1
|
Lialios P, Alimperti S. Role of E-cadherin in epithelial barrier dysfunction: implications for bacterial infection, inflammation, and disease pathogenesis. Front Cell Infect Microbiol 2025; 15:1506636. [PMID: 40007608 PMCID: PMC11850337 DOI: 10.3389/fcimb.2025.1506636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 01/15/2025] [Indexed: 02/27/2025] Open
Abstract
Epithelial barriers serve as critical defense lines against microbial infiltration and maintain tissue homeostasis. E-cadherin, an essential component of adherens junctions, has emerged as a pivotal molecule that secures epithelial homeostasis. Lately, its pleiotropic role beyond barrier function, including its involvement in immune responses, has become more evident. Herein, we delve into the intricate relationship between (dys)regulation of epithelial homeostasis and the versatile functionality of E-cadherin, describing complex mechanisms that underlie barrier integrity and disruption in disease pathogenesis such as bacterial infection and inflammation, among others. Clinical implications of E-cadherin perturbations in host pathophysiology are emphasized; downregulation, proteolytic phenomena, abnormal localization/signaling and aberrant immune reactions are linked with a broad spectrum of pathology beyond infectious diseases. Finally, potential therapeutic interventions that may harness E-cadherin to mitigate barrier-associated tissue damage are explored. Overall, this review highlights the crucial role of E-cadherin in systemic health, offering insights that could pave the way for strategies to reinforce/restore barrier integrity and treat related diseases.
Collapse
Affiliation(s)
- Peter Lialios
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, DC, United States
- Center for Biological and Biomedical Engineering, Georgetown University, Washington, DC, United States
| | - Stella Alimperti
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, DC, United States
- Center for Biological and Biomedical Engineering, Georgetown University, Washington, DC, United States
| |
Collapse
|
2
|
Hussain H, Fadel A, Garcia E, Hernandez RJ, Saadoon ZF, Naseer L, Casmartino E, Hamad M, Schnepp T, Sarfraz R, Angly S, Jayakumar AR. Clostridial Myonecrosis: A Comprehensive Review of Toxin Pathophysiology and Management Strategies. Microorganisms 2024; 12:1464. [PMID: 39065232 PMCID: PMC11278868 DOI: 10.3390/microorganisms12071464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 07/13/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Clostridial myonecrosis, commonly known as gas gangrene (GG), is a rapidly progressing and potentially fatal bacterial infection that primarily affects muscle and soft tissue. In the United States, the incidence of GG is roughly 1000 cases per year, while, in developing countries, the incidence is higher. This condition is most often caused by Clostridium perfringens, a Gram-positive, spore-forming anaerobic bacterium widely distributed in the environment, although other Clostridium species have also been reported to cause GG. The CP genome contains over 200 transport-related genes, including ABC transporters, which facilitate the uptake of sugars, amino acids, nucleotides, and ions from the host environment. There are two main subtypes of GG: traumatic GG, resulting from injuries that introduce Clostridium spores into deep tissue, where anaerobic conditions allow for bacterial growth and toxin production, and spontaneous GG, which is rarer and often occurs in immunocompromised patients. Clostridium species produce various toxins (e.g., alpha, theta, beta) that induce specific downstream signaling changes in cellular pathways, causing apoptosis or severe, fatal immunological conditions. For example, the Clostridium perfringens alpha toxin (CPA) targets the host cell's plasma membrane, hydrolyzing sphingomyelin and phosphatidylcholine, which triggers necrosis and apoptosis. The clinical manifestations of clostridial myonecrosis vary. Some patients experience the sudden onset of severe pain, swelling, and muscle tenderness, with the infection progressing rapidly to widespread tissue necrosis, systemic toxicity, and, if untreated, death. Other patients present with discharge, pain, and features of cellulitis. The diagnosis of GG primarily involves clinical evaluation, imaging studies such as X-rays, computer tomography (CT) scans, and culture. The treatment of GG involves surgical exploration, broad-spectrum antibiotics, antitoxin, and hyperbaric oxygen therapy, which is considered an adjunctive treatment to inhibit anaerobic bacterial growth and enhance the antibiotic efficacy. Early recognition and prompt, comprehensive treatment are critical to improving the outcomes for patients affected by this severe and life-threatening condition.
