1
|
Lennox-Bulow D, Courtney R, Seymour J. Geographic variation in ichthyocrinotoxin from the Estuarine Stonefish (Synanceiahorrida). Toxicon 2025; 262:108383. [PMID: 40334793 DOI: 10.1016/j.toxicon.2025.108383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 03/19/2025] [Accepted: 05/02/2025] [Indexed: 05/09/2025]
Abstract
Geographic variation in the composition of animal toxins is well documented for venomous taxa, and to a lesser degree, for some poisonous taxa that secrete toxins obtained from their diet. However, very little is known about animals that synthesise their poisons de novo, such as stonefish and their secreted ichthyocrinotoxins. Stonefish are widely distributed throughout the Indo-Pacific, however, the effect of location on the composition of their ichthyocrinotoxin is currently unknown. This study aimed to determine whether the composition of ichthyocrinotoxins from Synanceia horrida (Estuarine Stonefish) varied between three geographically isolated Australian populations including Cairns in far north Queensland, Caloundra in southeast Queensland, and Exmouth in Western Australia. The composition of ichthyocrinotoxins from S. horrida were largely conserved across the three locations, with the size of most of the components falling between 14 and 25 kDa. However, unique components were identified in S. horrida ichthyocrinotoxins from Caloundra and Exmouth populations. Caloundra populations contained unique smaller components (8 and 12 kDa) that were hydrophobic. In contrast, Exmouth populations contained unique larger components (60 and 150 kDa) with no difference in hydrophobicity. We speculate that the composition of ichthyocrinotoxins produced by S. horrida are likely influenced by benthic flora and fauna communities, particularly those that are likely to interact with the animal's skin, such as fouling flora and fauna, as well as parasites. These findings further add to the growing body of evidence underscoring the complexity and compositional diversity of ichthyocrinotoxins produced by stonefish.
Collapse
Affiliation(s)
- Danica Lennox-Bulow
- Australian Institute of Tropical Health and Medicine (AITHM), James Cook University, McGregor Road, Cairns, Queensland, Australia.
| | - Robert Courtney
- Australian Institute of Tropical Health and Medicine (AITHM), James Cook University, McGregor Road, Cairns, Queensland, Australia
| | - Jamie Seymour
- Australian Institute of Tropical Health and Medicine (AITHM), James Cook University, McGregor Road, Cairns, Queensland, Australia
| |
Collapse
|
2
|
Lozo KW, Aktipis A, Alcock J. Neuroimmune Pain and Its Manipulation by Pathogens. Evol Appl 2025; 18:e70098. [PMID: 40270922 PMCID: PMC12015744 DOI: 10.1111/eva.70098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 03/08/2025] [Indexed: 04/25/2025] Open
Abstract
Recent studies highlight extensive crosstalk that exists between sensory neurons responsible for pain and the immune system. Cutaneous pain neurons detect harmful microbes, recruit immune cells, and produce anticipatory immunity in nearby tissues. These complementary systems generally protect hosts from infections. At the same time, neuroimmune pain is vulnerable to manipulation. Some pathogens evade immunity activated by nociceptors by producing opioid analogs and by interfering with sensory nerve function. Other organisms manipulate neuroimmune pain by increasing it. Hosts may gain protection from interference by adjusting pain sensitivity. Nociceptive sensitization follows expectations of signal detection theory and the smoke detector principle, allowing pain to be more easily triggered in response to microbial threats and damage. However, pain sensitization at the spinal level and cortical responses to pain are themselves the target of manipulation by parasites and other organisms. Here we review examples of parasites, bacteria, and other medically important organisms that interfere with pain signaling and describe their implications for public health, infectious disease, and the treatment of pain.
Collapse
Affiliation(s)
- Kevin W. Lozo
- University of Pittsburgh Medical CenterPittsburghPennsylvaniaUSA
| | - Athena Aktipis
- Department of PsychologyArizona State UniversityTempeArizonaUSA
- Center for Evolution and MedicineArizona State UniversityTempeArizonaUSA
| | - Joe Alcock
- Department of Emergency MedicineUniversity of New MexicoAlbuquerqueNew MexicoUSA
| |
Collapse
|
3
|
Lilian Dantas Cavalcante R, Santos Silva C, Ferreira Vidal A, Soares Pires É, Lopes Nunes G, Fogaça de Assis Montag L, Oliveira G, Ribeiro-Dos-Santos Â, Santos S, José de Souza S, Estefano de Santana Souza J, Sakamoto T. The complete mitogenome of Amazonian Brachyplatystoma filamentosum and the evolutionary history of body size in the order Siluriformes. Sci Rep 2025; 15:9873. [PMID: 40119108 PMCID: PMC11928636 DOI: 10.1038/s41598-025-94272-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Accepted: 03/12/2025] [Indexed: 03/24/2025] Open
Abstract
The order Siluriformes (catfish) is one of the largest groups of fish. Diversity in the body size among its species, which range from a few centimeters to 4 meters, makes Siluriformes an interesting group to investigate the body size evolution. Here, we present the complete mitogenome of Brachyplatystoma filamentosum (Piraíba), the largest Amazonian catfish, to explore the evolutionary history of Siluriformes and their body size dynamics. The Piraíba's mtDNA is 16,566 bp long, with a GC content of 42.21% and a D-loop of 911 bp. Phylogenetic analysis was conducted using protein-coding sequences, tRNAs, and rRNAs from mtDNA of Piraíba and 137 other Siluriformes species. Time-calibrated maximum likelihood trees estimated the origin of the order Siluriformes to be ~118.4 Ma, with the Loricarioidei suborder diversifying first, followed by Diplomystoidei and Siluroidei. The Siluroidei suborder experienced rapid expansion around 94.1 Ma. Evolutionary dynamics revealed 16 positive and 11 negative directional body size changes in Siluriformes, with no global trend toward larger or smaller sizes, and with Piraíba showing a significant size increase (5.65 times over 40.8 Ma). We discuss how biological, ecological and environmental factors could have shaped the evolution of body size in this group.
Collapse
Affiliation(s)
- Renata Lilian Dantas Cavalcante
- Bioinformatics Multidisciplinary Environment/BioME, IMD, Federal University of Rio Grande do Norte, Natal, RN, 59078-900, Brazil
| | - Caio Santos Silva
- Laboratory of Human and Medical Genetics, Institute of Biological Sciences, Federal University of Pará, Belém, PA, 66075-110, Brazil
| | | | | | | | - Luciano Fogaça de Assis Montag
- Laboratory of Ecology and Conservation, Institute of Biological Sciences, Federal University of Pará, Belém, PA, 66075-110, Brazil
| | | | - Ândrea Ribeiro-Dos-Santos
- Laboratory of Human and Medical Genetics, Institute of Biological Sciences, Federal University of Pará, Belém, PA, 66075-110, Brazil
| | - Sidney Santos
- Laboratory of Human and Medical Genetics, Institute of Biological Sciences, Federal University of Pará, Belém, PA, 66075-110, Brazil
| | - Sandro José de Souza
- Bioinformatics Multidisciplinary Environment/BioME, IMD, Federal University of Rio Grande do Norte, Natal, RN, 59078-900, Brazil
- Brain Institute, Federal University of Rio Grande do Norte, Natal, RN, 59078-970, Brazil
- DNA-GTX Bioinformatics, Natal, RN, Brazil
| | - Jorge Estefano de Santana Souza
- Bioinformatics Multidisciplinary Environment/BioME, IMD, Federal University of Rio Grande do Norte, Natal, RN, 59078-900, Brazil
| | - Tetsu Sakamoto
- Bioinformatics Multidisciplinary Environment/BioME, IMD, Federal University of Rio Grande do Norte, Natal, RN, 59078-900, Brazil.
| |
Collapse
|
4
|
Wiens JJ, Emberts Z. How life became colourful: colour vision, aposematism, sexual selection, flowers, and fruits. Biol Rev Camb Philos Soc 2025; 100:308-326. [PMID: 39279365 DOI: 10.1111/brv.13141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 08/23/2024] [Accepted: 08/29/2024] [Indexed: 09/18/2024]
Abstract
Plants and animals are often adorned with potentially conspicuous colours (e.g. red, yellow, orange, blue, purple). These include the dazzling colours of fruits and flowers, the brilliant warning colours of frogs, snakes, and invertebrates, and the spectacular sexually selected colours of insects, fish, birds, and lizards. Such signals are often thought to utilize pre-existing sensitivities in the receiver's visual systems. This raises the question: what was the initial function of conspicuous colouration and colour vision? Here, we review the origins of colour vision, fruit, flowers, and aposematic and sexually selected colouration. We find that aposematic colouration is widely distributed across animals but relatively young, evolving only in the last ~150 million years (Myr). Sexually selected colouration in animals appears confined to arthropods and chordates, and is also relatively young (generally <100 Myr). Colourful flowers likely evolved ~200 million years ago (Mya), whereas colourful fruits/seeds likely evolved ~300 Mya. Colour vision (sensu lato) appears to be substantially older, and likely originated ~400-500 Mya in both arthropods and chordates. Thus, colour vision may have evolved long before extant lineages with fruit, flowers, aposematism, and sexual colour signals. We also find that there appears to have been an explosion of colour within the last ~100 Myr, including >200 origins of aposematic colouration across nine animal phyla and >100 origins of sexually selected colouration among arthropods and chordates.
Collapse
Affiliation(s)
- John J Wiens
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona, 85721-0088, USA
| | - Zachary Emberts
- Department of Integrative Biology, Oklahoma State University, Stillwater, Oklahoma, 74078, USA
| |
Collapse
|
5
|
Bala AA, Oukkache N, Sanchez EE, Suntravat M, Galan JA. Venoms and Extracellular Vesicles: A New Frontier in Venom Biology. Toxins (Basel) 2025; 17:36. [PMID: 39852989 PMCID: PMC11769160 DOI: 10.3390/toxins17010036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/19/2024] [Accepted: 12/24/2024] [Indexed: 01/26/2025] Open
Abstract
Extracellular vesicles (EVs) are nanoparticle-sized vesicles secreted by nearly all cell types under normal physiological conditions. In toxicological research, EVs have emerged as a crucial link between public health and multi-omics approaches, offering insights into cellular responses to disease-causing injury agents such as environmental and biological toxins, contaminants, and drugs. Notably, EVs present a unique opportunity to deepen our understanding of the pathophysiology of envenomation by natural toxins. Recent advancements in isolating and purifying EV cargo, mass spectrometry techniques, and bioinformatics have positioned EVs as potential biomarkers that could elucidate biological signaling pathways and provide valuable information on the relationship between venomous toxins, their mechanisms of action, and the effectiveness of antivenoms. Additionally, EVs hold promise as proxies for various aspects of envenomation, including the toxin dosage, biological characterization, injury progression, and prognosis during therapeutic interventions. These aspects can be explored through multi-omics technology applied to EV contents from the plasma, saliva, or urine samples of envenomated individuals, offering a comprehensive integrative approach to understanding and managing envenomation cases.
