1
|
Fitzpatrick LLJ, Nijman V, Ligabue-Braun R, Nekaris KAI. The Fast and the Furriest: Investigating the Rate of Selection on Mammalian Toxins. Toxins (Basel) 2022; 14:toxins14120842. [PMID: 36548740 PMCID: PMC9782207 DOI: 10.3390/toxins14120842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/25/2022] [Accepted: 11/26/2022] [Indexed: 12/03/2022] Open
Abstract
The evolution of venom and the selection pressures that act on toxins have been increasingly researched within toxinology in the last two decades, in part due to the exceptionally high rates of diversifying selection observed in animal toxins. In 2015, Sungar and Moran proposed the 'two-speed' model of toxin evolution linking evolutionary age of a group to the rates of selection acting on toxins but due to a lack of data, mammals were not included as less than 30 species of venomous mammal have been recorded, represented by elusive species which produce small amounts of venom. Due to advances in genomics and transcriptomics, the availability of toxin sequences from venomous mammals has been increasing. Using branch- and site-specific selection models, we present the rates of both episodic and pervasive selection acting upon venomous mammal toxins as a group for the first time. We identified seven toxin groups present within venomous mammals, representing Chiroptera, Eulipotyphla and Monotremata: KLK1, Plasminogen Activator, Desmallipins, PACAP, CRiSP, Kunitz Domain One and Kunitz Domain Two. All but one group (KLK1) was identified by our results to be evolving under both episodic and pervasive diversifying selection with four toxin groups having sites that were implicated in the fitness of the animal by TreeSAAP (Selection on Amino Acid Properties). Our results suggest that venomous mammal ecology, behaviour or genomic evolution are the main drivers of selection, although evolutionary age may still be a factor. Our conclusion from these results indicates that mammalian toxins are following the two-speed model of selection, evolving predominately under diversifying selection, fitting in with other younger venomous taxa like snakes and cone snails-with high amounts of accumulating mutations, leading to more novel adaptions in their toxins.
Collapse
Affiliation(s)
- Leah Lucy Joscelyne Fitzpatrick
- Nocturnal Primate Research Group, Department of Social Sciences, Oxford Brookes University, Oxford OX3 0BP, UK
- Centre for Functional Genomics, Department of Health and Life Sciences, Oxford Brookes University, Oxford OX3 0BP, UK
- Correspondence:
| | - Vincent Nijman
- Nocturnal Primate Research Group, Department of Social Sciences, Oxford Brookes University, Oxford OX3 0BP, UK
- Centre for Functional Genomics, Department of Health and Life Sciences, Oxford Brookes University, Oxford OX3 0BP, UK
| | - Rodrigo Ligabue-Braun
- Department of Pharmacosciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Avenida Sarmento Leite 245, Porto Alegre 90050-130, Brazil
| | - K. Anne-Isola Nekaris
- Nocturnal Primate Research Group, Department of Social Sciences, Oxford Brookes University, Oxford OX3 0BP, UK
- Centre for Functional Genomics, Department of Health and Life Sciences, Oxford Brookes University, Oxford OX3 0BP, UK
| |
Collapse
|
2
|
Rivera-de-Torre E, Rimbault C, Jenkins TP, Sørensen CV, Damsbo A, Saez NJ, Duhoo Y, Hackney CM, Ellgaard L, Laustsen AH. Strategies for Heterologous Expression, Synthesis, and Purification of Animal Venom Toxins. Front Bioeng Biotechnol 2022; 9:811905. [PMID: 35127675 PMCID: PMC8811309 DOI: 10.3389/fbioe.2021.811905] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 12/24/2021] [Indexed: 11/13/2022] Open
Abstract
Animal venoms are complex mixtures containing peptides and proteins known as toxins, which are responsible for the deleterious effect of envenomations. Across the animal Kingdom, toxin diversity is enormous, and the ability to understand the biochemical mechanisms governing toxicity is not only relevant for the development of better envenomation therapies, but also for exploiting toxin bioactivities for therapeutic or biotechnological purposes. Most of toxinology research has relied on obtaining the toxins from crude venoms; however, some toxins are difficult to obtain because the venomous animal is endangered, does not thrive in captivity, produces only a small amount of venom, is difficult to milk, or only produces low amounts of the toxin of interest. Heterologous expression of toxins enables the production of sufficient amounts to unlock the biotechnological potential of these bioactive proteins. Moreover, heterologous expression ensures homogeneity, avoids cross-contamination with other venom components, and circumvents the use of crude venom. Heterologous expression is also not only restricted to natural toxins, but allows for the design of toxins with special properties or can take advantage of the increasing amount of transcriptomics and genomics data, enabling the expression of dormant toxin genes. The main challenge when producing toxins is obtaining properly folded proteins with a correct disulfide pattern that ensures the activity of the toxin of interest. This review presents the strategies that can be used to express toxins in bacteria, yeast, insect cells, or mammalian cells, as well as synthetic approaches that do not involve cells, such as cell-free biosynthesis and peptide synthesis. This is accompanied by an overview of the main advantages and drawbacks of these different systems for producing toxins, as well as a discussion of the biosafety considerations that need to be made when working with highly bioactive proteins.