Collapse
Affiliation(s)
- Hussain Hussain
- Department of Internal Medicine, Kendall Hospital-HCA Florida Healthcare, Miami, FL 33136, USA;
- Department of Internal Medicine and Infectious Disease, Larkin Community Hospital, Miami, FL 33143, USA; (E.G.); (Z.F.S.); (L.N.); (E.C.); (M.H.); (T.S.); (R.S.); (S.A.)
| | - Aya Fadel
- Department of Internal Medicine, Ocean University Medical Center—Hackensack Meridian Health, Brick, NJ 08724, USA;
| | - Efrain Garcia
- Department of Internal Medicine and Infectious Disease, Larkin Community Hospital, Miami, FL 33143, USA; (E.G.); (Z.F.S.); (L.N.); (E.C.); (M.H.); (T.S.); (R.S.); (S.A.)
| | - Robert J. Hernandez
- Department of Internal Medicine, Kendall Hospital-HCA Florida Healthcare, Miami, FL 33136, USA;
- Department of Internal Medicine and Infectious Disease, Larkin Community Hospital, Miami, FL 33143, USA; (E.G.); (Z.F.S.); (L.N.); (E.C.); (M.H.); (T.S.); (R.S.); (S.A.)
| | - Zahraa F. Saadoon
- Department of Internal Medicine and Infectious Disease, Larkin Community Hospital, Miami, FL 33143, USA; (E.G.); (Z.F.S.); (L.N.); (E.C.); (M.H.); (T.S.); (R.S.); (S.A.)
| | - Lamia Naseer
- Department of Internal Medicine and Infectious Disease, Larkin Community Hospital, Miami, FL 33143, USA; (E.G.); (Z.F.S.); (L.N.); (E.C.); (M.H.); (T.S.); (R.S.); (S.A.)
| | - Ekaterina Casmartino
- Department of Internal Medicine and Infectious Disease, Larkin Community Hospital, Miami, FL 33143, USA; (E.G.); (Z.F.S.); (L.N.); (E.C.); (M.H.); (T.S.); (R.S.); (S.A.)
| | - Mohammad Hamad
- Department of Internal Medicine and Infectious Disease, Larkin Community Hospital, Miami, FL 33143, USA; (E.G.); (Z.F.S.); (L.N.); (E.C.); (M.H.); (T.S.); (R.S.); (S.A.)
| | - Taylor Schnepp
- Department of Internal Medicine and Infectious Disease, Larkin Community Hospital, Miami, FL 33143, USA; (E.G.); (Z.F.S.); (L.N.); (E.C.); (M.H.); (T.S.); (R.S.); (S.A.)
| | - Rehan Sarfraz
- Department of Internal Medicine and Infectious Disease, Larkin Community Hospital, Miami, FL 33143, USA; (E.G.); (Z.F.S.); (L.N.); (E.C.); (M.H.); (T.S.); (R.S.); (S.A.)
| | - Sohair Angly
- Department of Internal Medicine and Infectious Disease, Larkin Community Hospital, Miami, FL 33143, USA; (E.G.); (Z.F.S.); (L.N.); (E.C.); (M.H.); (T.S.); (R.S.); (S.A.)
| | - Arumugam R. Jayakumar
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
3
|
Xu Z, Feng X, Song Z, Li X, Li K, Li M, Wang X, Liu B, Sun C. Cell-Free Supernatant of Bacillus subtilis G2B9-Q Improves Intestinal Health and Modulates Immune Response to Promote Mouse Recovery in Clostridium perfringens Infection. Curr Microbiol 2024; 81:243. [PMID: 38935166 DOI: 10.1007/s00284-024-03669-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 03/17/2024] [Indexed: 06/28/2024]
Abstract
Clostridium perfringens is one of the critical causative agents causing diarrhea in piglets, with significant economic losses to the pig industry. Under normal gut microbiota homeostasis and well-managed barns, diarrhea caused by C. perfringens could be controlled. Some reports show that probiotics, such as Bacillus subtilis, are beneficial in preventing necrotic enteritis (NE) in chickens, but few reports on piglets. Clostridium perfringens was found in the piglets' diarrhea with intestinal microbiota dysbiosis in our survey. Bacillus subtilis G2B9-Q, which was isolated from the feces of healthy pigs, was found to have anti-Clostridium activity after screening. Clostridium perfringens was used to challenge mice by intraperitoneal injection for modeling to evaluate the anti-infective activity of cell-free supernatant (CFS) of B. subtilis G2B9-Q and different concentrations of B. subtilis G2B9-Q by oral administration. The results showed that G2B9-Q can mitigate intestinal lesions caused by C. perfringens infection, reduce inflammatory reactions, and modulate intestinal microbiota. The CFS of G2B9-Q can alleviate the pathological damage of intestinal tissues caused by C. perfringens infection, reduce the concentration of TNF-α and IL-10 in the sera of mice, as well as the relative expression levels of alpha toxin (CPA), perfringolysin O (PFO) toxin, IL-10, IL-22, and TNF-α in the jejunum and colon tissues, and alleviate the changes in gut microbiota structure caused by C. perfringens infection, which showed better therapeutic effects and indicated that the metabolites of G2B9-Q are essential mediators for their beneficial effects. Therefore, the CFS of G2B9-Q could potentially replace antibiotics in treating C. perfringens infection.
