Jiao Chen
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Key Laboratory for Research and Development of Tropical Herbs, School of Pharmacy, Hainan Medical University, Haikou, China
| | - Xueying Zhang
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Key Laboratory for Research and Development of Tropical Herbs, School of Pharmacy, Hainan Medical University, Haikou, China
| | - Chengzhang Lin
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Key Laboratory for Research and Development of Tropical Herbs, School of Pharmacy, Hainan Medical University, Haikou, China
| | - Bingmiao Gao
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Key Laboratory for Research and Development of Tropical Herbs, School of Pharmacy, Hainan Medical University, Haikou, China.
| |
Collapse
|
7
|
Ahmed J, Walker AA, Perdomo HD, Guo S, Nixon SA, Vetter I, Okoh HI, Shehu DM, Shuaibu MN, Ndams IS, King GF, Herzig V. Two Novel Mosquitocidal Peptides Isolated from the Venom of the Bahia Scarlet Tarantula ( Lasiodora klugi). Toxins (Basel) 2023; 15:418. [PMID: 37505687 PMCID: PMC10467143 DOI: 10.3390/toxins15070418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/16/2023] [Accepted: 06/23/2023] [Indexed: 07/29/2023] Open
Abstract
Effective control of diseases transmitted by Aedes aegypti is primarily achieved through vector control by chemical insecticides. However, the emergence of insecticide resistance in A. aegypti undermines current control efforts. Arachnid venoms are rich in toxins with activity against dipteran insects and we therefore employed a panel of 41 spider and 9 scorpion venoms to screen for mosquitocidal toxins. Using an assay-guided fractionation approach, we isolated two peptides from the venom of the tarantula Lasiodora klugi with activity against adult A. aegypti. The isolated peptides were named U-TRTX-Lk1a and U-TRTX-Lk2a and comprised 41 and 49 residues with monoisotopic masses of 4687.02 Da and 5718.88 Da, respectively. U-TRTX-Lk1a exhibited an LD50 of 38.3 pmol/g when injected into A. aegypti and its modeled structure conformed to the inhibitor cystine knot motif. U-TRTX-Lk2a has an LD50 of 45.4 pmol/g against adult A. aegypti and its predicted structure conforms to the disulfide-directed β-hairpin motif. These spider-venom peptides represent potential leads for the development of novel control agents for A. aegypti.
Collapse
Affiliation(s)
- Jamila Ahmed
- Department of Zoology, Ahmadu Bello University Zaria, Kaduna 810107, Nigeria
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Andrew A. Walker
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, University of Queensland, Brisbane, QLD 4072, Australia
| | - Hugo D. Perdomo
- School of Biological Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Shaodong Guo
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, University of Queensland, Brisbane, QLD 4072, Australia
| | - Samantha A. Nixon
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, University of Queensland, Brisbane, QLD 4072, Australia
| | - Irina Vetter
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
- School of Pharmacy, The University of Queensland, Brisbane, QLD 4102, Australia
| | - Hilary I. Okoh
- Department of Animal and Environmental Biology, Federal University Oye-Ekiti, Oye 371104, Nigeria
| | - Dalhatu M. Shehu
- Department of Zoology, Ahmadu Bello University Zaria, Kaduna 810107, Nigeria
| | - Mohammed N. Shuaibu
- Department of Biochemistry, Ahmadu Bello University Zaria, Kaduna 810107, Nigeria
- Centre for Biotechnology Research and Training, Ahmadu Bello University Zaria, Kaduna 810107, Nigeria
| | - Iliya S. Ndams
- Department of Zoology, Ahmadu Bello University Zaria, Kaduna 810107, Nigeria
| | - Glenn F. King
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, University of Queensland, Brisbane, QLD 4072, Australia
| | - Volker Herzig
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
- Centre for Bioinnovation, University of the Sunshine Coast, Sippy Downs, QLD 4556, Australia
- School of Science, Technology, and Engineering, University of the Sunshine Coast, Sippy Downs, QLD 4556, Australia
| |
Collapse
|
8
|
Keimasi M, Salehifard K, Shahidi M, Esmaeili F, Mirshah Jafar Esfahani N, Beheshti S, Amirsadri M, Naseri F, Keimasi M, Ghorbani N, Mofid MR, Moradmand M. Ameliorative effects of omega-lycotoxin-Gsp2671e purified from the spider venom of Lycosa praegrandis on memory deficits of glutamate-induced excitotoxicity rat model. Front Pharmacol 2022; 13:1048563. [PMID: 36588719 PMCID: PMC9800828 DOI: 10.3389/fphar.2022.1048563] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022] Open
Abstract
Memory impairment is one of the main complications of Alzheimer's disease (AD). This condition can be induced by hyper-stimulation of N-Methyl-D-aspartate receptors (NMDARs) of glutamate in the hippocampus, which ends up to pyramidal neurons determination. The release of neurotransmitters relies on voltage-gated calcium channels (VGCCs) such as P/Q-types. Omega-lycotoxin-Gsp2671e (OLG1e) is a P/Q-type VGCC modulator with high affinity and selectivity. This bio-active small protein was purified and identified from the Lycosa praegrandis venom. The effect of this state-dependent low molecular weight P/Q-type calcium modulator on rats was investigated via glutamate-induced excitotoxicity by N-Methyl-D-aspartate. Also, Electrophysiological amplitude of field excitatory postsynaptic potentials (fEPSPs) in the input-output and Long-term potentiation (LTP) curves were recorded in mossy fiber and the amount of synaptophysin (SYN), synaptosomal-associated protein, 25 kDa (SNAP-25), and synaptotagmin 1(SYT1) genes expression were measured using Real-time PCR technique for synaptic quantification. The outcomes of the current study suggest that OLG1e as a P/Q-type VGCC modulator has an ameliorative effect on excitotoxicity-induced memory defects and prevents the impairment of pyramidal neurons in the rat hippocampus.