Collapse
Affiliation(s)
- Auwal A. Bala
- Department of Human Genetics, School of Medicine, University of Texas Rio Grande Valley, Brownsville, TX 78520, USA;
| | - Naoual Oukkache
- Laboratory of Venoms and Toxins, Pasteur Institute of Morocco, Casablanca 20360, Morocco;
| | - Elda E. Sanchez
- Department of Chemistry and National Natural Toxins Research Center, Texas A&M University-Kingsville, Kingsville, TX 78363, USA; (E.E.S.); (M.S.)
| | - Montamas Suntravat
- Department of Chemistry and National Natural Toxins Research Center, Texas A&M University-Kingsville, Kingsville, TX 78363, USA; (E.E.S.); (M.S.)
| | - Jacob A. Galan
- Department of Human Genetics, School of Medicine, University of Texas Rio Grande Valley, Brownsville, TX 78520, USA;
| |
Collapse
|
6
|
Lennox-Bulow D, Courtney R, Seymour J. Geographic variation in stonefish (Synanceia spp.) venom. Toxicon 2025; 254:108222. [PMID: 39725328 DOI: 10.1016/j.toxicon.2024.108222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 12/11/2024] [Accepted: 12/23/2024] [Indexed: 12/28/2024]
Abstract
Stonefish (Synanceia spp.) possess a medically significant venom and are widely distributed throughout the Indo-Pacific. Yet, little is known about how the ecology of these animals may influence their venom. The aim of this study was to explore the effect of species and geographic location on stonefish venom composition. We collected the venom of Synanceia horrida (Estuarine Stonefish) and Synanceia verrucosa (Reef Stonefish) from various locations across Australia (Cairns, Brisbane, Caloundra, and Onslow), and Southeast Asia (Kota Kinabalu, and Cebu) and analysed these samples using SDS-PAGE, FPLC, and HPLC. Stonefish have a complex venom comprised of numerous components. Stonefish venom exhibited both similarities and variations in composition within species between geographically isolated populations, as well as between species in a single location. We speculate that the observed geographic and interspecific trends may be driven by similarities and differences in the selective pressures faced by these animals, particularly those associated with predator dynamics. The findings of this study have furthered our understanding of the ecology of stonefish and their toxins.
Collapse
Affiliation(s)
- Danica Lennox-Bulow
- Australian Institute of Tropical Health and Medicine (AITHM), James Cook University, McGregor Road, Cairns, Queensland, Australia.
| | - Robert Courtney
- Australian Institute of Tropical Health and Medicine (AITHM), James Cook University, McGregor Road, Cairns, Queensland, Australia
| | - Jamie Seymour
- Australian Institute of Tropical Health and Medicine (AITHM), James Cook University, McGregor Road, Cairns, Queensland, Australia
| |
Collapse
|
7
|
Zhang Z, Li Q, Li H, Wei S, Yu W, Peng Z, Wei F, Zhou W. Integrative multi-omics analysis reveals the contribution of neoVTX genes to venom diversity of Synanceia verrucosa. BMC Genomics 2024; 25:1210. [PMID: 39695923 DOI: 10.1186/s12864-024-11149-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 12/11/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Animal venom systems are considered as valuable model for investigating the molecular mechanisms underlying phenotypic evolution. Stonefish are the most venomous and dangerous fish because of severe human envenomation and occasionally fatalities, whereas the genomic background of their venom has not been fully explored compared with that in other venomous animals. RESULTS In this study, we followed modern venomic pipelines to decode the Synanceia verrucosa venom components. A catalog of 478 toxin genes was annotated based on our assembled chromosome-level genome. Integrative analysis of the high-quality genome, the transcriptome of the venom gland, and the proteome of crude venom revealed mechanisms underlying the venom complexity in S. verrucosa. Six tandem-duplicated neoVTX subunit genes were identified as the major source for the neoVTX protein production. Further isoform sequencing revealed massive alternative splicing events with a total of 411 isoforms demonstrated by the six genes, which further contributed to the venom diversity. We then characterized 12 dominantly expressed toxin genes in the venom gland, and 11 of which were evidenced to produce the venom protein components, with the neoVTX proteins as the most abundant. Other major venom proteins included a presumed CRVP, Kuntiz-type serine protease inhibitor, calglandulin protein, and hyaluronidase. Besides, a few of highly abundant non-toxin proteins were also characterized and they were hypothesized to function in housekeeping or hemostasis maintaining roles in the venom gland. Notably, gastrotropin like non-toxin proteins were the second highest abundant proteins in the venom, which have not been reported in other venomous animals and contribute to the unique venom properties of S. verrucosa. CONCLUSIONS The results identified the major venom composition of S. verrucosa, and highlighted the contribution of neoVTX genes to the diversity of venom composition through tandem-duplication and alternative splicing. The diverse neoVTX proteins in the venom as lethal particles are important for understanding the adaptive evolution of S. verrucosa. Further functional studies are encouraged to exploit the venom components of S. verrucosa for pharmaceutical innovation.
Collapse
Affiliation(s)
- Zhiwei Zhang
- Center for Evolution and Conservation Biology, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Qian Li
- Center for Evolution and Conservation Biology, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- Key Laboratory of Conservation and Application in Biodiversity of South China, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Hao Li
- Center for Evolution and Conservation Biology, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Shichao Wei
- Center for Evolution and Conservation Biology, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Wen Yu
- Center for Evolution and Conservation Biology, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Zhaojie Peng
- Center for Evolution and Conservation Biology, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Fuwen Wei
- Center for Evolution and Conservation Biology, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- Jiangxi Provincial Key Laboratory of Conservation Biology, College of Forestry, Jiangxi Agricultural University, Nanchang, China
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Wenliang Zhou
- Center for Evolution and Conservation Biology, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China.
| |
Collapse
|
8
|
Wofford KA. Aquatic envenomation: First aid and prevention tips for US waters. Nursing 2024; 54:17-24. [PMID: 39497663 DOI: 10.1097/nsg.0000000000000082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
ABSTRACT Envenomation by an aquatic animal can produce distressing and occasionally life-threatening signs and symptoms. Common vectors of exposure in the US are cnidaria and venomous fish. Prompt recognition and treatment may help manage distressing symptoms, limit subsequent tissue destruction, and minimize the risk of more serious complications.
Collapse
Affiliation(s)
- Kenneth A Wofford
- Kenneth A. Wofford is an associate professor, vice professor at the University of South Florida and a member of the Nursing2024 Editorial Board
| |
Collapse
|
9
|
Pinheiro-Junior EL, Alirahimi E, Peigneur S, Isensee J, Schiffmann S, Erkoc P, Fürst R, Vilcinskas A, Sennoner T, Koludarov I, Hempel BF, Tytgat J, Hucho T, von Reumont BM. Diversely evolved xibalbin variants from remipede venom inhibit potassium channels and activate PKA-II and Erk1/2 signaling. BMC Biol 2024; 22:164. [PMID: 39075558 PMCID: PMC11288129 DOI: 10.1186/s12915-024-01955-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 07/09/2024] [Indexed: 07/31/2024] Open
Abstract
BACKGROUND The identification of novel toxins from overlooked and taxonomically exceptional species bears potential for various pharmacological applications. The remipede Xibalbanus tulumensis, an underwater cave-dwelling crustacean, is the only crustacean for which a venom system has been described. Its venom contains several xibalbin peptides that have an inhibitor cysteine knot (ICK) scaffold. RESULTS Our screenings revealed that all tested xibalbin variants particularly inhibit potassium channels. Xib1 and xib13 with their eight-cysteine domain similar to spider knottins also inhibit voltage-gated sodium channels. No activity was noted on calcium channels. Expanding the functional testing, we demonstrate that xib1 and xib13 increase PKA-II and Erk1/2 sensitization signaling in nociceptive neurons, which may initiate pain sensitization. Our phylogenetic analysis suggests that xib13 either originates from the common ancestor of pancrustaceans or earlier while xib1 is more restricted to remipedes. The ten-cysteine scaffolded xib2 emerged from xib1, a result that is supported by our phylogenetic and machine learning-based analyses. CONCLUSIONS Our functional characterization of synthesized variants of xib1, xib2, and xib13 elucidates their potential as inhibitors of potassium channels in mammalian systems. The specific interaction of xib2 with Kv1.6 channels, which are relevant to treating variants of epilepsy, shows potential for further studies. At higher concentrations, xib1 and xib13 activate the kinases PKA-II and ERK1/2 in mammalian sensory neurons, suggesting pain sensitization and potential applications related to pain research and therapy. While tested insect channels suggest that all probably act as neurotoxins, the biological function of xib1, xib2, and xib13 requires further elucidation. A novel finding on their evolutionary origin is the apparent emergence of X. tulumensis-specific xib2 from xib1. Our study is an important cornerstone for future studies to untangle the origin and function of these enigmatic proteins as important components of remipede but also other pancrustacean and arthropod venoms.
Collapse
Affiliation(s)
- Ernesto Lopes Pinheiro-Junior
- Toxicology and Pharmacology - Campus Gasthuisberg, University of Leuven (KU Leuven), Herestraat 49, PO Box 922, 3000, Louvain, Belgium
| | - Ehsan Alirahimi
- Department of Anesthesiology and Intensive Care Medicine, University Cologne, Translational Pain Research, University Hospital of Cologne, Cologne, Germany
| | - Steve Peigneur
- Toxicology and Pharmacology - Campus Gasthuisberg, University of Leuven (KU Leuven), Herestraat 49, PO Box 922, 3000, Louvain, Belgium
| | - Jörg Isensee
- Department of Anesthesiology and Intensive Care Medicine, University Cologne, Translational Pain Research, University Hospital of Cologne, Cologne, Germany
| | - Susanne Schiffmann
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60596, Frankfurt Am Main, Germany
| | - Pelin Erkoc
- Institute of Pharmaceutical Biology, Goethe University Frankfurt, Max-Von-Laue-Str. 9, 60438, Frankfurt, Germany
- LOEWE Center for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325, Frankfurt, Germany
| | - Robert Fürst
- Institute of Pharmaceutical Biology, Goethe University Frankfurt, Max-Von-Laue-Str. 9, 60438, Frankfurt, Germany
- LOEWE Center for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325, Frankfurt, Germany
| | - Andreas Vilcinskas
- LOEWE Center for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325, Frankfurt, Germany
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology (IME-BR), Ohlebergsweg 14, 35394, Giessen, Germany
| | - Tobias Sennoner
- Department of Informatics, Bioinformatics and Computational Biology, i12, Technical University of Munich, Boltzmannstr. 3, 85748, Garching, Munich, Germany
| | - Ivan Koludarov
- Department of Informatics, Bioinformatics and Computational Biology, i12, Technical University of Munich, Boltzmannstr. 3, 85748, Garching, Munich, Germany
| | - Benjamin-Florian Hempel
- Freie Unveristät Berlin, Veterinary Centre for Resistance Research (TZR), Robert-Von-Ostertag Str. 8, 14163, Berlin, Germany
| | - Jan Tytgat
- Toxicology and Pharmacology - Campus Gasthuisberg, University of Leuven (KU Leuven), Herestraat 49, PO Box 922, 3000, Louvain, Belgium
| | - Tim Hucho
- Department of Anesthesiology and Intensive Care Medicine, University Cologne, Translational Pain Research, University Hospital of Cologne, Cologne, Germany
| | - Björn M von Reumont
- LOEWE Center for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325, Frankfurt, Germany.
