1
|
Tavares CS, Wang X, Ghosh S, Mishra R, Bonning BC. Bacillus thuringiensis-derived pesticidal proteins toxic to the whitefly, Bemisia tabaci. J Invertebr Pathol 2025; 210:108291. [PMID: 39986348 DOI: 10.1016/j.jip.2025.108291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 02/10/2025] [Accepted: 02/17/2025] [Indexed: 02/24/2025]
Abstract
The whitefly, Bemisia tabaci, is among the most important threats to global agriculture and food security. In addition to losses associated with feeding, B. tabaci vectors hundreds of plant viruses, many of which cause severe disease in staple food crops. The management of B. tabaci is confounded by extensive resistance to chemical insecticides. While pesticidal proteins derived from entomopathogenic bacteria such as Bacillus thuringiensis (Bt) could provide for alternative management approaches, only one pesticidal protein with toxicity to B. tabaci has been identified. Here we screened 11 Bt-derived pesticidal proteins from several different structural classes against the highly invasive, Middle East-Asian Minor 1 (MEAM1) cryptic species of B. tabaci, and assessed the impact of a B. tabaci-active protein on the gut epithelial membrane by transmission electron microscopy. The pesticidal proteins were expressed in Bt or in Escherichia coli and purified for use in bioassays. The toxicity of purified proteins was first assessed by feeding adults on a single dose followed by lethal concentration (LC50) determination for proteins with significant mortality relative to the buffer control. The proteins Tpp78Aa1, Tpp78Ba1, and Cry1Ca were toxic to B. tabaci with LC50 values of 99, 96, and 351 µg/mL, respectively. Disruption of the brush border and severe reduction in microvilli on the gut surface caused by Tpp78Aa1 is consistent with the mode of action of Bt-derived pesticidal proteins. These proteins may provide valuable tools for the integrated management of B. tabaci populations and associated reduced incidence of B. tabaci vectored plant viral diseases.
Collapse
Affiliation(s)
- Clebson S Tavares
- Department of Entomology and Nematology, University of Florida, PO Box 110620, Gainesville, FL 32611, USA
| | - Xinyue Wang
- Department of Entomology and Nematology, University of Florida, PO Box 110620, Gainesville, FL 32611, USA
| | - Saptarshi Ghosh
- Department of Entomology and Nematology, University of Florida, PO Box 110620, Gainesville, FL 32611, USA
| | - Ruchir Mishra
- Department of Entomology and Nematology, University of Florida, PO Box 110620, Gainesville, FL 32611, USA
| | - Bryony C Bonning
- Department of Entomology and Nematology, University of Florida, PO Box 110620, Gainesville, FL 32611, USA.
| |
Collapse
|
2
|
Tavares CS, Stelinski LL, Bonning BC. The sandwich feeding assay for use with first instar nymphs of the Asian citrus psyllid, Diaphorina citri confirms the high susceptibility of this life stage to bacterial pesticidal proteins. J Invertebr Pathol 2024; 207:108208. [PMID: 39317311 DOI: 10.1016/j.jip.2024.108208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/09/2024] [Accepted: 09/20/2024] [Indexed: 09/26/2024]
Abstract
Citrus greening or huanglongbing is the most important disease of citrus and threatens citrus production worldwide. As nymphs of Diaphorina citri play a crucial role in the acquisition and transmission of the citrus greening bacterium, suppression of this life stage is particularly important. However, the lack of a tractable feeding assay for use with first instar D. citri nymphs has impeded assessment of the toxicity of bioactives. Of several bacterial pesticidal proteins (BPP) that are toxic to D. citri adults, Mpp51Aa1 and Cry1Ba1, which have LC50 values of 110 and 120 µg/mL respectively in adults, were fed to 1st instar nymphs in a newly developed assay. For this new sandwich feeding assay, parafilm layers containing feeding solution were placed on top of two 35 mm Petri dishes, with a concave surface created on each. Fifty nymphs were transferred to the membrane on one Petri dish, and the second Petri dish placed on the top to create a "sandwich" with the 1st instar nymphs in the middle. Nymphs were fed for four days and the LC50 values for Mpp51Aa1 and Cry1Ba1 were calculated at 6.7 and 41.6 µg/mL respectively. Bioassays with bioengineered plants expressing Cry1Ba1 confirmed that the majority of D. citri mortality occurs during the 1st instar nymph stage, while egg laying adults are much less susceptible. Taken together, these results confirm that 1st instar D. citri nymphs are more susceptible to BPP than adults and demonstrate the utility of the sandwich feeding assay for effective screening of BPPs prior to investment into production of transgenic plants.