Collapse
Affiliation(s)
- Zhiqiang Xu
- College of Veterinary Medicine, Jilin University, Xi'an Street 5333#, Changchun, 130062, Jilin, China
| | - Xin Feng
- College of Veterinary Medicine, Jilin University, Xi'an Street 5333#, Changchun, 130062, Jilin, China
| | - Zhanyun Song
- Changchun Customs District, Changchun, Jilin, China
| | - Xiang Li
- Changchun Customs District, Changchun, Jilin, China
| | - Ke Li
- College of Veterinary Medicine, Jilin University, Xi'an Street 5333#, Changchun, 130062, Jilin, China
| | - Mengjiao Li
- Changchun Customs District, Changchun, Jilin, China
| | | | - Bo Liu
- Changchun Customs District, Changchun, Jilin, China
| | - Changjiang Sun
- College of Veterinary Medicine, Jilin University, Xi'an Street 5333#, Changchun, 130062, Jilin, China.
| |
Collapse
|
4
|
Kadekar D, Udrea AC, Bak SY, Christensen N, Gibbs K, Shen C, Bernardeau M. Cell-Free Culture Supernatant of Lactobacillus acidophilus AG01 and Bifidobacterium animalis subsp. lactis AG02 Reduces the Pathogenicity of NetB-Positive Clostridium perfringens in a Chicken Intestinal Epithelial Cell Line. Microorganisms 2024; 12:839. [PMID: 38674783 PMCID: PMC11052021 DOI: 10.3390/microorganisms12040839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/27/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
The worldwide reduction in the use of antibiotics in animal feed is fueling the need for alternatives for the prevention and control of poultry intestinal diseases such as necrotic enteritis (NE), which is caused by Clostridium perfringens. This is the first report on the use of an intestinal epithelial chicken cell line (CHIC-8E11) to study the pathogenic traits of C. perfringens and to investigate the mode of action of cell-free supernatants (CFS) from probiotic Lactobacillus acidophilus AG01 and Bifidobacterium animalis subsp. lactis AG02 in reducing the pathogenicity of C. perfringens. The cell adhesion, permeability and cytotoxicity were assessed under challenge with four C. perfringens strains isolated from broiler NE episodes of differing geographical origin (CP1-UK; CP10-Sweden; 25037-CP01 and CP22-USA). All the C. perfringens strains could adhere to the CHIC-8E11 cells, with varying affinity (0.05-0.48% adhesion across the strains). The CFS from one out of two strains (CP22) increased the cell permeability (+4.5-fold vs. the control, p < 0.01), as measured by the fluorescein isothiocyanate-dextran (FD4) content, with NetB toxin implicated in this effect. The CFS from all the strains was cytotoxic against the CHIC-8E11 cells in a dose- and strain-dependent manner (cytotoxicity 23-62% across the strains when dosed at 50 µL/mL, as assessed by the MTT cell viability assay). Pre-treatment of the cells with CFS from B. animalis subsp. lactis AG02 but not L. acidophilus AG01 reduced the cell adhesion of three out of four C. perfringens strains (by 77-85% vs. the control, p < 0.001) and reduced the negative effect of two NetB-positive strains on the cell permeability. The CFS of both probiotics alleviated the cytotoxicity of all the C. perfringens strains, which was dependent on the dose. The results confirm the suitability of the CHIC-8E11 cell line for the study of host-pathogen cell interactions in the context of NE caused by C. perfringens and reveal a beneficial mode of action of B. animalis subsp. lactis AG02 in reducing C. perfringens cell adhesion and, together with L. acidophilus AG01, in reducing C. perfringens cytotoxicity.