Collapse
Affiliation(s)
- Mohammad Keimasi
- Department of Plant and Animal Biology, Faculty of Biological Sciences and Technology, University of Isfahan, Isfahan, Iran,*Correspondence: Majid Moradmand, ; Mohammad Reza Mofid, ; Mohammad Keimasi,
| | - Kowsar Salehifard
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Marzieh Shahidi
- Department of Plant and Animal Biology, Faculty of Biological Sciences and Technology, University of Isfahan, Isfahan, Iran
| | - Fariba Esmaeili
- Department of Plant and Animal Biology, Faculty of Biological Sciences and Technology, University of Isfahan, Isfahan, Iran
| | - Noushin Mirshah Jafar Esfahani
- Department of Plant and Animal Biology, Faculty of Biological Sciences and Technology, University of Isfahan, Isfahan, Iran
| | - Siamak Beheshti
- Department of Plant and Animal Biology, Faculty of Biological Sciences and Technology, University of Isfahan, Isfahan, Iran
| | - Mohammadreza Amirsadri
- Department of Clinical Pharmacy and Pharmacy Practice, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Faezeh Naseri
- Department of Clinical Biochemistry, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammadjavad Keimasi
- Department of Plant and Animal Biology, Faculty of Biological Sciences and Technology, University of Isfahan, Isfahan, Iran
| | - Najmeh Ghorbani
- Department of Plant and Animal Biology, Faculty of Biological Sciences and Technology, University of Isfahan, Isfahan, Iran
| | - Mohammad Reza Mofid
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran,*Correspondence: Majid Moradmand, ; Mohammad Reza Mofid, ; Mohammad Keimasi,
| | - Majid Moradmand
- Department of Plant and Animal Biology, Faculty of Biological Sciences and Technology, University of Isfahan, Isfahan, Iran,*Correspondence: Majid Moradmand, ; Mohammad Reza Mofid, ; Mohammad Keimasi,
| |
Collapse
|
9
|
Ding LJ, Wu XM, Zhang CG, Gao PF, Zhang Y, Yang ZZ, Zhao Y. Toxin diversity revealed by de novo transcriptome assembly for venom gland in two species of spiders (Trichonephila clavata and Sinopoda pengi). COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2022; 42:100984. [PMID: 35462116 DOI: 10.1016/j.cbd.2022.100984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/01/2022] [Accepted: 03/24/2022] [Indexed: 06/14/2023]
Abstract
During long-term predator-prey coevolution, spiders have generated a vast diversity of toxins. Trichonephila clavata is a web-spinning spider whose large, well-constructed webs and venomous arsenal facilitate prey capture. In contrast, Sinopoda pengi is an ambush predator with agile locomotion and strong chelicerae for hunting. In this study, transcriptomic analysis was performed to describe the predicted toxins of S. pengi and T. clavata. A total of 43 and 47 of these unigenes from S. pengi and T. clavata, respectively, were predicted to have toxin activity. Putative neurotoxins were classified to the family level according to cysteine arrangement; 4 and 6 toxin families were produced by S. pengi and T. clavata, respectively. In addition, potential metalloproteases, acetylcholinesterases, serine proteases, hyaluronidases and phospholipases were found by annotation in databases. In summary, molecular templates with potential application value for medical and biological fields were obtained by classifying and characterizing presumed venom components, which established a foundation for further study of venom.