- Faculty of Biological Sciences, Institute of Cell Biology and Neuroscience, Goethe, Frankfurt, Max-Von-Laue-Str 13, 60438, Frankfurt, Germany.
| |
Collapse
|
10
|
Zhang L, Su B, Huang J, Zhang L, Chang Y, Hu G. Fine Mapping of QTLs for Alkaline Tolerance in Crucian Carp ( Carassius auratus) Using Genome-Wide SNP Markers. Genes (Basel) 2024; 15:751. [PMID: 38927687 PMCID: PMC11202869 DOI: 10.3390/genes15060751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/06/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
Crucian carp (Carassius auratus) is widely distributed in the world and has become an economically freshwater fish. The population in Lake Dali Nur can tolerate the extreme alkaline environment with alkalinity over 50 mmol/L (pH 9.6), thus providing a special model for exploring alkali-tolerant molecular markers in an extremely alkaline environment. In this study, we constructed a high-density and high-resolution linkage map with 16,224 SNP markers based on genotyping-by-sequencing (GBS) consisting of 152 progenies and conducted QTL studies for alkali-tolerant traits. The total length of the linkage map was 3918.893 cM, with an average distance of 0.241 cM. Two QTLs for the ammonia-N-tolerant trait were detected on LG27 and LG45. A QTL for the urea-N-tolerant trait was detected on LG27. Interestingly, mapping the two QTLs on LG27 revealed that the mapped genes were both located in the intron of CDC42. GO functional annotation and KEGG enrichment analysis results indicated that the biological functions might be involved in the cell cycle, cellular senescence, MAPK, and Ras signaling pathways. These findings suggest that CDC42 may play an important role in the process of dealing with extremely alkaline environments.
Collapse
Affiliation(s)
- Liang Zhang
- Key Laboratory of Freshwater Aquatic Biotechnology and Breeding, Ministry of Agriculture and Rural Affairs, Heilongjiang River Fisheries Research Institute of Chinese Academy of Fishery Sciences, Harbin 150070, China;
| | - Baofeng Su
- Key Laboratory of Fish Stress Resistance Breeding and Germplasm Characteristics on Special Habitats Heilongjiang Province, Heilongjiang River Fisheries Research Institute of Chinese Academy of Fishery Sciences, Harbin 150070, China; (B.S.); (J.H.); (L.Z.)
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| | - Jing Huang
- Key Laboratory of Fish Stress Resistance Breeding and Germplasm Characteristics on Special Habitats Heilongjiang Province, Heilongjiang River Fisheries Research Institute of Chinese Academy of Fishery Sciences, Harbin 150070, China; (B.S.); (J.H.); (L.Z.)
| | - Limin Zhang
- Key Laboratory of Fish Stress Resistance Breeding and Germplasm Characteristics on Special Habitats Heilongjiang Province, Heilongjiang River Fisheries Research Institute of Chinese Academy of Fishery Sciences, Harbin 150070, China; (B.S.); (J.H.); (L.Z.)
| | - Yumei Chang
- Key Laboratory of Fish Stress Resistance Breeding and Germplasm Characteristics on Special Habitats Heilongjiang Province, Heilongjiang River Fisheries Research Institute of Chinese Academy of Fishery Sciences, Harbin 150070, China; (B.S.); (J.H.); (L.Z.)
| | - Guo Hu
- Key Laboratory of Freshwater Aquatic Biotechnology and Breeding, Ministry of Agriculture and Rural Affairs, Heilongjiang River Fisheries Research Institute of Chinese Academy of Fishery Sciences, Harbin 150070, China;
| |
Collapse
|
11
|
Hojjati-Razgi AS, Nazarian S, Samiei-Abianeh H, Vazirizadeh A, Kordbacheh E, Aghaie SM. Expression of Recombinant Stonustoxin Alpha Subunit and Preparation of polyclonal antiserum for Stonustoxin Neutralization Studies. Protein J 2024; 43:627-638. [PMID: 38760596 DOI: 10.1007/s10930-024-10203-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/30/2024] [Indexed: 05/19/2024]
Abstract
Stonustoxin (SNTX) is a lethal protein found in stonefish venom, responsible for many of the symptoms associated with stonefish envenomation. To counter stonefish venom challenges, antivenom is a well-established and effective solution. In this study, we aimed to produce the recombinant alpha subunit protein of Stonustoxin from Synanceia horrida and prepare antibodies against it The SNTXα gene sequence was optimized for E. coli BL21 (DE3) expression and cloned into the pET17b vector. Following purification, the recombinant protein was subcutaneously injected into rabbits, and antibodies were extracted from rabbit´s serum using a G protein column As a result of codon optimization, the codon adaptation index for the SNTXα cassette increased to 0.94. SDS-PAGE analysis validated the expression of SNTXα, with a band observed at 73.5 kDa with a yield of 60 mg/l. ELISA results demonstrated rabbits antibody titers were detectable up to a 1:256,000 dilution. The isolated antibody from rabbit´s serum exhibited a concentration of 1.5 mg/ml, and its sensitivity allowed the detection of a minimum protein concentration of 9.7 ng. In the neutralization assay the purified antibody against SNTXα protected mice challenged with 2 LD50. In conclusion, our study successfully expressed the alpha subunit of Stonustoxin in a prokaryotic host, enabling the production of antibodies for potential use in developing stonefish antivenom.
Collapse
Affiliation(s)
| | - Shahram Nazarian
- Department of Biology, Faculty of Basic Sciences, Imam Hossein University, Tehran, Iran.
| | - Hossein Samiei-Abianeh
- Department of Biology, Faculty of Basic Sciences, Imam Hossein University, Tehran, Iran
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Vazirizadeh
- Department of Marine Biotechnology, The Persian Gulf Research and Studies Center, The Persian Gulf University, Bushehr, Iran
| | - Emad Kordbacheh
- Department of Biology, Faculty of Basic Sciences, Imam Hossein University, Tehran, Iran
| | - Seyed Mojtaba Aghaie
- Department of Biology, Faculty of Basic Sciences, Imam Hossein University, Tehran, Iran
| |
Collapse
|
12
|
Lennox-Bulow D, Smout M, Loukas A, Seymour J. Stonefish (Synanceia spp.) Ichthyocrinotoxins: An ecological review and prospectus for future research and biodiscovery. Toxicon 2023; 236:107329. [PMID: 37907137 DOI: 10.1016/j.toxicon.2023.107329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 09/20/2023] [Accepted: 09/30/2023] [Indexed: 11/02/2023]
Abstract
Marine organisms possess a diverse array of unique substances, many with wide ranging potential for applications in medicine, industry, and other sectors. Stonefish (Synanceia spp.), a bottom-dwelling fish that inhabit shallow and intertidal waters throughout the Indo-Pacific, harbour two distinct substances, a venom, and an ichthyocrinotoxin. Stonefish are well-known for the potent venom associated with their dorsal spines as it poses a significant risk to public health. Consequently, much of the research on stonefish focusses on the venom, with the aim of improving outcomes in cases of envenomation. However, there has been a notable lack of research on stonefish ichthyocrinotoxins, a class of toxin that is synthesised within specialised epithelial cells (i.e., tubercles) and exuded onto the skin. This has resulted in a substantial knowledge gap in our understanding of these animals. This review aims to bridge this gap by consolidating literature on the ecological functions and biochemical attributes of ichthyocrinotoxins present in various fish species and juxtaposing it with the current state of knowledge of stonefish ecology. We highlight the roles of ichthyocrinotoxins in predator defence, bolstering innate immunity, and mitigating integumentary interactions with parasites and detrimental fouling organisms. The objective of this review is to identify promising research avenues that could shed light on the ecological functions of stonefish ichthyocrinotoxins and their potential practical applications as therapeutics and/or industrial products.
Collapse
Affiliation(s)
- Danica Lennox-Bulow
- Tropical Australian Stinger Research Unit, James Cook University, McGregor Road, Cairns, Queensland, Australia; Australian Institute of Tropical Health and Medicine (AITHM), James Cook University, McGregor Road, Cairns, Queensland, Australia.
| | - Michael Smout
- Australian Institute of Tropical Health and Medicine (AITHM), James Cook University, McGregor Road, Cairns, Queensland, Australia
| | - Alex Loukas
- Australian Institute of Tropical Health and Medicine (AITHM), James Cook University, McGregor Road, Cairns, Queensland, Australia
| | - Jamie Seymour
- Tropical Australian Stinger Research Unit, James Cook University, McGregor Road, Cairns, Queensland, Australia; Australian Institute of Tropical Health and Medicine (AITHM), James Cook University, McGregor Road, Cairns, Queensland, Australia
| |
Collapse
|
13
|
Tang T, Huang Y, Peng C, Liao Y, Lv Y, Shi Q, Gao B. A Chromosome-Level Genome Assembly of the Reef Stonefish (Synanceia verrucosa) Provides Novel Insights into Stonustoxin (sntx) Genes. Mol Biol Evol 2023; 40:msad215. [PMID: 37770059 PMCID: PMC10566576 DOI: 10.1093/molbev/msad215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 08/22/2023] [Accepted: 09/21/2023] [Indexed: 10/03/2023] Open
Abstract
Reef stonefish (Synanceia verrucosa) is one of the most venomous fishes, but its biomedical study has been restricted to molecular cloning and purification of its toxins, instead of high-throughput genetic research on related toxin genes. In this study, we constructed a chromosome-level haplotypic genome assembly for the reef stonefish. The genome was assembled into 24 pseudo-chromosomes, and the length totaled 689.74 Mb, reaching a contig N50 of 11.97 Mb and containing 97.8% of complete BUSCOs. A total of 24,050 protein-coding genes were annotated, of which metalloproteinases, C-type lectins, and stonustoxins (sntx) were the most abundant putative toxin genes. Multitissue transcriptomic and venom proteomic data showed that sntx genes, especially those clustered within a 50-kb region on the chromosome 2, had higher transcription levels than other types of toxins as well as those sntx genes scatteringly distributed on other chromosomes. Further comparative genomic analysis predicted an expansion of sntx-like genes in the Percomorpha lineage including nonvenomous fishes, but Scorpaenoidei species experienced extra independent sntx duplication events, marking the clear-cut origin of authentic toxic stonustoxins. In summary, this high-quality genome assembly and related comparative analysis of toxin genes highlight valuable genetic differences for potential involvement in the evolution of venoms among Scorpaeniformes fishes.