Collapse
Affiliation(s)
- Darshana Kadekar
- Gut Immunology Lab, R&D, Health & Biosciences, IFF, 8220 Brabrand, Denmark (A.C.U.)
| | | | - Steffen Yde Bak
- IFF Advanced Analysis, R&D, ET, IFF, 8220 Brabrand, Denmark; (S.Y.B.); (N.C.)
| | - Niels Christensen
- IFF Advanced Analysis, R&D, ET, IFF, 8220 Brabrand, Denmark; (S.Y.B.); (N.C.)
| | - Kirsty Gibbs
- Danisco Animal Nutrition, IFF, 2342 BH Oegstgeest, The Netherlands;
| | - Chong Shen
- Gut Immunology Lab, R&D, Health & Biosciences, IFF, 8220 Brabrand, Denmark (A.C.U.)
| | - Marion Bernardeau
- Danisco Animal Nutrition, IFF, 2342 BH Oegstgeest, The Netherlands;
- Agro-Food Department, Normandy University, UNICAEN, ABTE, 14000 Caen, France
| |
Collapse
|
5
|
Shu LZ, Ding YD, Xue QM, Cai W, Deng H. Direct and indirect effects of pathogenic bacteria on the integrity of intestinal barrier. Therap Adv Gastroenterol 2023; 16:17562848231176427. [PMID: 37274298 PMCID: PMC10233627 DOI: 10.1177/17562848231176427] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 05/01/2023] [Indexed: 06/06/2023] Open
Abstract
Bacterial translocation is a pathological process involving migration of pathogenic bacteria across the intestinal barrier to enter the systemic circulation and gain access to distant organs. This phenomenon has been linked to a diverse range of diseases including inflammatory bowel disease, pancreatitis, and cancer. The intestinal barrier is an innate structure that maintains intestinal homeostasis. Pathogenic infections and dysbiosis can disrupt the integrity of the intestinal barrier, increasing its permeability, and thereby facilitating pathogen translocation. As translocation represents an essential step in pathogenesis, a clear understanding of how barrier integrity is disrupted and how this disruption facilitates bacterial translocation could identify new routes to effective prophylaxis and therapy. In this comprehensive review, we provide an in-depth analysis of bacterial translocation and intestinal barrier function. We discuss currently understood mechanisms of bacterial-enterocyte interactions, with a focus on tight junctions and endocytosis. We also discuss the emerging concept of bidirectional communication between the intestinal microbiota and other body systems. The intestinal tract has established 'axes' with various organs. Among our regulatory systems, the nervous, immune, and endocrine systems have been shown to play pivotal roles in barrier regulation. A mechanistic understanding of intestinal barrier regulation is crucial for the development of personalized management strategies for patients with bacterial translocation-related disorders. Advancing our knowledge of barrier regulation will pave the way for future research in this field and novel clinical intervention strategies.