Collapse
Affiliation(s)
- Clebson S Tavares
- Entomology and Nematology Department, University of Florida, Gainesville, FL, USA.
| | - Lukasz L Stelinski
- Citrus Research and Education Center, University of Florida, IFAS, Lake Alfred, FL, USA
| | - Bryony C Bonning
- Entomology and Nematology Department, University of Florida, Gainesville, FL, USA
| |
Collapse
|
3
|
Tavares CS, Mishra R, Kishk A, Wang X, Ghobrial PN, Killiny N, Bonning BC. The beta pore-forming bacterial pesticidal protein Tpp78Aa1 is toxic to the Asian citrus psyllid vector of the citrus greening bacterium. J Invertebr Pathol 2024; 204:108122. [PMID: 38710321 DOI: 10.1016/j.jip.2024.108122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/22/2024] [Accepted: 05/02/2024] [Indexed: 05/08/2024]
Abstract
The Asian citrus psyllid (ACP) Diaphorina citri transmits the causative agent of huanglongbing, or citrus greening disease, that has decimated global citrus production. Pesticidal proteins derived from bacteria such as Bacillus thuringiensis (Bt) can provide effective and environmentally friendly alternatives for management of D. citri, but few with sufficient toxicity to D. citri have been identified. Here, we report on the toxicity of 14 Bt-derived pesticidal proteins from five different structural groups against D. citri. These proteins were selected based on previously reported toxicity to other hemipteran species and on pesticidal protein availability. Most of the proteins were expressed in Escherichia coli and purified from inclusion bodies or His-tag affinity purification, while App6Aa2 was expressed in Bt and purified from spore/crystal mixtures. Pesticidal proteins were initially screened by feeding psyllids on a single dose, and lethal concentration (LC50) then determined for proteins with significantly greater mortality than the buffer control. The impact of CLas infection of D. citri on toxicity was assessed for selected proteins via topical feeding. The Bt protein Tpp78Aa1 was toxic to D. citri adults with an LC50 of approximately 204 µg/mL. Nymphs were more susceptible to Tpp78Aa1 than adults but no significant difference in susceptibility was observed between healthy and CLas-infected nymphs or adults. Tpp78Aa1 and other reported D. citri-active proteins may provide valuable tools for suppression of D. citri populations.
Collapse
Affiliation(s)
- Clebson S Tavares
- Department of Entomology and Nematology, University of Florida, Gainesville, FL, USA.
| | - Ruchir Mishra
- Department of Entomology and Nematology, University of Florida, Gainesville, FL, USA
| | - Abdelaziz Kishk
- Department of Plant Pathology, Citrus Research and Education Center, IFAS, University of Florida, Lake Alfred, FL 33850, USA; Department of Plant Protection, Faculty of Agriculture, Tanta University 31527, Egypt
| | - Xinyue Wang
- Department of Entomology and Nematology, University of Florida, Gainesville, FL, USA
| | - Pierre N Ghobrial
- Department of Entomology and Nematology, University of Florida, Gainesville, FL, USA
| | - Nabil Killiny
- Department of Plant Protection, Faculty of Agriculture, Tanta University 31527, Egypt
| | - Bryony C Bonning
- Department of Entomology and Nematology, University of Florida, Gainesville, FL, USA
| |
Collapse
|
4
|
Miranda MP, Fitches EC, Sukiran NA, Eduardo WI, Garcia RB, Jaciani FJ, Readshaw JJ, Bell J, Peña L. Spider venom neurotoxin based bioinsecticides: A novel bioactive for the control of the Asian citrus psyllid Diaphorina citri (Hemiptera). Toxicon 2024; 239:107616. [PMID: 38218384 DOI: 10.1016/j.toxicon.2024.107616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/10/2024] [Accepted: 01/10/2024] [Indexed: 01/15/2024]
Abstract
The Asian citrus psyllid, Diaphorina citri Kuwayama (Hemiptera: Psyllidae), is a key vector of the phloem-limited bacteria Candidatus Liberibacter asiaticus (CLas) associated with huanglongbing (HLB), the most serious and currently incurable disease of citrus worldwide. Here we report the first investigation into the potential use of a spider venom-derived recombinant neurotoxin, ω/κ-HxTx-Hv1h (hereafter HxTx-Hv1h) when delivered alone or when fused to snowdrop lectin (Galanthus nivalis agglutinin; GNA) to control D. citri. Proteins, including GNA alone, were purified from fermented transformed yeast Pichia pastoris cultures. Recombinant HxTx-Hv1h, HxTx-Hv1h/GNA and GNA were all orally toxic to D. citri, with Day 5 median lethal concentrations (LC50) derived from dose-response artificial diet assays of 27, 20 and 52 μM, respectively. Western analysis of whole insect protein extracts confirmed that psyllid mortality was attributable to protein ingestion and that the fusion protein was stable to cleavage by D. citri proteases. When applied topically (either via droplet or spray) HxTx-Hv1h/GNA was the most effective of the proteins causing >70 % mortality 5 days post treatment, some 2 to 3-fold higher levels of mortality as compared to the toxin alone. By contrast, no significant mortality or phenotypic effects were observed for bumble bees (Bombus terrestris L.) fed on the recombinant proteins in acute toxicity assays. This suggests that HxTx-Hv1h/GNA has potential as a novel bioinsecticide for the management of D. citri offering both enhanced target specificity as compared to chemical pesticides and compatibility with integrated pest management (IPM) strategies.