Collapse
Affiliation(s)
- Li-Jun Ding
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R & D, Dali University, Dali 671000, China; National-Local Joint Engineering Research Center of Entomoceutics, Dali University, Dali 671000, China; Innovative Team of Dali University for Medicinal Insects & Arachnids Resources Digital Development, Dali 671000, China
| | - Xiu-Mei Wu
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R & D, Dali University, Dali 671000, China; National-Local Joint Engineering Research Center of Entomoceutics, Dali University, Dali 671000, China; Innovative Team of Dali University for Medicinal Insects & Arachnids Resources Digital Development, Dali 671000, China
| | - Cheng-Gui Zhang
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R & D, Dali University, Dali 671000, China; National-Local Joint Engineering Research Center of Entomoceutics, Dali University, Dali 671000, China; Innovative Team of Dali University for Medicinal Insects & Arachnids Resources Digital Development, Dali 671000, China
| | - Peng-Fei Gao
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R & D, Dali University, Dali 671000, China; National-Local Joint Engineering Research Center of Entomoceutics, Dali University, Dali 671000, China; Innovative Team of Dali University for Medicinal Insects & Arachnids Resources Digital Development, Dali 671000, China
| | - Yan Zhang
- Yunnan Provincial Academy of Science and Technology, Kunming, Yunnan 650051, China
| | - Zi-Zhong Yang
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R & D, Dali University, Dali 671000, China; National-Local Joint Engineering Research Center of Entomoceutics, Dali University, Dali 671000, China; Innovative Team of Dali University for Medicinal Insects & Arachnids Resources Digital Development, Dali 671000, China.
| | - Yu Zhao
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R & D, Dali University, Dali 671000, China; National-Local Joint Engineering Research Center of Entomoceutics, Dali University, Dali 671000, China; Innovative Team of Dali University for Medicinal Insects & Arachnids Resources Digital Development, Dali 671000, China
| |
Collapse
|
10
|
Molecular Diversity of Peptide Toxins in the Venom of Spider Heteropoda pingtungensis as Revealed by cDNA Library and Transcriptome Sequencing Analysis. Toxins (Basel) 2022; 14:toxins14020140. [PMID: 35202167 PMCID: PMC8876598 DOI: 10.3390/toxins14020140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 01/24/2022] [Accepted: 02/08/2022] [Indexed: 11/16/2022] Open
Abstract
The venoms of toxic animals are chemical pools composed of various proteins, peptides, and small organic molecules used for predation and defense, in which the peptidic toxins have been intensively pursued mining modulators targeting disease-related ion channels and receptors as valuable drug pioneers. In the present study, we uncovered the molecular diversity of peptide toxins in the venom of the spider Heteropoda pingtungensis (H. pingtungensis) by using a combinatory strategy of venom gland cDNA library and transcriptome sequencing (RNA-seq). An amount of 991 high-quality expressed sequence tags (ESTs) were identified from 1138 generated sequences, which fall into three categories, such as the toxin-like ESTs (531, 53.58%), the cellular component ESTs (255, 25.73%), and the no-match ESTs (205, 20.69%), as determined by gene function annotations. Of them, 190 non-redundant toxin-like peptides were identified and can be artificially grouped into 13 families based on their sequence homology and cysteine frameworks (families A–M). The predicted mature toxins contain 2–10 cysteines, which are predicted to form intramolecular disulfide bonds to stabilize their three-dimensional structures. Bioinformatics analysis showed that toxins from H. pingtungensis venom have high sequences variability and the biological targets for most toxins are unpredictable due to lack of homology to toxins with known functions in the database. Furthermore, RP-HPLC and MALDI-TOF analyses have identified a total of 110 different peptides physically existing in the H. pingtungensis venom, and many RP-HPLC fractions showed potent inhibitory activity on the heterologously expressed NaV1.7 channel. Most importantly, two novel NaV1.7 peptide antagonists, µ-Sparatoxin-Hp1 and µ-Sparatoxin-Hp2, were characterized. In conclusion, the present study has added many new members to the spider toxin superfamily and built the foundation for identifying novel modulators targeting ion channels in the H. pingtungensis venom.