Collapse
Affiliation(s)
- Lin-Zhen Shu
- Medical College, Nanchang University, Nanchang,
Jiangxi Province, China
| | - Yi-Dan Ding
- Medical College, Nanchang University, Nanchang,
Jiangxi Province, China
| | - Qing-Ming Xue
- Medical College, Nanchang University, Nanchang,
Jiangxi Province, China
| | - Wei Cai
- Medical College, Nanchang University, Nanchang,
Jiangxi Province, China
- Department of Pathology, the Fourth Affiliated
Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Huan Deng
- Department of Pathology, The Fourth Affiliated
Hospital of Nanchang University, No. 133 South Guangchang Road, Nanchang
330003, Jiangxi Province, China
- Tumor Immunology Institute, Nanchang
University, Nanchang, China
| |
Collapse
|
6
|
The interaction between intestinal bacterial metabolites and phosphatase and tensin homolog in autism spectrum disorder. Mol Cell Neurosci 2023; 124:103805. [PMID: 36592799 DOI: 10.1016/j.mcn.2022.103805] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/17/2022] [Accepted: 12/24/2022] [Indexed: 01/01/2023] Open
Abstract
Intestinal bacteria-associated para-cresyl sulfate (pCS) and 4-ethylphenyl sulfate (4EPS) are elevated in autism spectrum disorder (ASD). Both metabolites can induce ASD-like behaviors in mice, but the molecular mechanisms are not known. Phosphatase and tensin homolog (PTEN) is a susceptibility gene for ASD. The present study investigated the relation between pCS and 4EPS and PTEN in ASD in a valproic acid (VPA)-induced murine ASD model and an in vitro LPS-activated microglial model. The VPA-induced intestinal inflammation and compromised permeability in the distal ileum was not associated with changes of PTEN expression and phosphorylation. In contrast, VPA reduced PTEN expression in the hippocampus of mice. In vitro results show that pCS and 4EPS reduced PTEN expression and derailed innate immune response of BV2 microglial cells. The PTEN inhibitor VO-OHpic did not affect innate immune response of microglial cells. In conclusion, PTEN does not play a role in intestinal inflammation and compromised permeability in VPA-induced murine model for ASD. Although pCS and 4EPS reduced PTEN expression in microglial cells, PTEN is not involved in the pCS and 4EPS-induced derailed innate immune response of microglial cells. Further studies are needed to investigate the possible involvement of reduced PTEN expression in the ASD brain regarding synapse function and neuronal connectivity.
Collapse
|
7
|
Nan X, Zhao W, Liu WH, Li Y, Li N, Hong Y, Cui J, Shang X, Feng H, Hung WL, Peng G. Bifidobacterium animalis subsp. lactis BL-99 ameliorates colitis-related lung injury in mice by modulating short-chain fatty acid production and inflammatory monocytes/macrophages. Food Funct 2023; 14:1099-1112. [PMID: 36594489 DOI: 10.1039/d2fo03374g] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Pulmonary inflammation as one of the extraintestinal manifestations of ulcerative colitis (UC) has attracted extensive attention, and its pathogenesis is closely related to gut dysbiosis. Bifidobacterium animalis subsp. lactis BL-99 (BL-99) can alleviate osteoporosis caused by UC, but less research has been done on other extraintestinal manifestations (EIM) caused by UC. This study aimed to explore the role and potential mechanisms of BL-99 on DSS-induced pulmonary complications in colitis mice. The results showed that BL-99 decreased weight loss, disease activity index score, colonic pathology score, and the production of pro-inflammatory cytokines (e.g., TNF-α, IL-1β, and IL-6) in colitis mice. BL-99 also alleviated DSS-induced lung pathological damage by suppressing the infiltration of pro-inflammatory cytokines, inflammatory monocytes, and macrophages. Furthermore, 16S rRNA gene sequencing showed lower abundances of several potentially pathogenic bacteria (e.g., Burkholderia, Shigella, and Clostridium perfringens) and enrichment in specific beneficial bacteria (e.g., Adlercreutzia and Bifidobacterium animalis) in colitis mice with BL-99 treatment. Targeted metabolomics suggested that BL-99 intervention promoted the production of intestinal acetate and butyrate. Finally, we observed that the pulmonary expression of primary acetate and butyrate receptors, including FFAR2, FFAR3, and, GPR109a, was up-regulated in BL-99-treated mice, which negatively correlated with inflammatory monocytes and macrophages. Altogether, these results suggest that BL-99 might be utilized as a probiotic intervention to prevent the incidence of colitis-related lung injury owing to its ability to shape the intestinal microbiota and suppress inflammation.
Collapse
Affiliation(s)
- Xinmei Nan
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China.
| | - Wen Zhao
- Inner Mongolia Yili Industrial Group Co., Ltd., Hohhot 010110, Inner Mongolia, China.
| | - Wei-Hsien Liu
- Inner Mongolia Yili Industrial Group Co., Ltd., Hohhot 010110, Inner Mongolia, China.
| | - Yalan Li
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China.
| | - Na Li
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China.
| | - Yanfei Hong
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China.
| | - Jiaqi Cui
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China.
| | - Xuekai Shang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China.
| | - Haotian Feng
- Inner Mongolia Yili Industrial Group Co., Ltd., Hohhot 010110, Inner Mongolia, China.
| | - Wei-Lian Hung
- Inner Mongolia Yili Industrial Group Co., Ltd., Hohhot 010110, Inner Mongolia, China.