Collapse
Affiliation(s)
- Marcelo P Miranda
- Fund for Citrus Protection (Fundecitrus), Research and Development, Avenida Dr. Adhemar Pereira de Barros, 201, 14807- 040, Araraquara, SP, Brazil
| | - Elaine C Fitches
- School of Biosciences, University of Durham, Durham, DH1 3LE, United Kingdom.
| | - Nur Afiqah Sukiran
- School of Biosciences, University of Durham, Durham, DH1 3LE, United Kingdom
| | - Wellington I Eduardo
- Fund for Citrus Protection (Fundecitrus), Research and Development, Avenida Dr. Adhemar Pereira de Barros, 201, 14807- 040, Araraquara, SP, Brazil
| | - Rafael B Garcia
- Fund for Citrus Protection (Fundecitrus), Research and Development, Avenida Dr. Adhemar Pereira de Barros, 201, 14807- 040, Araraquara, SP, Brazil
| | - Fabrício J Jaciani
- Fund for Citrus Protection (Fundecitrus), Research and Development, Avenida Dr. Adhemar Pereira de Barros, 201, 14807- 040, Araraquara, SP, Brazil
| | - Jennifer J Readshaw
- School of Biosciences, University of Durham, Durham, DH1 3LE, United Kingdom
| | - Jack Bell
- School of Biosciences, University of Durham, Durham, DH1 3LE, United Kingdom
| | - Leandro Peña
- Instituto de Biologıa Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas (IBMCP-CSIC), Universidad Politécnica de Valencia, Spain
| |
Collapse
|
5
|
Kishk A, Dos Santos Tavares C, Mishra R, Bonning BC, Killiny N. Influence of 'Candidatus Liberibacter asiaticus' infection on the susceptibility of Asian citrus psyllid, Diaphorina citri to Bacillus thuringiensis pesticidal proteins, Mpp51Aa1 and Cry1Ba1. J Invertebr Pathol 2023; 200:107972. [PMID: 37460056 DOI: 10.1016/j.jip.2023.107972] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 06/29/2023] [Accepted: 07/14/2023] [Indexed: 07/25/2023]
Abstract
The Asian citrus psyllid, Diaphorina citri Kuwayama (Hemiptera: Liviidae) transmits the Gram-negative bacterium 'Candidatus Liberibacter asiaticus' that causes citrus greening disease. While chemical control has been the main management strategy for limiting D. citri, the widespread usage of chemical sprays has decreased the susceptibility of D. citri to most insecticides. Pesticidal proteins produced by the bacterium Bacillus thuringiensis (Bt) are active against a wide variety of insects and provide a more sustainable approach to insect control. Herein, we investigated the impact of 'Ca. L. asiaticus' infection of D. citri on the toxicity of two Bt proteins (Mpp51Aa1 and Cry1Ba1). Proteins were delivered to healthy and 'Ca. L. asiaticus'-infected D. citri via topical feeding application. The LC50 values of Mpp51Aa1 and Cry1Ba1 were calculated for both nymphs and adults. Additionally, we evaluated the effect of each protein on the survival probability and life span of healthy and 'Ca. L. asiaticus'-infected D. citri. The LC50 values indicated that adults and nymphs were more susceptible to Mpp51Aa1 than to Cry1Ba1 in both healthy and 'Ca. L. asiaticus'-infected D. citri. 'Ca. L. asiaticus'-infected adults and nymphs were more susceptible to Mpp51Aa1 and Cry1Ba1 than healthy insects, and nymphs were more susceptible to Mpp51Aa1 and Cry1Ba1 than adults. Moreover, we found that Mpp51Aa1 had a greater impact than Cry1Ba1 on the survival and lifespan of adults, and 'Ca. L. asiaticus'-infected insects were more affected by these pesticidal proteins than healthy adults. These results have important implications for the use of pesticidal proteins in D. citri management in Florida and elsewhere given the widespread presence of 'Ca. L. asiaticus' in the D. citri population. In this era of eco-friendly control strategies, Bt-derived pesticidal proteins provide a promising avenue to reducing the application of chemical insecticides for D. citri management.
Collapse
Affiliation(s)
- Abdelaziz Kishk
- Department of Plant Pathology, Citrus Research and Education Center, IFAS, University of Florida, Lake Alfred, FL, 33850, USA; Department of Plant Protection, Faculty of Agriculture, Tanta University, 31527, Egypt
| | | | - Ruchir Mishra
- Department of Entomology and Nematology, IFAS, University of Florida, Gainesville, FL 32611, USA
| | - Bryony C Bonning
- Department of Entomology and Nematology, IFAS, University of Florida, Gainesville, FL 32611, USA
| | - Nabil Killiny
- Department of Plant Pathology, Citrus Research and Education Center, IFAS, University of Florida, Lake Alfred, FL, 33850, USA.