Collapse
Affiliation(s)
- Tianle Tang
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Pharmacy, Hainan Medical University, Haikou, Hainan, China
| | - Yu Huang
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, Shenzhen, Guangdong, China
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Chao Peng
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, Shenzhen, Guangdong, China
- BGI-Marine Research Institute for Biomedical Technology, Shenzhen Huahong Marine Biomedicine Co. Ltd., Shenzhen, Guangdong, China
| | - Yanling Liao
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Pharmacy, Hainan Medical University, Haikou, Hainan, China
| | - Yunyun Lv
- Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, College of Life Sciences, Neijiang Normal University, Neijiang, Sichuan, China
| | - Qiong Shi
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, Shenzhen, Guangdong, China
- BGI-Marine Research Institute for Biomedical Technology, Shenzhen Huahong Marine Biomedicine Co. Ltd., Shenzhen, Guangdong, China
- Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, College of Life Sciences, Neijiang Normal University, Neijiang, Sichuan, China
| | - Bingmiao Gao
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Pharmacy, Hainan Medical University, Haikou, Hainan, China
| |
Collapse
|
14
|
Gamulin E, Mateljak Lukačević S, Halassy B, Kurtović T. Snake Antivenoms-Toward Better Understanding of the Administration Route. Toxins (Basel) 2023; 15:398. [PMID: 37368699 DOI: 10.3390/toxins15060398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/12/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Envenomations induced by animal bites and stings constitute a significant public health burden. Even though a standardized protocol does not exist, parenterally administered polyclonal antivenoms remain the mainstay in snakebite therapy. There is a prevailing opinion that their application by the i.m. route has poor efficacy and that i.v. administration should preferentially be chosen in order to achieve better accomplishment of the antivenom therapeutic activity. Recently, it has been demonstrated that neutralization not only in the systemic circulation but also in the lymphatic system might be of great importance for the clinical outcome since it represents another relevant body compartment through which the absorption of the venom components occurs. In this review, the present-day and summarized knowledge of the laboratory and clinical findings on the i.v. and i.m. routes of antivenom administration is provided, with a special emphasis on the contribution of the lymphatic system to the process of venom elimination. Until now, antivenom-mediated neutralization has not yet been discussed in the context of the synergistic action of both blood and lymph. A current viewpoint might help to improve the comprehension of the venom/antivenom pharmacokinetics and the optimal approach for drug application. There is a great need for additional dependable, practical, well-designed studies, as well as more practice-related experience reports. As a result, opportunities for resolving long-standing disputes over choosing one therapeutic principle over another might be created, improving the safety and effectiveness of snakebite management.
Collapse
Affiliation(s)
- Erika Gamulin
- Centre for Research and Knowledge Transfer in Biotechnology, University of Zagreb, Rockefellerova 10, 10000 Zagreb, Croatia
| | - Sanja Mateljak Lukačević
- Centre for Research and Knowledge Transfer in Biotechnology, University of Zagreb, Rockefellerova 10, 10000 Zagreb, Croatia
| | - Beata Halassy
- Centre for Research and Knowledge Transfer in Biotechnology, University of Zagreb, Rockefellerova 10, 10000 Zagreb, Croatia
| | - Tihana Kurtović
- Centre for Research and Knowledge Transfer in Biotechnology, University of Zagreb, Rockefellerova 10, 10000 Zagreb, Croatia
| |
Collapse
|
15
|
Lee CH, Lee YY, Chang YC, Pon WL, Lee SP, Wali N, Nakazawa T, Honda Y, Shie JJ, Hsueh YP. A carnivorous mushroom paralyzes and kills nematodes via a volatile ketone. SCIENCE ADVANCES 2023; 9:eade4809. [PMID: 36652525 PMCID: PMC9848476 DOI: 10.1126/sciadv.ade4809] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 12/16/2022] [Indexed: 05/27/2023]
Abstract
The carnivorous mushroom Pleurotus ostreatus uses an unknown toxin to rapidly paralyze and kill nematode prey upon contact. We report that small lollipop-shaped structures (toxocysts) on fungal hyphae are nematicidal and that a volatile ketone, 3-octanone, is detected in these fragile toxocysts. Treatment of Caenorhabditis elegans with 3-octanone recapitulates the rapid paralysis, calcium influx, and neuronal cell death arising from fungal contact. Moreover, 3-octanone disrupts cell membrane integrity, resulting in extracellular calcium influx into cytosol and mitochondria, propagating cell death throughout the entire organism. Last, we demonstrate that structurally related compounds are also biotoxic to C. elegans, with the length of the ketone carbon chain being crucial. Our work reveals that the oyster mushroom has evolved a specialized structure containing a volatile ketone to disrupt the cell membrane integrity of its prey, leading to rapid cell and organismal death in nematodes.
Collapse
Affiliation(s)
- Ching-Han Lee
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Yi-Yun Lee
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
- Molecular Cell Biology, Taiwan International Graduate Program, Academia Sinica and Graduate Institute of Life Science, National Defense Medical Center, Taipei, Taiwan
| | - Yu-Chu Chang
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Wen-Li Pon
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Sue-Ping Lee
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Niaz Wali
- Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan
- Institute of Biochemical Sciences, National Taiwan University, Taipei 10617, Taiwan
- Chemical Biology and Molecular Biophysics, Taiwan International Graduate Program, Academia Sinica, Taipei 10617, Taiwan
| | - Takehito Nakazawa
- Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Yoichi Honda
- Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Jiun-Jie Shie
- Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan
- Institute of Biochemical Sciences, National Taiwan University, Taipei 10617, Taiwan
- Chemical Biology and Molecular Biophysics, Taiwan International Graduate Program, Academia Sinica, Taipei 10617, Taiwan
| | - Yen-Ping Hsueh
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
- Molecular Cell Biology, Taiwan International Graduate Program, Academia Sinica and Graduate Institute of Life Science, National Defense Medical Center, Taipei, Taiwan
- Department of Biochemical Science and Technology, National Taiwan University, Taipei 10617, Taiwan
- Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan
- Department of Biochemical Science and Technology, National Chiayi University, Chiayi City 60004, Taiwan
| |
Collapse
|
16
|
Lennox-Bulow D, Smout M, Wilson D, Seymour J. Inter-species variation in stonefish (Synanceia SPP.) ichthyocrinotoxins; an ecological Perspective. Toxicon 2022; 221:106977. [DOI: 10.1016/j.toxicon.2022.106977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 11/02/2022] [Accepted: 11/13/2022] [Indexed: 11/21/2022]
|
17
|
Vitt S, Bakowski CE, Thünken T. Sex-specific effects of inbreeding on body colouration and physiological colour change in the cichlid fish Pelvicachromis taeniatus. BMC Ecol Evol 2022; 22:124. [PMID: 36316663 PMCID: PMC9623988 DOI: 10.1186/s12862-022-02074-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 09/29/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Colour expression is highly variable in animals. In fishes, rapid colour change, i.e. physiological colour change, can be observed in multiple contexts, e.g. in camouflage or communication, and is affected by various factors, such as stress. Pelvicachromis taeniatus is a cichlid fish from West Africa with sexual dichromatism and both sexes being brightly coloured and flexible in ornament expression. In the present study, inbred and outbred P. taeniatus were photographed before and after a stress situation to investigate the stress response regarding colour expression in both sexes. RESULTS The chromaticity and the colour patch size (relative coloured area at the abdomen) were determined at both timepoints and the changes were analysed. Additionally, the coefficients of variation within family groups for the chromaticity (CVchromaticity) and colour patch size (CVarea) were calculated. Chromaticity as well as the extent of colouration increased significantly following handling stress. The change in chromaticity was not significantly different between in- and outbred individuals in females and males. Inbred males showed more intense yellow colouration than outbred males. Independent from inbreeding, the CVchromaticity decreased following the handling stress. The change in CVarea of females and males differed between in- and outbred individuals. In females, the decrease was significantly stronger in inbred individuals and in males the decrease was stronger in the outbred group. CONCLUSION The results show that short-term stress can increase colouration, potentially advertising individual's stress tolerance. Furthermore, this study shows positive inbreeding effects on a sexually selected trait.
Collapse
Affiliation(s)
- Simon Vitt
- Institute of Evolutionary Biology and Ecology, University of Bonn, An der Immenburg 1, 53121 Bonn, Germany
| | - Christina E. Bakowski
- Institute of Evolutionary Biology and Ecology, University of Bonn, An der Immenburg 1, 53121 Bonn, Germany
| | - Timo Thünken
- Institute of Evolutionary Biology and Ecology, University of Bonn, An der Immenburg 1, 53121 Bonn, Germany
| |
Collapse
|
18
|
von Reumont BM, Anderluh G, Antunes A, Ayvazyan N, Beis D, Caliskan F, Crnković A, Damm M, Dutertre S, Ellgaard L, Gajski G, German H, Halassy B, Hempel BF, Hucho T, Igci N, Ikonomopoulou MP, Karbat I, Klapa MI, Koludarov I, Kool J, Lüddecke T, Ben Mansour R, Vittoria Modica M, Moran Y, Nalbantsoy A, Ibáñez MEP, Panagiotopoulos A, Reuveny E, Céspedes JS, Sombke A, Surm JM, Undheim EAB, Verdes A, Zancolli G. Modern venomics-Current insights, novel methods, and future perspectives in biological and applied animal venom research. Gigascience 2022; 11:giac048. [PMID: 35640874 PMCID: PMC9155608 DOI: 10.1093/gigascience/giac048] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 04/10/2022] [Accepted: 04/12/2022] [Indexed: 12/11/2022] Open
Abstract
Venoms have evolved >100 times in all major animal groups, and their components, known as toxins, have been fine-tuned over millions of years into highly effective biochemical weapons. There are many outstanding questions on the evolution of toxin arsenals, such as how venom genes originate, how venom contributes to the fitness of venomous species, and which modifications at the genomic, transcriptomic, and protein level drive their evolution. These questions have received particularly little attention outside of snakes, cone snails, spiders, and scorpions. Venom compounds have further become a source of inspiration for translational research using their diverse bioactivities for various applications. We highlight here recent advances and new strategies in modern venomics and discuss how recent technological innovations and multi-omic methods dramatically improve research on venomous animals. The study of genomes and their modifications through CRISPR and knockdown technologies will increase our understanding of how toxins evolve and which functions they have in the different ontogenetic stages during the development of venomous animals. Mass spectrometry imaging combined with spatial transcriptomics, in situ hybridization techniques, and modern computer tomography gives us further insights into the spatial distribution of toxins in the venom system and the function of the venom apparatus. All these evolutionary and biological insights contribute to more efficiently identify venom compounds, which can then be synthesized or produced in adapted expression systems to test their bioactivity. Finally, we critically discuss recent agrochemical, pharmaceutical, therapeutic, and diagnostic (so-called translational) aspects of venoms from which humans benefit.