Collapse
|
11
|
A Deep Learning Approach with Data Augmentation to Predict Novel Spider Neurotoxic Peptides. Int J Mol Sci 2021; 22:ijms222212291. [PMID: 34830173 PMCID: PMC8619404 DOI: 10.3390/ijms222212291] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/09/2021] [Accepted: 11/11/2021] [Indexed: 11/17/2022] Open
Abstract
As major components of spider venoms, neurotoxic peptides exhibit structural diversity, target specificity, and have great pharmaceutical potential. Deep learning may be an alternative to the laborious and time-consuming methods for identifying these peptides. However, the major hurdle in developing a deep learning model is the limited data on neurotoxic peptides. Here, we present a peptide data augmentation method that improves the recognition of neurotoxic peptides via a convolutional neural network model. The neurotoxic peptides were augmented with the known neurotoxic peptides from UniProt database, and the models were trained using a training set with or without the generated sequences to verify the augmented data. The model trained with the augmented dataset outperformed the one with the unaugmented dataset, achieving accuracy of 0.9953, precision of 0.9922, recall of 0.9984, and F1 score of 0.9953 in simulation dataset. From the set of all RNA transcripts of Callobius koreanus spider, we discovered neurotoxic peptides via the model, resulting in 275 putative peptides of which 252 novel sequences and only 23 sequences showing homology with the known peptides by Basic Local Alignment Search Tool. Among these 275 peptides, four were selected and shown to have neuromodulatory effects on the human neuroblastoma cell line SH-SY5Y. The augmentation method presented here may be applied to the identification of other functional peptides from biological resources with insufficient data.
Collapse
|
12
|
Chen J, Liu X, Yu S, Liu J, Chen R, Zhang Y, Jiang L, Dai Q. A novel ω-conotoxin Bu8 inhibiting N-type voltage-gated calcium channels displays potent analgesic activity. Acta Pharm Sin B 2021; 11:2685-2693. [PMID: 34589389 PMCID: PMC8463271 DOI: 10.1016/j.apsb.2021.03.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/13/2021] [Accepted: 03/01/2021] [Indexed: 01/11/2023] Open
Abstract
ω-Conotoxins inhibit N-type voltage-gated calcium (CaV2.2) channels and exhibit efficacy in attenuating neuropathic pain but have a low therapeutic index. Here, we synthesized and characterized a novel ω-conotoxin, Bu8 from Conus bullatus, which consists of 25 amino acid residues and three disulfide bridges. Bu8 selectively and potently inhibits depolarization-activated Ba2+ currents mediated by rat CaV2.2 expressed in HEK293T cells (IC50 = 89 nmol/L). Bu8 is two-fold more potent than ω-conotoxin MVIIA, a ω-conotoxin currently used for the treatment of severe chronic pain. It also displays potent analgesic activity in animal pain models of hot plate and acetic acid writhing but has fewer side effects on mouse motor function and lower toxicity in goldfish. Its lower side effects may be attributed to its faster binding rate and higher recovery ratios. The NMR structure demonstrates that Bu8 contains a small irregular triple β-strand. The structure-activity relationships of Bu8 Ala mutants and Bu8/MVIIA hybrid mutants demonstrate that the binding mode of CaV2.2 with the amino acid residues in loop 1 and loop 2 of Bu8 is different from that of MVIIA. This study characterizes a novel, more potent ω-conotoxin and provides new insights for designing CaV2.2 antagonists.
Collapse
Key Words
- Analgesic activity
- Bu8
- DIEA, diisopropylethylamine
- ESI-MS, electrospray ionization-mass spectroscopy
- Fmoc, N-(9-fluorenyl)methyloxy-carbonyl
- HBTU, 2-(1H-benzotriazol-1-yl)-1,1,3,3-tetramethyluronium hexafluorophosphate
- HOBt, 1-hydroxybenzotriazole
- IC50, half-maximal inhibitory concentration
- N-type calcium ion channel
- RP-HPLC, reversed phase high-performance liquid chromatography
- Structure–activity relationship
- TFA, trifluoroacetic acid
- ω-conotoxin
Collapse
Affiliation(s)
- Jinqin Chen
- Beijing Institute of Biotechnology, Beijing 100071, China
| | - Xinhong Liu
- Key Laboratory of Magnetic Resonance in Biological System, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Center for Magnetic Resonance, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuo Yu
- Beijing Institute of Biotechnology, Beijing 100071, China
| | - Jia Liu
- Beijing Institute of Biotechnology, Beijing 100071, China
| | - Rongfang Chen
- Beijing Institute of Biotechnology, Beijing 100071, China
| | - Yunxiao Zhang
- College of Life Science, Hunan Normal University, Changsha 410081, China
| | - Ling Jiang
- Key Laboratory of Magnetic Resonance in Biological System, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Center for Magnetic Resonance, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
- Corresponding authors. Tel: +86 10 66948897.
| | - Qiuyun Dai
- Beijing Institute of Biotechnology, Beijing 100071, China
- Corresponding authors. Tel: +86 10 66948897.
| |
Collapse
|