Collapse
Affiliation(s)
- Esperanza Rivera-de-Torre
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
- *Correspondence: Esperanza Rivera-de-Torre, ; Andreas H. Laustsen,
| | - Charlotte Rimbault
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Timothy P. Jenkins
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Christoffer V. Sørensen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Anna Damsbo
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Natalie J. Saez
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
| | - Yoan Duhoo
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
| | - Celeste Menuet Hackney
- Department of Biology, Linderstrøm-Lang Centre for Protein Science, University of Copenhagen, Copenhagen, Denmark
| | - Lars Ellgaard
- Department of Biology, Linderstrøm-Lang Centre for Protein Science, University of Copenhagen, Copenhagen, Denmark
| | - Andreas H. Laustsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
- *Correspondence: Esperanza Rivera-de-Torre, ; Andreas H. Laustsen,
| |
Collapse
|
3
|
Venom Use in Eulipotyphlans: An Evolutionary and Ecological Approach. Toxins (Basel) 2021; 13:toxins13030231. [PMID: 33810196 PMCID: PMC8004749 DOI: 10.3390/toxins13030231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/15/2021] [Accepted: 03/18/2021] [Indexed: 11/16/2022] Open
Abstract
Venomousness is a complex functional trait that has evolved independently many times in the animal kingdom, although it is rare among mammals. Intriguingly, most venomous mammal species belong to Eulipotyphla (solenodons, shrews). This fact may be linked to their high metabolic rate and a nearly continuous demand of nutritious food, and thus it relates the venom functions to facilitation of their efficient foraging. While mammalian venoms have been investigated using biochemical and molecular assays, studies of their ecological functions have been neglected for a long time. Therefore, we provide here an overview of what is currently known about eulipotyphlan venoms, followed by a discussion of how these venoms might have evolved under ecological pressures related to food acquisition, ecological interactions, and defense and protection. We delineate six mutually nonexclusive functions of venom (prey hunting, food hoarding, food digestion, reducing intra- and interspecific conflicts, avoidance of predation risk, weapons in intraspecific competition) and a number of different subfunctions for eulipotyphlans, among which some are so far only hypothetical while others have some empirical confirmation. The functions resulting from the need for food acquisition seem to be the most important for solenodons and especially for shrews. We also present several hypotheses explaining why, despite so many potentially beneficial functions, venomousness is rare even among eulipotyphlans. The tentativeness of many of the arguments presented in this review highlights our main conclusion, i.e., insights regarding the functions of eulipotyphlan venoms merit additional study.
Collapse
|
4
|
Scheib H, Nekaris KAI, Rode-Margono J, Ragnarsson L, Baumann K, Dobson JS, Wirdateti W, Nouwens A, Nijman V, Martelli P, Ma R, Lewis RJ, Kwok HF, Fry BG. The Toxicological Intersection between Allergen and Toxin: A Structural Comparison of the Cat Dander Allergenic Protein Fel d1 and the Slow Loris Brachial Gland Secretion Protein. Toxins (Basel) 2020; 12:toxins12020086. [PMID: 32012831 PMCID: PMC7076782 DOI: 10.3390/toxins12020086] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/22/2020] [Accepted: 01/23/2020] [Indexed: 12/27/2022] Open
Abstract
Slow lorises are enigmatic animal that represent the only venomous primate lineage. Their defensive secretions have received little attention. In this study we determined the full length sequence of the protein secreted by their unique brachial glands. The full length sequences displayed homology to the main allergenic protein present in cat dander. We thus compared the molecular features of the slow loris brachial gland protein and the cat dander allergen protein, showing remarkable similarities between them. Thus we postulate that allergenic proteins play a role in the slow loris defensive arsenal. These results shed light on these neglected, novel animals.
Collapse
Affiliation(s)
- Holger Scheib
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St Lucia, Qld 4072, Australia; (H.S.); (K.B.); (J.S.D.)
| | - K. Anne-Isola Nekaris
- Nocturnal Primate Research Group, Department of Social Sciences, Oxford Brookes University, Oxford OX3 0BP, UK; (K.A.-I.N.); (J.R.-M.); (V.N.)
- Centre for Functional Genomics, Department of Health and Life Sciences, Oxford Brookes University, Oxford OX3 0BP, UK
| | - Johanna Rode-Margono
- Nocturnal Primate Research Group, Department of Social Sciences, Oxford Brookes University, Oxford OX3 0BP, UK; (K.A.-I.N.); (J.R.-M.); (V.N.)