| |
Collapse
|
6
|
Mishra R, Narayana R, Ibanez F, Achor D, Shilts T, El-Mohtar C, Orbović V, Stelinski LL, Bonning BC. Bacterial Pesticidal Protein Mpp51Aa1 Delivered via Transgenic Citrus Severely Impacts the Fecundity of Asian Citrus Psyllid, Diaphorina citri. Appl Environ Microbiol 2023; 89:e0072323. [PMID: 37458593 PMCID: PMC10467345 DOI: 10.1128/aem.00723-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 06/26/2023] [Indexed: 08/31/2023] Open
Abstract
The Asian citrus psyllid (ACP) Diaphorina citri vectors the causative agent of citrus greening disease that has the capacity to decimate citrus production. As an alternative and more sustainable approach to manage D. citri than repeated application of chemical insecticides, we investigated the potential use of the bacteria-derived pesticidal protein, Mpp51Aa1, when delivered by transgenic Citrus sinensis cv. Valencia sweet orange or Citrus paradisi cv. Duncan grapefruit. Following confirmation of transcription and translation of mpp51aa1 by transgenic plants, no impact of Mpp51Aa1 expression was seen on D. citri host plant choice between transgenic and control Duncan grapefruit plants. A slight but significant drop in survival of adult psyllids fed on these transgenic plants was noted relative to those fed on control plants. In line with this result, damage to the gut epithelium consistent with that caused by pore-forming proteins was only observed in a minority of adult D. citri fed on the transgenic Duncan grapefruit. However, greater impacts were observed on nymphs than on adults, with a 40% drop in the survival of nymphs fed on transgenic Duncan grapefruit relative to those fed on control plants. For Valencia sweet orange, a 70% decrease in the number of eggs laid by adult D. citri on transgenic plants was noted relative to those on control plants, with a 90% drop in emergence of progeny. These impacts that contrast with those associated with other bacterial pesticidal proteins and the potential for use of Mpp51Aa1-expressing transgenic plants for suppression of D. citri populations are discussed. IMPORTANCE Pesticidal proteins derived from bacteria such as Bacillus thuringiensis are valuable tools for management of agricultural insect pests and provide a sustainable alternative to the application of chemical insecticides. However, relatively few bacterial pesticidal proteins have been used for suppression of hemipteran or sap-sucking insects such as the Asian citrus psyllid, Diaphorina citri. This insect is particularly important as the vector of the causative agent of citrus greening, or huanglongbing disease, which severely impacts global citrus production. In this study, we investigated the potential of transgenic citrus plants that produce the pesticidal protein Mpp51Aa1. While adult psyllid mortality on transgenic plants was modest, the reduced number of eggs laid by exposed adults and the decreased survival of progeny was such that psyllid populations dropped by more than 90%. These results provide valuable insight for potential deployment of Mpp51Aa1 in combination with other control agents for the management of D. citri.
Collapse
Affiliation(s)
- Ruchir Mishra
- Entomology and Nematology Department, University of Florida, Gainesville, Florida, USA
| | - Ravishankar Narayana
- Citrus Research and Education Center, University of Florida, IFAS, Lake Alfred, Florida, USA
| | - Freddy Ibanez
- Citrus Research and Education Center, University of Florida, IFAS, Lake Alfred, Florida, USA
| | - Diann Achor
- Citrus Research and Education Center, University of Florida, IFAS, Lake Alfred, Florida, USA
| | - Turksen Shilts
- Citrus Research and Education Center, University of Florida, IFAS, Lake Alfred, Florida, USA
| | - Choaa El-Mohtar
- Citrus Research and Education Center, University of Florida, IFAS, Lake Alfred, Florida, USA
| | - Vladimir Orbović
- Citrus Research and Education Center, University of Florida, IFAS, Lake Alfred, Florida, USA
| | - Lukasz L. Stelinski
- Citrus Research and Education Center, University of Florida, IFAS, Lake Alfred, Florida, USA
| | - Bryony C. Bonning
- Entomology and Nematology Department, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
7
|
Orbović V, Ravanfar SA, Achor DS, Shilts T, Ibanez-Carrasco F, Banerjee R, El-Mohtar C, Stelinski LL, Bonning BC. Cry1Ba1-mediated toxicity of transgenic Bergera koenigii and Citrus sinensis to the Asian citrus psyllid Diaphorina citri. FRONTIERS IN INSECT SCIENCE 2023; 3:1125987. [PMID: 38469526 PMCID: PMC10926525 DOI: 10.3389/finsc.2023.1125987] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 04/06/2023] [Indexed: 03/13/2024]
Abstract
The Asian citrus psyllid, Diaphorina citri, vectors the bacterial causative agent of citrus greening disease, which has severely impacted citrus production on a global scale. As the current repeated application of chemical insecticides is unsustainable for management of this insect and subsequent protection of groves, we investigated the potential use of the bacteria-derived pesticidal protein, Cry1Ba1, when delivered via transgenic citrus plants. Having demonstrated transformation of the Indian curry leaf tree, Bergera koenigii, for Cry1Ba1 expression for use as a trap plant, we produced transgenic plants of Duncan grapefruit, Citrus paridisi, Valencia sweet orange, Citrus sinensis, and Carrizo citrange, C. sinensis x Poncirus trifoliata, for expression of Cry1Ba1. The presence of the cry1ba1 gene, and cry1ba1 transcription were confirmed. Western blot detection of Cry1Ba1 was confirmed in most cases. When compared to those from wild-type plants, leaf discs from transgenic Duncan and Valencia expressing Cry1Ba1 exhibited a "delayed senescence" phenotype, similar to observations made for transgenic B. koenigii. In bioassays, significant reductions in the survival of adult psyllids were noted on transgenic B. koenigii and Valencia sweet orange plants expressing Cry1Ba1, but not on transgenic Duncan grapefruit or Carrizo citrange. In contrast to psyllids fed on wild type plants, the gut epithelium of psyllids fed on transgenic plants was damaged, consistent with the mode of action of Cry1Ba1. These results indicate that the transgenic expression of a bacterial pesticidal protein in B. koenigii and Valencia sweet orange offers a viable option for management of D. citri, that may contribute to solutions that counter citrus greening disease.