| | - Guiying Peng
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China.
| |
Collapse
|
8
|
Fathima S, Hakeem WGA, Shanmugasundaram R, Selvaraj RK. Necrotic Enteritis in Broiler Chickens: A Review on the Pathogen, Pathogenesis, and Prevention. Microorganisms 2022; 10:1958. [PMID: 36296234 PMCID: PMC9610872 DOI: 10.3390/microorganisms10101958] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/28/2022] [Accepted: 09/29/2022] [Indexed: 11/06/2022] Open
Abstract
Clostridium perfringens type A and C are the primary etiological agents associated with necrotic enteritis (NE) in poultry. The predisposing factors implicated in the incidence of NE changes the physical properties of the gut, immunological status of birds, and disrupt the gut microbial homeostasis, causing an over-proliferation of C. perfringens. The principal virulence factors contributing to the pathogenesis of NE are the α-toxin, β-toxin, and NetB toxin. The immune response to NE in poultry is mediated by the Th1 pathway or cytotoxic T-lymphocytes. C. perfringens type A and C are also pathogenic in humans, and hence are of public health significance. C. perfringens intoxications are the third most common bacterial foodborne disease after Salmonella and Campylobacter. The restrictions on the use of antibiotics led to an increased incidence of NE in poultry. Hence, it is essential to develop alternative strategies to keep the prevalence of NE under check. The control strategies rely principally on the positive modulation of host immune response, nutritional manipulation, and pathogen reduction. Current knowledge on the etiology, pathogenesis, predisposing factors, immune response, effect on the gut microbial homeostasis, and preventative strategies of NE in this post-antibiotic era is addressed in this review.
Collapse
Affiliation(s)
- Shahna Fathima
- Department of Poultry Science, The University of Georgia, Athens, GA 30602, USA
| | | | - Revathi Shanmugasundaram
- Toxicology and Mycotoxin Research Unit, US National Poultry Research Center, Athens, GA 30605, USA
| | - Ramesh K. Selvaraj
- Department of Poultry Science, The University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
9
|
Mehdizadeh Gohari I, A. Navarro M, Li J, Shrestha A, Uzal F, A. McClane B. Pathogenicity and virulence of Clostridium perfringens. Virulence 2021; 12:723-753. [PMID: 33843463 PMCID: PMC8043184 DOI: 10.1080/21505594.2021.1886777] [Citation(s) in RCA: 123] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 01/25/2021] [Accepted: 01/29/2021] [Indexed: 12/11/2022] Open
Abstract
Clostridium perfringens is an extremely versatile pathogen of humans and livestock, causing wound infections like gas gangrene (clostridial myonecrosis), enteritis/enterocolitis (including one of the most common human food-borne illnesses), and enterotoxemia (where toxins produced in the intestine are absorbed and damage distant organs such as the brain). The virulence of this Gram-positive, spore-forming, anaerobe is largely attributable to its copious toxin production; the diverse actions and roles in infection of these toxins are now becoming established. Most C. perfringens toxin genes are encoded on conjugative plasmids, including the pCW3-like and the recently discovered pCP13-like plasmid families. Production of C. perfringens toxins is highly regulated via processes involving two-component regulatory systems, quorum sensing and/or sporulation-related alternative sigma factors. Non-toxin factors, such as degradative enzymes like sialidases, are also now being implicated in the pathogenicity of this bacterium. These factors can promote toxin action in vitro and, perhaps in vivo, and also enhance C. perfringens intestinal colonization, e.g. NanI sialidase increases C. perfringens adherence to intestinal tissue and generates nutrients for its growth, at least in vitro. The possible virulence contributions of many other factors, such as adhesins, the capsule and biofilms, largely await future study.