- The North of England Zoological Society / Chester Zoo, Chester CH2 1LH, UK
| | - Lotten Ragnarsson
- Institute for Molecular Biosciences, University of Queensland, St Lucia QLD 4072, Australia; (L.R.)
| | - Kate Baumann
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St Lucia, Qld 4072, Australia; (H.S.); (K.B.); (J.S.D.)
| | - James S. Dobson
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St Lucia, Qld 4072, Australia; (H.S.); (K.B.); (J.S.D.)
| | | | - Amanda Nouwens
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, Qld 4072, Australia;
| | - Vincent Nijman
- Nocturnal Primate Research Group, Department of Social Sciences, Oxford Brookes University, Oxford OX3 0BP, UK; (K.A.-I.N.); (J.R.-M.); (V.N.)
- Centre for Functional Genomics, Department of Health and Life Sciences, Oxford Brookes University, Oxford OX3 0BP, UK
| | | | - Rui Ma
- Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau SAR;
| | - Richard J. Lewis
- Institute for Molecular Biosciences, University of Queensland, St Lucia QLD 4072, Australia; (L.R.)
| | - Hang Fai Kwok
- Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau SAR;
- Correspondence: (H.F.K.); (B.G.F.)
| | - Bryan Grieg Fry
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St Lucia, Qld 4072, Australia; (H.S.); (K.B.); (J.S.D.)
- Correspondence: (H.F.K.); (B.G.F.)
| |
Collapse
|
5
|
Kakumanu R, Kuruppu S, Rash LD, Isbister GK, Hodgson WC, Kemp-Harper BK. D. russelii Venom Mediates Vasodilatation of Resistance Like Arteries via Activation of K v and K Ca Channels. Toxins (Basel) 2019; 11:E197. [PMID: 30939844 PMCID: PMC6520720 DOI: 10.3390/toxins11040197] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 03/17/2019] [Accepted: 03/28/2019] [Indexed: 11/16/2022] Open
Abstract
Russell's viper (Daboia russelii) venom causes a range of clinical effects in humans. Hypotension is an uncommon but severe complication of Russell's viper envenoming. The mechanism(s) responsible for this effect are unclear. In this study, we examined the cardiovascular effects of Sri Lankan D. russelii venom in anaesthetised rats and in isolated mesenteric arteries. D. russelii venom (100 μg/kg, i.v.) caused a 45 ± 8% decrease in blood pressure within 10 min of administration in anaesthetised (100 μg/kg ketamine/xylazine 10:1 ratio, i.p.) rats. Venom (1 ng/mL⁻1 μg/mL) caused concentration-dependent relaxation (EC50 = 145.4 ± 63.6 ng/mL, Rmax = 92 ± 2%) in U46619 pre-contracted rat small mesenteric arteries mounted in a myograph. Vasorelaxant potency of venom was unchanged in the presence of the nitric oxide synthase inhibitor, L-NAME (100 µM), or removal of the endothelium. In the presence of high K⁺ (30 mM), the vasorelaxant response to venom was abolished. Similarly, blocking voltage-dependent (Kv: 4-aminopryidine; 1000 µM) and Ca2+-activated (KCa: tetraethylammonium (TEA; 1000 µM); SKCa: apamin (0.1 µM); IKCa: TRAM-34 (1 µM); BKCa; iberiotoxin (0.1 µM)) K⁺ channels markedly attenuated venom-induced relaxation. Responses were unchanged in the presence of the ATP-sensitive K⁺ channel blocker glibenclamide (10 µM), or H1 receptor antagonist, mepyramine (0.1 µM). Venom-induced vasorelaxtion was also markedly decreased in the presence of the transient receptor potential cation channel subfamily V member 4 (TRPV4) antagonist, RN-1734 (10 µM). In conclusion, D. russelii-venom-induced hypotension in rodents may be due to activation of Kv and KCa channels, leading to vasorelaxation predominantly via an endothelium-independent mechanism. Further investigation is required to identify the toxin(s) responsible for this effect.
Collapse
Affiliation(s)
- Rahini Kakumanu
- Department of Pharmacology, Biomedicine Discovery Institute, Faculty of Medicine, Nursing & Health Sciences, Monash University, Clayton VIC 3800, Australia.
| | - Sanjaya Kuruppu
- Department of Biochemistry & Molecular Biology, Biomedicine Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton VIC 3800, Australia.
| | - Lachlan D Rash
- Faculty of Medicine, School of Biomedical Sciences, The University of Queensland, St Lucia QLD 4072, Australia.
| | - Geoffrey K Isbister
- Clinical Toxicology Research Group, University of Newcastle, Callaghan NSW 2308, Australia.
| | - Wayne C Hodgson
- Department of Pharmacology, Biomedicine Discovery Institute, Faculty of Medicine, Nursing & Health Sciences, Monash University, Clayton VIC 3800, Australia.
| | - Barbara K Kemp-Harper
- Department of Pharmacology, Biomedicine Discovery Institute, Faculty of Medicine, Nursing & Health Sciences, Monash University, Clayton VIC 3800, Australia.
| |
Collapse
|