Collapse
Affiliation(s)
- Vladimir Orbović
- Citrus Research and Education Center, Institute of Food and Agricultural Sciences (IFAS), University of Florida, Lake Alfred, FL, United States
| | - Seyed Ali Ravanfar
- Citrus Research and Education Center, Institute of Food and Agricultural Sciences (IFAS), University of Florida, Lake Alfred, FL, United States
| | - Diann S. Achor
- Citrus Research and Education Center, Institute of Food and Agricultural Sciences (IFAS), University of Florida, Lake Alfred, FL, United States
| | - Turksen Shilts
- Citrus Research and Education Center, Institute of Food and Agricultural Sciences (IFAS), University of Florida, Lake Alfred, FL, United States
| | - Freddy Ibanez-Carrasco
- Citrus Research and Education Center, Institute of Food and Agricultural Sciences (IFAS), University of Florida, Lake Alfred, FL, United States
| | - Rahul Banerjee
- Entomology and Nematology Department, Institute of Food and Agricultural Sciences (IFAS), University of Florida, Gainesville, FL, United States
| | - Choaa El-Mohtar
- Citrus Research and Education Center, Institute of Food and Agricultural Sciences (IFAS), University of Florida, Lake Alfred, FL, United States
| | - Lukasz L. Stelinski
- Citrus Research and Education Center, Institute of Food and Agricultural Sciences (IFAS), University of Florida, Lake Alfred, FL, United States
| | - Bryony C. Bonning
- Entomology and Nematology Department, Institute of Food and Agricultural Sciences (IFAS), University of Florida, Gainesville, FL, United States
| |
Collapse
|
8
|
de Oliveira Dorta S, Attílio LB, Zanardi OZ, Lopes JRS, Machado MA, Freitas-Astúa J. Genetic transformation of 'Hamlin' and 'Valencia' sweet orange plants expressing the cry11A gene of Bacillus thuringiensis as another tool to the management of Diaphorina citri (Hemiptera: Liviidae). J Biotechnol 2023; 368:60-70. [PMID: 37088156 DOI: 10.1016/j.jbiotec.2023.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/29/2023] [Accepted: 04/20/2023] [Indexed: 04/25/2023]
Abstract
The Asian citrus psyllid (ACP) Diaphorina citri Kuwayama (Hemiptera: Liviidae) is the vector of Candidatus Liberibacter spp., the bacteria associated with huanglongbing (HLB), the most devastating disease of citrus worldwide. HLB management has heavily counted on insecticide applications to control the ACP, although there are efforts towards more sustainable alternatives. In previous work, our group assessed the potential bioactivity of different strains of Bacillus thuringiensis (Eubacteriales: Bacillaceae) (Bt) containing cry/cyt genes as feasible tools to control ACP nymphs. Here, we report an attempt to use the cry11A gene from Bt to produce transgenic sweet orange plants using two promoters. For the genetic transformation, 'Hamlin' and 'Valencia' sweet orange seedlings were used as sources of explants. Transgenic plants were detected by polymerase chain reaction (PCR) with specific primers, and the transgene copy number was confirmed by Southern blot analyses. Transcript expression levels were determined by qPCR. Mortality assays of D. citri nymphs were carried out in a greenhouse, and the effect of the events tested ranged from 22 to 43% at the end of the five-day exposure period. To our knowledge, this is the first manuscript reporting the production of citrus plants expressing the Bt cry11A gene for the management of D. citri nymphs.
Collapse
Affiliation(s)
- Sílvia de Oliveira Dorta
- Programa de Pós-Graduação em Microbiologia Agrícola, Escola Superior de Agricultura Luiz de Queiroz/Universidade de São Paulo (ESALQ/USP), 13.418-900, Piracicaba, São Paulo, Brazil; Laboratório de Biotecnologia, Centro de Citricultura Sylvio Moreira, Instituto Agronômico de Campinas (IAC), 13.490-970, Cordeirópolis, São Paulo, Brazil.
| | - Lísia Borges Attílio
- Laboratório de Biotecnologia, Centro de Citricultura Sylvio Moreira, Instituto Agronômico de Campinas (IAC), 13.490-970, Cordeirópolis, São Paulo, Brazil; Laboratório de Insetos Vetores de Fitopatógenos, Escola Superior de Agricultura Luiz de Queiroz/Universidade de São Paulo (ESALQ/USP), 13.418-900, Piracicaba, São Paulo, Brazil
| | - Odimar Zanuzo Zanardi
- Departamento de Ensino, Pesquisa e Extensão, Instituto Federal de Santa Catarina (IFSC), 89.900-000, São Miguel do Oeste, Santa Catarina, Brasil
| | - João Roberto Spotti Lopes
- Laboratório de Insetos Vetores de Fitopatógenos, Escola Superior de Agricultura Luiz de Queiroz/Universidade de São Paulo (ESALQ/USP), 13.418-900, Piracicaba, São Paulo, Brazil
| | - Marcos Antonio Machado
- Laboratório de Biotecnologia, Centro de Citricultura Sylvio Moreira, Instituto Agronômico de Campinas (IAC), 13.490-970, Cordeirópolis, São Paulo, Brazil
| | - Juliana Freitas-Astúa
- Embrapa Mandioca e Fruticultura, 44.380-000, Cruz das Almas, Bahia, Brazil; Unidade Laboratorial de Referência em Biologia Molecular Aplicada/Instituto Biológico (ULRBMA/IB), 04.014-900, São Paulo, São Paulo, Brazil.