Collapse
Affiliation(s)
- Bjoern M von Reumont
- Goethe University Frankfurt, Institute for Cell Biology and Neuroscience, Department for Applied Bioinformatics, 60438 Frankfurt am Main, Germany
- LOEWE Centre for Translational Biodiversity Genomics, Senckenberg Frankfurt, Senckenberganlage 25, 60235 Frankfurt, Germany
- Justus Liebig University Giessen, Institute for Insectbiotechnology, Heinrich Buff Ring 26-32, 35396 Giessen, Germany
| | - Gregor Anderluh
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, 1000 Ljubljana, Slovenia
| | - Agostinho Antunes
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450–208 Porto, Portugal
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal
| | - Naira Ayvazyan
- Orbeli Institute of Physiology of NAS RA, Orbeli ave. 22, 0028 Yerevan, Armenia
| | - Dimitris Beis
- Developmental Biology, Centre for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation Academy of Athens, Athens 11527, Greece
| | - Figen Caliskan
- Department of Biology, Faculty of Science and Letters, Eskisehir Osmangazi University, TR-26040 Eskisehir, Turkey
| | - Ana Crnković
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, 1000 Ljubljana, Slovenia
| | - Maik Damm
- Technische Universität Berlin, Department of Chemistry, Straße des 17. Juni 135, 10623 Berlin, Germany
| | | | - Lars Ellgaard
- Department of Biology, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Goran Gajski
- Institute for Medical Research and Occupational Health, Mutagenesis Unit, Ksaverska cesta 2, 10000 Zagreb, Croatia
| | - Hannah German
- Amsterdam Institute of Molecular and Life Sciences, Division of BioAnalytical Chemistry, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081HV Amsterdam, The Netherlands
| | - Beata Halassy
- University of Zagreb, Centre for Research and Knowledge Transfer in Biotechnology, Trg Republike Hrvatske 14, 10000 Zagreb, Croatia
| | - Benjamin-Florian Hempel
- BIH Center for Regenerative Therapies BCRT, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Tim Hucho
- Translational Pain Research, Department of Anesthesiology and Intensive Care Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Nasit Igci
- Nevsehir Haci Bektas Veli University, Faculty of Arts and Sciences, Department of Molecular Biology and Genetics, 50300 Nevsehir, Turkey
| | - Maria P Ikonomopoulou
- Madrid Institute for Advanced Studies in Food, Madrid,E28049, Spain
- The University of Queensland, St Lucia, QLD 4072, Australia
| | - Izhar Karbat
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Maria I Klapa
- Metabolic Engineering and Systems Biology Laboratory, Institute of Chemical Engineering Sciences, Foundation for Research & Technology Hellas (FORTH/ICE-HT), Patras GR-26504, Greece
| | - Ivan Koludarov
- Justus Liebig University Giessen, Institute for Insectbiotechnology, Heinrich Buff Ring 26-32, 35396 Giessen, Germany
| | - Jeroen Kool
- Amsterdam Institute of Molecular and Life Sciences, Division of BioAnalytical Chemistry, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081HV Amsterdam, The Netherlands
| | - Tim Lüddecke
- LOEWE Centre for Translational Biodiversity Genomics, Senckenberg Frankfurt, Senckenberganlage 25, 60235 Frankfurt, Germany
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, 35392 Gießen, Germany
| | - Riadh Ben Mansour
- Department of Life Sciences, Faculty of Sciences, Gafsa University, Campus Universitaire Siidi Ahmed Zarrouk, 2112 Gafsa, Tunisia
| | - Maria Vittoria Modica
- Dept. of Biology and Evolution of Marine Organisms (BEOM), Stazione Zoologica Anton Dohrn, Via Po 25c, I-00198 Roma, Italy
| | - Yehu Moran
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Faculty of Science, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Ayse Nalbantsoy
- Department of Bioengineering, Faculty of Engineering, Ege University, 35100 Bornova, Izmir, Turkey
| | - María Eugenia Pachón Ibáñez
- Unit of Infectious Diseases, Microbiology, and Preventive Medicine, Virgen del Rocío University Hospital, Institute of Biomedicine of Seville, 41013 Sevilla, Spain
- CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - Alexios Panagiotopoulos
- Metabolic Engineering and Systems Biology Laboratory, Institute of Chemical Engineering Sciences, Foundation for Research & Technology Hellas (FORTH/ICE-HT), Patras GR-26504, Greece
- Animal Biology Division, Department of Biology, University of Patras, Patras, GR-26500, Greece
| | - Eitan Reuveny
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Javier Sánchez Céspedes
- Unit of Infectious Diseases, Microbiology, and Preventive Medicine, Virgen del Rocío University Hospital, Institute of Biomedicine of Seville, 41013 Sevilla, Spain
- CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - Andy Sombke
- Department of Evolutionary Biology, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria
| | - Joachim M Surm
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Faculty of Science, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Eivind A B Undheim
- University of Oslo, Centre for Ecological and Evolutionary Synthesis, Postboks 1066 Blindern 0316 Oslo, Norway
| | - Aida Verdes
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales, José Gutiérrez Abascal 2, 28006 Madrid, Spain
| | - Giulia Zancolli
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland
- Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| |
Collapse
|
19
|
Gall BG, Stokes AN, Brodie ED, Brodie ED. Tetrodotoxin levels in lab-reared Rough-Skinned Newts (Taricha granulosa) after 3 years and comparison to wild-caught juveniles. Toxicon 2022; 213:7-12. [DOI: 10.1016/j.toxicon.2022.04.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 04/04/2022] [Accepted: 04/08/2022] [Indexed: 11/26/2022]
|
20
|
Crossland MR, Shine R, DeVore JL. Choosy cannibals: Targeted consumption of conspecific hatchlings by larval cane toads is triggered by species‐specific defensive toxins. Ecol Evol 2022; 12:e8655. [PMID: 35261745 PMCID: PMC8888257 DOI: 10.1002/ece3.8655] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 01/16/2022] [Accepted: 01/25/2022] [Indexed: 11/15/2022] Open
Abstract
In many species, cannibalism is uncommon and involves nonselective consumption of conspecifics as well as heterospecifics. However, within their invasive Australian range, cane toad larvae (Rhinella marina) specifically target and voraciously consume the eggs and hatchlings of conspecifics, often extirpating entire clutches. In contrast, toad larvae rarely consume the eggs and hatchlings of native frogs. Here, we use laboratory studies to demonstrate that this selective consumption is triggered by species‐specific chemical cues: maternally‐invested bufadienolide toxins that otherwise defend cane toad eggs and hatchlings against predators. We find that these cues stimulate feeding behaviors in toad tadpoles, such that the addition of bufadienolide toxins to the water column increases predation on eggs, not only of conspecifics, but also of native anuran species that are otherwise usually ignored. In contrast, we find that cannibalism rates on conspecific hatchlings are high and unaffected by the addition of bufadienolide cues. The maternally‐invested toxins present in conspecific eggs may therefore be more easily detected post‐hatching, at which point tadpole feeding behaviors are induced whether or not additional toxin cues are present. As bufadienolide cues have previously been found to attract toad tadpoles to vulnerable hatchlings, our present findings demonstrate that the same toxin cues that attract cannibalistic tadpoles also induce them to feed, thereby facilitating cannibalism through multiple behavioral effects. Because native fauna do not produce bufadienolide toxins, the species specificity of these chemical cues in the Australian landscape may have facilitated the evolution of targeted (species‐specific) cannibalism in invasive cane toad populations. Thus, these bufadienolide toxins confer cost (increased vulnerability to cannibalism in early life‐stages) as well as benefit (reduced vulnerability to predation by other taxa).
Collapse
Affiliation(s)
- Michael R. Crossland
- School of Life and Environmental Sciences A08 The University of Sydney Sydney New South Wales Australia
| | - Richard Shine
- School of Life and Environmental Sciences A08 The University of Sydney Sydney New South Wales Australia
- Department of Biological Sciences Macquarie University Sydney New South Wales Australia
| | - Jayna L. DeVore
- School of Life and Environmental Sciences A08 The University of Sydney Sydney New South Wales Australia
| |
Collapse
|
21
|
Bucciarelli GM, Alsalek F, Kats LB, Green DB, Shaffer HB. Toxic Relationships and Arms-Race Coevolution Revisited. Annu Rev Anim Biosci 2022; 10:63-80. [PMID: 35167315 DOI: 10.1146/annurev-animal-013120-024716] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Toxin evolution in animals is one of the most fascinating and complex subjects of scientific inquiry today. Gaining an understanding of toxins poses a multifaceted challenge given the diverse modes of acquisition, evolutionary adaptations, and abiotic components that affect toxin phenotypes. Here, we highlight some of the main genetic and ecological factors that influence toxin evolution and discuss the role of antagonistic interactions and coevolutionary dynamics in shaping the direction and extent of toxicity and resistance in animals. We focus on toxic Pacific newts (family Salamandridae, genus Taricha) as a system to investigate and better evaluate the widely distributed toxin they possess, tetrodotoxin (TTX), and the hypothesized model of arms-race coevolution with snake predators that is used to explain phenotypic patterns of newt toxicity. Finally, we propose an alternative coevolutionary model that incorporates TTX-producing bacteria and draws from an elicitor-receptor concept to explain TTX evolution and ecology.