Collapse
Affiliation(s)
- Iman Mehdizadeh Gohari
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Mauricio A. Navarro
- California Animal Health and Food Safety Laboratory, School of Veterinary Medicine, University of California Davis, San Bernardino, CA, USA
| | - Jihong Li
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Archana Shrestha
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Francisco Uzal
- California Animal Health and Food Safety Laboratory, School of Veterinary Medicine, University of California Davis, San Bernardino, CA, USA
| | - Bruce A. McClane
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
10
|
Zheng Y, Verhoeff TA, Perez Pardo P, Garssen J, Kraneveld AD. The Gut-Brain Axis in Autism Spectrum Disorder: A Focus on the Metalloproteases ADAM10 and ADAM17. Int J Mol Sci 2020; 22:ijms22010118. [PMID: 33374371 PMCID: PMC7796333 DOI: 10.3390/ijms22010118] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/20/2020] [Accepted: 12/21/2020] [Indexed: 12/16/2022] Open
Abstract
Autism Spectrum Disorder (ASD) is a spectrum of disorders that are characterized by problems in social interaction and repetitive behavior. The disease is thought to develop from changes in brain development at an early age, although the exact mechanisms are not known yet. In addition, a significant number of people with ASD develop problems in the intestinal tract. A Disintegrin And Metalloproteases (ADAMs) include a group of enzymes that are able to cleave membrane-bound proteins. ADAM10 and ADAM17 are two members of this family that are able to cleave protein substrates involved in ASD pathogenesis, such as specific proteins important for synapse formation, axon signaling and neuroinflammation. All these pathological mechanisms are involved in ASD. Besides the brain, ADAM10 and ADAM17 are also highly expressed in the intestines. ADAM10 and ADAM17 have implications in pathways that regulate gut permeability, homeostasis and inflammation. These metalloproteases might be involved in microbiota-gut-brain axis interactions in ASD through the regulation of immune and inflammatory responses in the intestinal tract. In this review, the potential roles of ADAM10 and ADAM17 in the pathology of ASD and as targets for new therapies will be discussed, with a focus on the gut-brain axis.
Collapse
Affiliation(s)
- Yuanpeng Zheng
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584CG Utrecht, The Netherlands; (Y.Z.); (T.A.V.); (P.P.P.); (J.G.)
| | - Tessa A. Verhoeff
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584CG Utrecht, The Netherlands; (Y.Z.); (T.A.V.); (P.P.P.); (J.G.)
| | - Paula Perez Pardo
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584CG Utrecht, The Netherlands; (Y.Z.); (T.A.V.); (P.P.P.); (J.G.)
| | - Johan Garssen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584CG Utrecht, The Netherlands; (Y.Z.); (T.A.V.); (P.P.P.); (J.G.)
- Global Centre of Excellence Immunology, Danone Nutricia Research B.V., 3584CT Utrecht, The Netherlands
| | - Aletta D. Kraneveld
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584CG Utrecht, The Netherlands; (Y.Z.); (T.A.V.); (P.P.P.); (J.G.)
- Correspondence: ; Tel.: +31-(0)3-02534509
| |
Collapse
|
11
|
Advances in Understanding TKS4 and TKS5: Molecular Scaffolds Regulating Cellular Processes from Podosome and Invadopodium Formation to Differentiation and Tissue Homeostasis. Int J Mol Sci 2020; 21:ijms21218117. [PMID: 33143131 PMCID: PMC7663256 DOI: 10.3390/ijms21218117] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/26/2020] [Accepted: 10/27/2020] [Indexed: 02/07/2023] Open
Abstract
Scaffold proteins are typically thought of as multi-domain "bridging molecules." They serve as crucial regulators of key signaling events by simultaneously binding multiple participants involved in specific signaling pathways. In the case of epidermal growth factor (EGF)-epidermal growth factor receptor (EGFR) binding, the activated EGFR contacts cytosolic SRC tyrosine-kinase, which then becomes activated. This process leads to the phosphorylation of SRC-substrates, including the tyrosine kinase substrates (TKS) scaffold proteins. The TKS proteins serve as a platform for the recruitment of key players in EGFR signal transduction, promoting cell spreading and migration. The TKS4 and the TKS5 scaffold proteins are tyrosine kinase substrates with four or five SH3 domains, respectively. Their structural features allow them to recruit and bind a variety of signaling proteins and to anchor them to the cytoplasmic surface of the cell membrane. Until recently, TKS4 and TKS5 had been recognized for their involvement in cellular motility, reactive oxygen species-dependent processes, and embryonic development, among others. However, a number of novel functions have been discovered for these molecules in recent years. In this review, we attempt to cover the diverse nature of the TKS molecules by discussing their structure, regulation by SRC kinase, relevant signaling pathways, and interaction partners, as well as their involvement in cellular processes, including migration, invasion, differentiation, and adipose tissue and bone homeostasis. We also describe related pathologies and the established mouse models.
Collapse
|