| |
Collapse
|
9
|
Tavares CS, Bonning BC. Mpp51Aa1 toxicity to Diaphorina citri nymphs demonstrated using a new, long-term bioassay method. J Invertebr Pathol 2022; 195:107845. [DOI: 10.1016/j.jip.2022.107845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/08/2022] [Accepted: 10/13/2022] [Indexed: 10/31/2022]
|
10
|
Bacteria-derived pesticidal proteins active against hemipteran pests. J Invertebr Pathol 2022; 195:107834. [DOI: 10.1016/j.jip.2022.107834] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/02/2022] [Accepted: 10/07/2022] [Indexed: 02/05/2023]
|
11
|
Liang Z, Ali Q, Wang Y, Mu G, Kan X, Ren Y, Manghwar H, Gu Q, Wu H, Gao X. Toxicity of Bacillus thuringiensis Strains Derived from the Novel Crystal Protein Cry31Aa with High Nematicidal Activity against Rice Parasitic Nematode Aphelenchoides besseyi. Int J Mol Sci 2022; 23:ijms23158189. [PMID: 35897765 PMCID: PMC9331774 DOI: 10.3390/ijms23158189] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/11/2022] [Accepted: 07/19/2022] [Indexed: 11/16/2022] Open
Abstract
The plant parasitic nematode, Aphelenchoides besseyi, is a serious pest causing severe damage to various crop plants and vegetables. The Bacillus thuringiensis (Bt) strains, GBAC46 and NMTD81, and the biological strain, FZB42, showed higher nematicidal activity against A. besseyi, by up to 88.80, 82.65, and 75.87%, respectively, in a 96-well plate experiment. We screened the whole genomes of the selected strains by protein-nucleic acid alignment. It was found that the Bt strain GBAC46 showed three novel crystal proteins, namely, Cry31Aa, Cry73Aa, and Cry40ORF, which likely provide for the safe control of nematodes. The Cry31Aa protein was composed of 802 amino acids with a molecular weight of 90.257 kDa and contained a conserved delta-endotoxin insecticidal domain. The Cry31Aa exhibited significant nematicidal activity against A. besseyi with a lethal concentration (LC50) value of 131.80 μg/mL. Furthermore, the results of in vitro experiments (i.e., rhodamine and propidium iodide (PI) experiments) revealed that the Cry31Aa protein was taken up by A. besseyi, which caused damage to the nematode's intestinal cell membrane, indicating that the Cry31Aa produced a pore-formation toxin. In pot experiments, the selected strains GBAC46, NMTD81, and FZB42 significantly reduced the lesions on leaves by up to 33.56%, 45.66, and 30.34% and also enhanced physiological growth parameters such as root length (65.10, 50.65, and 55.60%), shoot length (68.10, 55.60, and 59.45%), and plant fresh weight (60.71, 56.45, and 55.65%), respectively. The number of nematodes obtained from the plants treated with the selected strains (i.e., GBAC46, NMTD81, and FZB42) and A. besseyi was significantly reduced, with 0.56, 0.83., 1.11, and 5.04 seedling mL-1 nematodes were achieved, respectively. Moreover, the qRT-PCR analysis showed that the defense-related genes were upregulated, and the activity of hydrogen peroxide (H2O2) increased while malondialdehyde (MDA) decreased in rice leaves compared to the control. Therefore, it was concluded that the Bt strains GBAC46 and NMTD81 can promote rice growth, induce high expression of rice defense-related genes, and activate systemic resistance in rice. More importantly, the application of the novel Cry31Aa protein has high potential for the efficient and safe prevention and green control of plant parasitic nematodes.
Collapse
Affiliation(s)
- Zhao Liang
- The Sanya Institute of Nanjing Agricultural University, Sanya 572024, China; (Z.L.); (Q.A.); (Y.W.); (Y.R.); (Q.G.); (H.W.)
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Qurban Ali
- The Sanya Institute of Nanjing Agricultural University, Sanya 572024, China; (Z.L.); (Q.A.); (Y.W.); (Y.R.); (Q.G.); (H.W.)
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Yujie Wang
- The Sanya Institute of Nanjing Agricultural University, Sanya 572024, China; (Z.L.); (Q.A.); (Y.W.); (Y.R.); (Q.G.); (H.W.)
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Guangyuan Mu
- Shenzhen Batian Ecotypic Engineering Co., Ltd., Shenzhen 518057, China; (G.M.); (X.K.)
| | - Xuefei Kan
- Shenzhen Batian Ecotypic Engineering Co., Ltd., Shenzhen 518057, China; (G.M.); (X.K.)
| | - Yajun Ren
- The Sanya Institute of Nanjing Agricultural University, Sanya 572024, China; (Z.L.); (Q.A.); (Y.W.); (Y.R.); (Q.G.); (H.W.)