Collapse
Affiliation(s)
- G M Bucciarelli
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, California, USA; , , .,La Kretz Center for California Conservation Science, University of California, Los Angeles, California, USA
| | - Farid Alsalek
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, California, USA; , ,
| | - L B Kats
- Natural Science Division, Pepperdine University, Malibu, California, USA; ,
| | - D B Green
- Natural Science Division, Pepperdine University, Malibu, California, USA; ,
| | - H B Shaffer
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, California, USA; , , .,La Kretz Center for California Conservation Science, University of California, Los Angeles, California, USA
| |
Collapse
|
22
|
Stingray Venom Proteins: Mechanisms of Action Revealed Using a Novel Network Pharmacology Approach. Mar Drugs 2021; 20:md20010027. [PMID: 35049882 PMCID: PMC8781517 DOI: 10.3390/md20010027] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 12/20/2021] [Accepted: 12/22/2021] [Indexed: 01/02/2023] Open
Abstract
Animal venoms offer a valuable source of potent new drug leads, but their mechanisms of action are largely unknown. We therefore developed a novel network pharmacology approach based on multi-omics functional data integration to predict how stingray venom disrupts the physiological systems of target animals. We integrated 10 million transcripts from five stingray venom transcriptomes and 848,640 records from three high-content venom bioactivity datasets into a large functional data network. The network featured 216 signaling pathways, 29 of which were shared and targeted by 70 transcripts and 70 bioactivity hits. The network revealed clusters for single envenomation outcomes, such as pain, cardiotoxicity and hemorrhage. We carried out a detailed analysis of the pain cluster representing a primary envenomation symptom, revealing bibrotoxin and cholecystotoxin-like transcripts encoding pain-inducing candidate proteins in stingray venom. The cluster also suggested that such pain-inducing toxins primarily activate the inositol-3-phosphate receptor cascade, inducing intracellular calcium release. We also found strong evidence for synergistic activity among these candidates, with nerve growth factors cooperating with the most abundant translationally-controlled tumor proteins to activate pain signaling pathways. Our network pharmacology approach, here applied to stingray venom, can be used as a template for drug discovery in neglected venomous species.
Collapse
|
23
|
Fish Cytolysins in All Their Complexity. Toxins (Basel) 2021; 13:toxins13120877. [PMID: 34941715 PMCID: PMC8704401 DOI: 10.3390/toxins13120877] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/02/2021] [Accepted: 12/04/2021] [Indexed: 01/10/2023] Open
Abstract
The majority of the effects observed upon envenomation by scorpaenoid fish species can be reproduced by the cytolysins present in their venoms. Fish cytolysins are multifunctional proteins that elicit lethal, cytolytic, cardiovascular, inflammatory, nociceptive, and neuromuscular activities, representing a novel class of protein toxins. These large proteins (MW 150–320 kDa) are composed by two different subunits, termed α and β, with about 700 amino acid residues each, being usually active in oligomeric form. There is a high degree of similarity between the primary sequences of cytolysins from different fish species. This suggests these molecules share similar mechanisms of action, which, at least regarding the cytolytic activity, has been proved to involve pore formation. Although the remaining components of fish venoms have interesting biological activities, fish cytolysins stand out because of their multifunctional nature and their ability to reproduce the main events of envenomation on their own. Considerable knowledge about fish cytolysins has been accumulated over the years, although there remains much to be unveiled. In this review, we compiled and compared the current information on the biochemical aspects and pharmacological activities of fish cytolysins, going over their structures, activities, mechanisms of action, and perspectives for the future.
Collapse
|
24
|
Simone Y, van der Meijden A. Armed stem to stinger: a review of the ecological roles of scorpion weapons. J Venom Anim Toxins Incl Trop Dis 2021; 27:e20210002. [PMID: 34527038 PMCID: PMC8425188 DOI: 10.1590/1678-9199-jvatitd-2021-0002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 03/18/2021] [Indexed: 12/24/2022] Open
Abstract
Scorpions possess two systems of weapons: the pincers (chelae) and the stinger (telson). These are placed on anatomically and developmentally well separated parts of the body, that is, the oral appendages and at the end of the body axis. The otherwise conserved body plan of scorpions varies most in the shape and relative dimensions of these two weapon systems, both across species and in some cases between the sexes. We review the literature on the ecological function of these two weapon systems in each of three contexts of usage: (i) predation, (ii) defense and (iii) sexual contests. In the latter context, we will also discuss their usage in mating. We first provide a comparative background for each of these contexts of usage by giving examples of other weapon systems from across the animal kingdom. Then, we discuss the pertinent aspects of the anatomy of the weapon systems, particularly those aspects relevant to their functioning in their ecological roles. The literature on the functioning and ecological role of both the chelae and the telson is discussed in detail, again organized by context of usage. Particular emphasis is given on the differences in morphology or usage between species or higher taxonomic groups, or between genders, as such cases are most insightful to understand the roles of each of the two distinct weapon systems of the scorpions and their evolutionary interactions. We aimed to synthesize the literature while minimizing conjecture, but also to point out gaps in the literature and potential future research opportunities.
Collapse
Affiliation(s)
- Yuri Simone
- CIBIO Research Centre in Biodiversity and Genetic Resources, InBIO, Porto, Portugal
| | - Arie van der Meijden
- CIBIO Research Centre in Biodiversity and Genetic Resources, InBIO, Porto, Portugal
| |
Collapse
|
25
|
Arbuckle K, Harris RJ. Radiating pain: venom has contributed to the diversification of the largest radiations of vertebrate and invertebrate animals. BMC Ecol Evol 2021; 21:150. [PMID: 34344322 PMCID: PMC8336261 DOI: 10.1186/s12862-021-01880-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 07/09/2021] [Indexed: 01/04/2023] Open
Abstract
Background Understanding drivers of animal biodiversity has been a longstanding aim in evolutionary biology. Insects and fishes represent the largest lineages of invertebrates and vertebrates respectively, and consequently many ideas have been proposed to explain this diversity. Natural enemy interactions are often important in diversification dynamics, and key traits that mediate such interactions may therefore have an important role in explaining organismal diversity. Venom is one such trait which is intricately bound in antagonistic coevolution and has recently been shown to be associated with increased diversification rates in tetrapods. Despite ~ 10% of fish families and ~ 16% of insect families containing venomous species, the role that venom may play in these two superradiations remains unknown. Results In this paper we take a broad family-level phylogenetic perspective and show that variation in diversification rates are the main cause of variations in species richness in both insects and fishes, and that venomous families have diversification rates twice as high as non-venomous families. Furthermore, we estimate that venom was present in ~ 10% and ~ 14% of the evolutionary history of fishes and insects respectively. Conclusions Consequently, we provide evidence that venom has played a role in generating the remarkable diversity in the largest vertebrate and invertebrate radiations. Supplementary Information The online version contains supplementary material available at 10.1186/s12862-021-01880-z.
Collapse
Affiliation(s)
- Kevin Arbuckle
- Department of Biosciences, College of Science, Swansea University, Swansea, SA2 8PP, UK.
| | - Richard J Harris
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, Saint Lucia, QLD, 4072, Australia
| |
Collapse
|
26
|
Peplinski J, Malone MA, Fowler KJ, Potratz EJ, Pergams AG, Charmoy KL, Rasheed K, Avdieiev SS, Whelan CJ, Brown JS. Ecology of Fear: Spines, Armor and Noxious Chemicals Deter Predators in Cancer and in Nature. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.682504] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
In nature, many multicellular and unicellular organisms use constitutive defenses such as armor, spines, and noxious chemicals to keep predators at bay. These defenses render the prey difficult and/or dangerous to subdue and handle, which confers a strong deterrent for predators. The distinct benefit of this mode of defense is that prey can defend in place and continue activities such as foraging even under imminent threat of predation. The same qualitative types of armor-like, spine-like, and noxious defenses have evolved independently and repeatedly in nature, and we present evidence that cancer is no exception. Cancer cells exist in environments inundated with predator-like immune cells, so the ability of cancer cells to defend in place while foraging and proliferating would clearly be advantageous. We argue that these defenses repeatedly evolve in cancers and may be among the most advanced and important adaptations of cancers. By drawing parallels between several taxa exhibiting armor-like, spine-like, and noxious defenses, we present an overview of different ways these defenses can appear and emphasize how phenotypes that appear vastly different can nevertheless have the same essential functions. This cross-taxa comparison reveals how cancer phenotypes can be interpreted as anti-predator defenses, which can facilitate therapy approaches which aim to give the predators (the immune system) the upper hand. This cross-taxa comparison is also informative for evolutionary ecology. Cancer provides an opportunity to observe how prey evolve in the context of a unique predatory threat (the immune system) and varied environments.
Collapse
|
27
|
Ding W, Zhang X, Zhao X, Jing W, Cao Z, Li J, Huang Y, You X, Wang M, Shi Q, Bing X. A Chromosome-Level Genome Assembly of the Mandarin Fish ( Siniperca chuatsi). Front Genet 2021; 12:671650. [PMID: 34249093 PMCID: PMC8262678 DOI: 10.3389/fgene.2021.671650] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 05/07/2021] [Indexed: 11/13/2022] Open
Abstract
The mandarin fish, Siniperca chuatsi, is an economically important perciform species with widespread aquaculture practices in China. Its special feeding habit, acceptance of only live prey fishes, contributes to its delicious meat. However, little is currently known about related genetic mechanisms. Here, we performed whole-genome sequencing and assembled a 758.78 Mb genome assembly of the mandarin fish, with the scaffold and contig N50 values reaching 2.64 Mb and 46.11 Kb, respectively. Approximately 92.8% of the scaffolds were ordered onto 24 chromosomes (Chrs) with the assistance of a previously established genetic linkage map. The chromosome-level genome contained 19,904 protein-coding genes, of which 19,059 (95.75%) genes were functionally annotated. The special feeding behavior of mandarin fish could be attributable to the interaction of a variety of sense organs (such as vision, smell, and endocrine organs). Through comparative genomics analysis, some interesting results were found. For example, olfactory receptor (OR) genes (especially the beta and delta types) underwent a significant expansion, and endocrinology/vision related npy, spexin, and opsin genes presented various functional mutations. These may contribute to the special feeding habit of the mandarin fish by strengthening the olfactory and visual systems. Meanwhile, previously identified sex-related genes and quantitative trait locis (QTLs) were localized on the Chr14 and Chr17, respectively. 155 toxin proteins were predicted from mandarin fish genome. In summary, the high-quality genome assembly of the mandarin fish provides novel insights into the feeding habit of live prey and offers a valuable genetic resource for the quality improvement of this freshwater fish.