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Hakim Manghwar
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 332000, China;
| | - Qin Gu
- The Sanya Institute of Nanjing Agricultural University, Sanya 572024, China; (Z.L.); (Q.A.); (Y.W.); (Y.R.); (Q.G.); (H.W.)
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Huijun Wu
- The Sanya Institute of Nanjing Agricultural University, Sanya 572024, China; (Z.L.); (Q.A.); (Y.W.); (Y.R.); (Q.G.); (H.W.)
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Xuewen Gao
- The Sanya Institute of Nanjing Agricultural University, Sanya 572024, China; (Z.L.); (Q.A.); (Y.W.); (Y.R.); (Q.G.); (H.W.)
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- Correspondence: ; Tel.: +86-025-8439-5268
| |
Collapse
|
12
|
Alquézar B, Carmona L, Bennici S, Miranda MP, Bassanezi RB, Peña L. Cultural Management of Huanglongbing: Current Status and Ongoing Research. PHYTOPATHOLOGY 2022; 112:11-25. [PMID: 34645319 DOI: 10.1094/phyto-08-21-0358-ia] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Huanglongbing (HLB), formerly known as greening, is a bacterial disease restricted to some Asian and African regions until two decades ago. Nowadays, associated bacteria and their vectors have spread to almost all citrus-producing regions, and it is currently considered the most devastating citrus disease. HLB management can be approached in terms of prevention, limiting or avoiding pathogen and associated vectors to reach an area, or in terms of control, trying to reduce the impact of the disease by adopting different cultural strategies depending on infestation/infection levels. In both cases, control of psyllid populations is currently the best way to stop HLB spread. Best cultural actions (CHMAs, TPS system) to attain this goal and, thus, able to limit HLB spread, and ongoing research in this regard is summarized in this review.
Collapse
Affiliation(s)
- Berta Alquézar
- Laboratório de Biotecnologia Vegetal, Pesquisa & Desenvolvimento, Fundo de Defesa da Citricultura (Fundecitrus), Vila Melhado, 14807-040 Araraquara, São Paulo, Brazil
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC) Universidad Politécnica de Valencia (UPV), 46022 Valencia, Spain
| | - Lourdes Carmona
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC) Universidad Politécnica de Valencia (UPV), 46022 Valencia, Spain
| | - Stefania Bennici
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC) Universidad Politécnica de Valencia (UPV), 46022 Valencia, Spain
| | - Marcelo P Miranda
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC) Universidad Politécnica de Valencia (UPV), 46022 Valencia, Spain
| | - Renato B Bassanezi
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC) Universidad Politécnica de Valencia (UPV), 46022 Valencia, Spain
| | - Leandro Peña
- Laboratório de Biotecnologia Vegetal, Pesquisa & Desenvolvimento, Fundo de Defesa da Citricultura (Fundecitrus), Vila Melhado, 14807-040 Araraquara, São Paulo, Brazil
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC) Universidad Politécnica de Valencia (UPV), 46022 Valencia, Spain
| |
Collapse
|
13
|
Ravanfar SA, Achor DS, Killiny N, Shilts T, Chen Y, El-Mohtar C, Stelinski LL, Bonning BC, Orbović V. Genetic Modification of Bergera koenigii for Expression of the Bacterial Pesticidal Protein Cry1Ba1. FRONTIERS IN PLANT SCIENCE 2022; 13:899624. [PMID: 35685021 PMCID: PMC9171844 DOI: 10.3389/fpls.2022.899624] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 04/20/2022] [Indexed: 05/09/2023]
Abstract
The curry leaf tree, Bergera koenigii, is highly attractive to the Asian citrus psyllid, Diaphorina citri, which vectors the bacterial causative agent of citrus greening or huanglongbing disease. This disease has decimated citrus production in Florida and in other citrus-producing countries. As D. citri exhibits high affinity for feeding on young leaves of B. koenigii, transgenic B. koenigii expressing bacteria-derived pesticidal proteins such as Cry1Ba1 have potential for D. citri management when planted in or adjacent to citrus groves. Importantly, the plant pathogenic bacterium that causes citrus greening does not replicate in B. koenigii. Transgenic plants of B. koenigii were produced by insertion of the gene encoding the active core of the pesticidal protein Cry1Ba1 derived from Bacillus thuringiensis. The transformation success rate was low relative to that of other citrus, at 0.89%. T-DNA integration into the genome and cry1ba1 transcription in transgenic plants were confirmed. Transgenic plants expressing Cry1Ba1 differed from wild-type plants, differed in photosynthesis parameters and hormone levels in some instances, and a marked delay in wilting of detached leaves. The gut epithelium of D. citri fed on transgenic plants was severely damaged, consistent with Cry1Ba1-mediated pore formation, confirming expression of the pesticidal protein by transgenic B. koenigii. These results demonstrate that transgenic B. koenigii expressing bacteria-derived pesticidal proteins can be produced for potential use as trap plants for suppression of D. citri populations toward protection of citrus groves from citrus greening.