Collapse
Affiliation(s)
- Weidong Ding
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
| | - Xinhui Zhang
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, Shenzhen, China
| | - Xiaomeng Zhao
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, Shenzhen, China
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, China
| | - Wu Jing
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
| | - Zheming Cao
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
| | - Jia Li
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, Shenzhen, China
| | - Yu Huang
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, Shenzhen, China
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, China
| | - Xinxin You
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, Shenzhen, China
| | - Min Wang
- BGI Zhenjiang Institute of Hydrobiology, Zhenjiang, China
| | - Qiong Shi
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, Shenzhen, China
| | - Xuwen Bing
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
| |
Collapse
|
28
|
Trim CM, Byrne LJ, Trim SA. Utilisation of compounds from venoms in drug discovery. PROGRESS IN MEDICINAL CHEMISTRY 2021; 60:1-66. [PMID: 34147202 DOI: 10.1016/bs.pmch.2021.01.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Difficult drug targets are becoming the normal course of business in drug discovery, sometimes due to large interacting surfaces or only small differences in selectivity regions. For these, a different approach is merited: compounds lying somewhere between the small molecule and the large antibody in terms of many properties including stability, biodistribution and pharmacokinetics. Venoms have evolved over millions of years to be complex mixtures of stable molecules derived from other somatic molecules, the stability comes from the pressure to be ready for delivery at a moment's notice. Snakes, spiders, scorpions, jellyfish, wasps, fish and even mammals have evolved independent venom systems with complex mixtures in their chemical arsenal. These venom-derived molecules have been proven to be useful tools, such as for the development of antihypotensive angiotensin converting enzyme (ACE) inhibitors and have also made successful drugs such as Byetta® (Exenatide), Integrilin® (Eptifibatide) and Echistatin. Only a small percentage of the available chemical space from venoms has been investigated so far and this is growing. In a new era of biological therapeutics, venom peptides present opportunities for larger target engagement surface with greater stability than antibodies or human peptides. There are challenges for oral absorption and target engagement, but there are venom structures that overcome these and thus provide substrate for engineering novel molecules that combine all desired properties. Venom researchers are characterising new venoms, species, and functions all the time, these provide great substrate for solving the challenges presented by today's difficult targets.
Collapse
Affiliation(s)
- Carol M Trim
- Faculty of Science, Engineering and Social Sciences, Natural and Applied Sciences, School of Psychology and Life Sciences, Canterbury Christ Church University, Canterbury, Kent, United Kingdom
| | - Lee J Byrne
- Faculty of Science, Engineering and Social Sciences, Natural and Applied Sciences, School of Psychology and Life Sciences, Canterbury Christ Church University, Canterbury, Kent, United Kingdom
| | | |
Collapse
|
29
|
Arbuckle K. Special Issue: Evolutionary Ecology of Venom. Toxins (Basel) 2021; 13:toxins13050310. [PMID: 33925276 PMCID: PMC8146639 DOI: 10.3390/toxins13050310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 04/21/2021] [Indexed: 11/16/2022] Open
Abstract
This Special Issue of Toxins aims to increase the profile and understanding of how ecology shapes the evolution of venom systems, and also how venom influences the ecological attributes of and interactions among species [...].
Collapse
Affiliation(s)
- Kevin Arbuckle
- Department of Biosciences, College of Science, Swansea University, Swansea SA2 8PP, UK
| |
Collapse
|
30
|
Harris RJ, Youngman NJ, Chan W, Bosmans F, Cheney KL, Fry BG. Getting stoned: Characterisation of the coagulotoxic and neurotoxic effects of reef stonefish (Synanceia verrucosa) venom. Toxicol Lett 2021; 346:16-22. [PMID: 33878385 DOI: 10.1016/j.toxlet.2021.04.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/11/2021] [Accepted: 04/13/2021] [Indexed: 01/11/2023]
Abstract
The reef stonefish (Synanceia verrucosa) is a venomous fish which causes excruciatingly painful envenomations. While some research on the pathophysiology and functions of the venom have been conducted, there are still some gaps in the understanding of the venom effects due to the extreme lability of fish venom toxins and the lack of available testing platforms. Here we set out to assess new functions of the venom whilst also attempting to address some unclear pathophysiological effects from previous literature. Utilising a biolayer interferometry assay, our results highlight that the venom binds to the orthosteric site of the α-1 nicotinic acetylcholine receptor as well as the domain IV of voltage-gated Ca2+ (CaV1.2) channel mimotopes. Both these results add some clarity to the previously ambiguous literature. We further assessed the coagulotoxic effects of the venom using thromboelastography and Stago STA-R Max coagulation analyser assays. We reveal that the venom produced anticoagulant activity and significantly delayed time until clot formation of recalcified human plasma which is likely through the degradation of phospholipids. There was a difference between fresh and lyophilised venom activity toward the nicotinic acetylcholine receptor mimotopes and coagulation assays, whilst no difference was observed in the activity toward the domain IV of CaV1.2 mimotopes. This research adds further insights into the neglected area of fish venom whilst also highlighting the extreme labile nature of fish venom toxins.
Collapse
Affiliation(s)
- Richard J Harris
- Venom Evolution Laboratory, School of Biological Sciences, The University of Queensland, St. Lucia, QLD, 4072, Australia.
| | - Nicholas J Youngman
- Venom Evolution Laboratory, School of Biological Sciences, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Weili Chan
- Visual Ecology Laboratory, School of Biological Sciences, The University of Queensland, St. Lucia, QLD, 4072, Australia; School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Frank Bosmans
- Department of Basic and Applied Medical Sciences, Ghent University, 9000, Ghent, Belgium
| | - Karen L Cheney
- Visual Ecology Laboratory, School of Biological Sciences, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Bryan G Fry
- Venom Evolution Laboratory, School of Biological Sciences, The University of Queensland, St. Lucia, QLD, 4072, Australia
| |
Collapse
|
31
|
Surm JM, Moran Y. Insights into how development and life-history dynamics shape the evolution of venom. EvoDevo 2021; 12:1. [PMID: 33413660 PMCID: PMC7791878 DOI: 10.1186/s13227-020-00171-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 12/22/2020] [Indexed: 02/07/2023] Open
Abstract
Venomous animals are a striking example of the convergent evolution of a complex trait. These animals have independently evolved an apparatus that synthesizes, stores, and secretes a mixture of toxic compounds to the target animal through the infliction of a wound. Among these distantly related animals, some can modulate and compartmentalize functionally distinct venoms related to predation and defense. A process to separate distinct venoms can occur within and across complex life cycles as well as more streamlined ontogenies, depending on their life-history requirements. Moreover, the morphological and cellular complexity of the venom apparatus likely facilitates the functional diversity of venom deployed within a given life stage. Intersexual variation of venoms has also evolved further contributing to the massive diversity of toxic compounds characterized in these animals. These changes in the biochemical phenotype of venom can directly affect the fitness of these animals, having important implications in their diet, behavior, and mating biology. In this review, we explore the current literature that is unraveling the temporal dynamics of the venom system that are required by these animals to meet their ecological functions. These recent findings have important consequences in understanding the evolution and development of a convergent complex trait and its organismal and ecological implications.
Collapse
Affiliation(s)
- Joachim M Surm
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, 9190401, Jerusalem, Israel.
| | - Yehu Moran
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, 9190401, Jerusalem, Israel.
| |
Collapse
|
32
|
Assessing the Binding of Venoms from Aquatic Elapids to the Nicotinic Acetylcholine Receptor Orthosteric Site of Different Prey Models. Int J Mol Sci 2020; 21:ijms21197377. [PMID: 33036249 PMCID: PMC7583753 DOI: 10.3390/ijms21197377] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 09/25/2020] [Accepted: 10/02/2020] [Indexed: 01/19/2023] Open
Abstract
The evolution of an aquatic lifestyle from land dwelling venomous elapids is a radical ecological modification, bringing about many evolutionary changes from morphology to diet. Diet is an important ecological facet which can play a key role in regulating functional traits such as venom composition and prey-specific targeting of venom. In addition to predating upon novel prey (e.g., fish, fish eggs and invertebrates), the venoms of aquatic elapids also face the challenge of increased prey-escape potential in the aquatic environment. Thus, despite the independent radiation into an aquatic niche on four separate occasions, the venoms of aquatic elapids are evolving under convergent selection pressures. Utilising a biolayer interferometry binding assay, this study set out to elucidate whether crude venoms from representative aquatic elapids were target-specific to the orthosteric site of postsynaptic nicotinic acetylcholine receptor mimotopes of fish compared to other terrestrial prey types. Representatives of the four aquatic lineages were: aquatic coral snakes representative was Micrurus surinamensis;, sea kraits representative was Laticauda colubrina; sea snakes representatives were two Aipysurus spp. and eight Hydrophis spp; and water cobras representative was Naja annulata. No prey-specific differences in crude venom binding were observed from any species tested, except for Aipysurus laevis, which showed slight evidence of prey-potency differences. For Hydrophis caerulescens, H. peronii, H. schistosus and M. surinamensis, there was a lack of binding to the orthosteric site of any target lineage. Subsequent testing on the in vitro chick-biventer cervicis muscle preparation suggested that, while the venoms of these species bound postsynaptically, they bound to allosteric sites rather than orthosteric. Allosteric binding is potentially a weaker but faster-acting form of neurotoxicity and we hypothesise that the switch to allosteric binding is likely due to selection pressures related to prey-escape potential. This research has potentially opened up the possibility of a new functional class of toxins which have never been assessed previously while shedding light on the selection pressures shaping venom evolution.
Collapse
|
33
|
A tentacle for every occasion: comparing the hunting tentacles and sweeper tentacles, used for territorial competition, in the coral Galaxea fascicularis. BMC Genomics 2020; 21:548. [PMID: 32770938 PMCID: PMC7430897 DOI: 10.1186/s12864-020-06952-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 07/27/2020] [Indexed: 12/27/2022] Open
Abstract
Background Coral reefs are among the most diverse, complex and densely populated marine ecosystems. To survive, morphologically simple and sessile cnidarians have developed mechanisms to catch prey, deter predators and compete with adjacent corals for space, yet the mechanisms underlying these functions are largely unknown. Here, we characterize the histology, toxic activity and gene expression patterns in two different types of tentacles from the scleractinian coral Galaxea fascilcularis – catch tentacles (CTs), used to catch prey and deter predators, and sweeper tentacles (STs), specialized tentacles used for territorial aggression. Results STs exhibit more mucocytes and higher expression of mucin genes than CTs, and lack the ectodermal cilia used to deliver food to the mouth and remove debris. STs and CTs also express different sensory rhodopsin-like g-protein coupled receptors, suggesting they may employ different sensory pathways. Each tentacle type has a different complement of stinging cells (nematocytes), and the expression in the two tentacles of genes encoding structural nematocyte proteins suggests the stinging cells develop within the tentacles. CTs have higher neurotoxicity to blowfly larvae and hemolytic activity compared to the STs, consistent with a role in prey capture. In contrast, STs have higher phospholipase A2 activity, which we speculate may have a role in inducing tissue damage during territorial aggression. The expression of genes encoding cytolytic toxins (actinoporins) and phospholipases also differs between the tentacle types. Conclusions These results show that the same organism utilizes two distinct tentacle types, each equipped with a different venom apparatus and toxin composition, for prey capture and defense and for territorial aggression.