Collapse
Affiliation(s)
- Seyed Ali Ravanfar
- Citrus Research and Education Center, University of Florida, IFAS, Lake Alfred, FL, United States
| | - Diann S. Achor
- Citrus Research and Education Center, University of Florida, IFAS, Lake Alfred, FL, United States
| | - Nabil Killiny
- Citrus Research and Education Center, University of Florida, IFAS, Lake Alfred, FL, United States
| | - Turksen Shilts
- Citrus Research and Education Center, University of Florida, IFAS, Lake Alfred, FL, United States
| | - Yuting Chen
- Department of Entomology, Iowa State University, Ames, IA, United States
| | - Choaa El-Mohtar
- Citrus Research and Education Center, University of Florida, IFAS, Lake Alfred, FL, United States
| | - Lukasz L. Stelinski
- Citrus Research and Education Center, University of Florida, IFAS, Lake Alfred, FL, United States
| | - Bryony C. Bonning
- Entomology and Nematology Department, University of Florida, Gainesville, FL, United States
- *Correspondence: Bryony C. Bonning,
| | - Vladimir Orbović
- Citrus Research and Education Center, University of Florida, IFAS, Lake Alfred, FL, United States
| |
Collapse
|
14
|
Alquézar B, Carmona L, Bennici S, Peña L. Engineering of citrus to obtain huanglongbing resistance. Curr Opin Biotechnol 2021; 70:196-203. [PMID: 34198205 DOI: 10.1016/j.copbio.2021.06.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 06/04/2021] [Accepted: 06/07/2021] [Indexed: 12/23/2022]
Abstract
Huanglongbing (HLB) disease is threatening the sustainability of citriculture in affected regions because of its rapid spread and the severity of the symptoms it induces. Herein, we summarise the main research findings that can be exploited to develop HLB-resistant cultivars. A major bottleneck has been the lack of a system for the ex vivo cultivation of HLB-associated bacteria (CLs) in true plant hosts, which precludes the evaluation of target genes/metabolites in reliable plant/pathogen/vector environments. With regard to HLB vectors, several biotechnologies which have been proven in laboratory settings to be effective for insect control are presented. Finally, new genotypes that are resistant to CLs or their insect vectors are described, and the most relevant strategies for fighting HLB are highlighted.
Collapse
Affiliation(s)
- Berta Alquézar
- Laboratório de Biotecnologia Vegetal, Pesquisa & Desenvolvimento, Fundo de Defesa da Citricultura (Fundecitrus), Vila Melhado, 14807-040 Araraquara, São Paulo, Brazil; Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Politécnica de Valencia (UPV), 46022 Valencia, Spain
| | - Lourdes Carmona
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Politécnica de Valencia (UPV), 46022 Valencia, Spain
| | - Stefania Bennici
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Politécnica de Valencia (UPV), 46022 Valencia, Spain
| | - Leandro Peña
- Laboratório de Biotecnologia Vegetal, Pesquisa & Desenvolvimento, Fundo de Defesa da Citricultura (Fundecitrus), Vila Melhado, 14807-040 Araraquara, São Paulo, Brazil; Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Politécnica de Valencia (UPV), 46022 Valencia, Spain.
| |
Collapse
|
15
|
Mishra R, Guo Y, Kumar P, Cantón PE, Tavares CS, Banerjee R, Kuwar S, Bonning BC. Streamlined phage display library protocols for identification of insect gut binding peptides highlight peptide specificity. CURRENT RESEARCH IN INSECT SCIENCE 2021; 1:100012. [PMID: 36003592 PMCID: PMC9387513 DOI: 10.1016/j.cris.2021.100012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 02/09/2021] [Accepted: 02/14/2021] [Indexed: 05/10/2023]
Abstract
Phage display libraries have been used to isolate insect gut binding peptides for use as pathogen transmission blocking agents, and to provide artificial anchors for increased toxicity of bacteria-derived pesticidal proteins. Previously, phage clones displaying enriched peptides were sequenced by Sanger sequencing. Here we present a streamlined protocol for identification of insect gut binding peptides, using insect-appropriate feeding strategies, with next generation sequencing and tailored bioinformatics analyses. The bioinformatics pipeline is designed to eliminate poorly enriched and false positive peptides, and to identify peptides predicted to be stable and hydrophilic. In addition to developing streamlined protocols, we also sought to address whether candidate gut binding peptides can bind to insects from more than one order, which is an important consideration for safe, practical use of peptide-modified pesticidal proteins. To this end, we screened phage display libraries for peptides that bind to the gut epithelia of two pest insects, the Asian citrus psyllid, Diaphorina citri (Hemiptera) and beet armyworm, Spodoptera exigua (Lepidoptera), and one beneficial insect, the western honey bee, Apis mellifera (Hymenoptera). While unique peptide sequences totaling 13,427 for D. citri, 89,561 for S. exigua and 69,053 for A. mellifera were identified from phage eluted from the surface of the insect guts, final candidate pools were comprised of 53, 107 and 1423 peptides respectively. The benefits of multiple rounds of biopanning, along with peptide binding properties in relation to practical use of peptide-modified pesticidal proteins for insect pest control are discussed.
Collapse
|