Collapse
|
34
|
Blennerhassett RA, Bell-Anderson K, Shine R, Brown GP. The cost of chemical defence: the impact of toxin depletion on growth and behaviour of cane toads ( Rhinella marina). Proc Biol Sci 2020; 286:20190867. [PMID: 31088275 DOI: 10.1098/rspb.2019.0867] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Many animals capable of deploying chemical defences are reluctant to use them, suggesting that synthesis of toxins imposes a substantial cost. Typically, such costs have been quantified by measuring the elevation in metabolic rate induced by toxin depletion (i.e. during replenishment of toxin stores). More generally, we might expect that toxin depletion will induce shifts in a broad suite of fitness-relevant traits. In cane toads ( Rhinella marina), toxic compounds that protect against predators and pathogens are stored in large parotoid (shoulder) glands. We used correlational and experimental approaches in field and laboratory settings to investigate impacts of toxin depletion on growth rate and behaviour in cane toads. In free-ranging toads, larger toxin stores were associated with smaller gonads and livers, suggesting energetic trade-offs between toxin production and both reproduction and energy metabolism. Experimental removal of toxin (by manually squeezing parotoid glands) reduced rates of growth in body mass in both captive and free-ranging toads. Radio tracking demonstrated that de-toxined toads dispersed more slowly than did control toads. Given that toxin stores in cane toads take several months to fully replenish, deploying toxin to repel a predator may impose a substantial cost, explaining why toads use toxin only as a final line of defence.
Collapse
Affiliation(s)
| | - Kim Bell-Anderson
- 2 School of Life and Environmental Sciences, The University of Sydney , Sydney New South Wales 2006 , Australia
| | - Richard Shine
- 2 School of Life and Environmental Sciences, The University of Sydney , Sydney New South Wales 2006 , Australia
| | - Gregory P Brown
- 2 School of Life and Environmental Sciences, The University of Sydney , Sydney New South Wales 2006 , Australia
| |
Collapse
|
35
|
The venoms of the lesser ( Echiichthys vipera) and greater ( Trachinus draco) weever fish- A review. Toxicon X 2020; 6:100025. [PMID: 32550581 PMCID: PMC7285994 DOI: 10.1016/j.toxcx.2020.100025] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 11/24/2019] [Accepted: 01/16/2020] [Indexed: 12/12/2022] Open
Abstract
In comparison with other animal venoms, fish venoms remain relatively understudied. This is especially true for that of the lesser Echiichthys vipera and greater weever fish Trachinus draco which, apart from the isolation of their unique venom cytolysins, trachinine and dracotoxin, respectively, remain relatively uncharacterised. Envenomation reports mainly include mild symptoms consisting of nociception and inflammation. However, like most fish venoms, if the venom becomes systemic it causes cardiorespiratory and blood pressure changes. Although T. draco venom has not been studied since the 1990's, recent studies on E. vipera venom have discovered novel cytotoxic components on human cancer cells, but due to the scarcity of research on the molecular make-up of the venom, the molecule(s) causing this cytotoxicity remains unknown. This review analyses past studies on E. vipera and T. draco venom, the methods used in the , the venom constituents characterised, the reported symptoms of envenomation and compares these findings with those from other venomous Scorpaeniformes. Research on the weever fish venoms Echiichthys vipera and Trachinus draco has been scarce. E. vipera and T. draco venoms elicit cardiorespiratory symptoms in victims. E. vipera and T. draco contain unique cytolysins – Trachinine and Dracotoxin. Dracotoxin is haemolytic and contains membrane depolarising activities. E. vipera venom triggers apoptosis in human colon carcinoma cells.
Collapse
|
36
|
Lyons K, Dugon MM, Healy K. Diet Breadth Mediates the Prey Specificity of Venom Potency in Snakes. Toxins (Basel) 2020; 12:toxins12020074. [PMID: 31979380 PMCID: PMC7076792 DOI: 10.3390/toxins12020074] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/15/2020] [Accepted: 01/21/2020] [Indexed: 12/30/2022] Open
Abstract
Venoms are best known for their ability to incapacitate prey. In predatory groups, venom potency is predicted to reflect ecological and evolutionary drivers relating to diet. While venoms have been found to have preyspecific potencies, the role of diet breadth on venom potencies has yet to be tested at large macroecological scales. Here, using a comparative analysis of 100 snake species, we show that the evolution of prey-specific venom potencies is contingent on the breadth of a species' diet. We find that while snake venom is more potent when tested on species closely related to natural prey items, we only find this prey-specific pattern in species with taxonomically narrow diets. While we find that the taxonomic diversity of a snakes' diet mediates the prey specificity of its venom, the species richness of its diet was not found to affect these prey-specific potency patterns. This indicates that the physiological diversity of a species' diet is an important driver of the evolution of generalist venom potencies. These findings suggest that the venoms of species with taxonomically diverse diets may be better suited to incapacitating novel prey species and hence play an important role for species within changing environments.
Collapse
Affiliation(s)
- Keith Lyons
- Correspondence: (K.L.); (K.H.); Tel.: +353-91-493744 (K.H.)
| | | | - Kevin Healy
- Correspondence: (K.L.); (K.H.); Tel.: +353-91-493744 (K.H.)
| |
Collapse
|
37
|
Díaz C, Rivera J, Lomonte B, Bonilla F, Diego-García E, Camacho E, Tytgat J, Sasa M. Venom characterization of the bark scorpion Centruroides edwardsii (Gervais 1843): Composition, biochemical activities and in vivo toxicity for potential prey. Toxicon 2019; 171:7-19. [PMID: 31585140 DOI: 10.1016/j.toxicon.2019.09.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 09/21/2019] [Accepted: 09/25/2019] [Indexed: 02/07/2023]
Abstract
In this study, we characterize the venom of Centruroides edwardsii, one of the most abundant scorpions in urban and rural areas of Costa Rica, in terms of its biochemical constituents and their biological activities. C. edwardsii venom is rich in peptides but also contains some higher molecular weight protein components. No phospholipase A2, hemolytic or fibrinogenolytic activities were found, but the presence of proteolytic and hyaluronidase enzymes was evidenced by zymography. Venom proteomic analysis indicates the presence of a hyaluronidase, several cysteine-rich secretory proteins, metalloproteinases and a peptidylglycine α-hydroxylating monooxygenase like-enzyme. It also includes peptides similar to the K+-channel blocker margatoxin, a dominant toxin in the venom of the related scorpion C. margaritatus. MS and N-terminal sequencing analysis also reveals the presence of Na+-channel-modulating peptides with sequence similarity to orthologs present in other scorpion species of the genera Centruroides and Tityus. We purified the hyaluronidase (which co-eluted with an allergen 5-like CRiSP) and sequenced ~60% of this enzyme. We also sequenced some venom gland transcripts that include other cysteine-containing peptides and a Non-Disulfide Bridged Peptide (NDBP). Our in vivo experiments characterizing the effects on potential predators and prey show that C. edwardsii venom induces paralysis in several species of arthropods and geckos; crickets being the most sensitive and cockroaches and scorpions the most resistant organisms tested. Envenomation signs were also observed in mice, but no lethality was reached by intraperitoneal administration of this venom up to 120 μg/g body weight.
Collapse
Affiliation(s)
- Cecilia Díaz
- Instituto Clodomiro Picado, Facultad de Microbiología, San José, Costa Rica; Departamento de Bioquímica, Escuela de Medicina, Universidad de Costa Rica, San José, Costa Rica.
| | - Jennifer Rivera
- Instituto Clodomiro Picado, Facultad de Microbiología, San José, Costa Rica
| | - Bruno Lomonte
- Instituto Clodomiro Picado, Facultad de Microbiología, San José, Costa Rica
| | - Fabián Bonilla
- Instituto Clodomiro Picado, Facultad de Microbiología, San José, Costa Rica
| | - Elia Diego-García
- Toxicology and Pharmacology, University of Leuven (KU Leuven), Belgium
| | - Erika Camacho
- Instituto Clodomiro Picado, Facultad de Microbiología, San José, Costa Rica
| | - Jan Tytgat
- Toxicology and Pharmacology, University of Leuven (KU Leuven), Belgium
| | - Mahmood Sasa
- Instituto Clodomiro Picado, Facultad de Microbiología, San José, Costa Rica; Escuela de Biología, Universidad de Costa Rica, San José, Costa Rica
| |
Collapse
|
38
|
Ziegman R, Undheim EAB, Baillie G, Jones A, Alewood PF. Investigation of the estuarine stonefish (Synanceia horrida) venom composition. J Proteomics 2019; 201:12-26. [PMID: 30953730 DOI: 10.1016/j.jprot.2019.04.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 04/02/2019] [Accepted: 04/03/2019] [Indexed: 11/29/2022]
Abstract
The Estuarine stonefish (Synanceia horrida) is recognised as one of the most venomous fish species in the world but the overall venom composition has yet to be investigated using in-depth transcriptomic and proteomic methods. To date, known venom components are restricted to a hyaluronidase and a large, pore-forming toxin known as Stonustoxin (SNTX). Transcriptomic sequencing of the venom gland resulted in over 170,000 contigs with only 0.4% that were homologous to putative venom proteins. Integration of the transcriptomic data with proteomic data from the S. horrida venom confirmed the hyaluronidase and SNTX to be present, together with several other protein families including major contributions from C-type lectins. Other protein families observed included peroxiredoxin and several minor protein families such as Golgi-associated plant pathogenesis related proteins, tissue pathway factor inhibitors, and Kazal-type serine protease inhibitors that, although not putative venom proteins, may contribute to the venom's adverse effects. BIOLOGICAL SIGNIFICANCE: Proteomic analysis of milked Synanceia horrida venom, paired with transcriptomic analysis of the venom gland tissue revealed for the first time the composition of one of the world's most dangerous fish venoms. The results demonstrate that the venom is relatively less complex compared to other well-studied venomous animals with a number of unique proteins not previously found in animal venoms.
Collapse
Affiliation(s)
- Rebekah Ziegman
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland, 4072, Australia
| | - Eivind A B Undheim
- Centre for Advanced Imaging, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Gregory Baillie
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland, 4072, Australia
| | - Alun Jones
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland, 4072, Australia
| | - Paul F Alewood
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland, 4072, Australia.
| |
Collapse
|