1
|
Tromas N, Simon DF, Fortin N, Hernández-Zamora M, Pereira A, Mazza A, Pacheco SM, Levesque MJ, Martínez-Jerónimo L, Antuna-González P, Munoz G, Shapiro BJ, Sauvé S, Martínez-Jerónimo F. Metagenomic insights into cyanotoxin dynamics in a Mexican subtropical lake. CHEMOSPHERE 2025; 376:144285. [PMID: 40058228 DOI: 10.1016/j.chemosphere.2025.144285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 02/17/2025] [Accepted: 03/01/2025] [Indexed: 03/23/2025]
Abstract
Valle de Bravo is a vital water supply for part of the metropolitan area of the Valle de Mexico megacity, providing 30% of Mexico City's water demand. This water body has experienced an acceleration in its trophic status, going from oligotrophic to eutrophic in just a few years. This temperate lake (at a tropical latitude) is in a persistent bloom dominated by a variety of co-occurring cyanobacteria, many of which have toxigenic potential based on microscopic identification, that makes it difficult or even impractical to identify the cyanotoxin producers. To unravel this complexity and directly identify the toxigenic genera, we showed that integrating classical approaches with metagenomic is required. We first characterized, from genes to metagenomes assembled genomes, the toxigenic Cyanobacteria. We found that Microcystis was the most dominant cyanobacterial genus and the sole carrier of the mcy operon, making it the only microcystin producer. We then quantified twenty-one different cyanopeptides, including twelve microcystin congeners using a high-performance liquid chromatography-high-resolution. Nine microcystins (MCs) and the emerging cyanotoxin anabaenopeptin-A and -B were found at varying concentrations throughout the year, with MC-LA being the most common and abundant. Our findings, constrained by our sampling strategy, indicate that conventional cyanotoxin biomarkers (e.g., toxin mcy genes) were not consistently reliable indicators of cyanotoxin concentrations in this freshwater system. In this study, we followed the dynamics of the cyanobacterial community and the associated cyanopeptides with unprecedented resolution. Our results have implications for better management of toxic blooms in this freshwater system, which supplies drinking water to more than 7 million people in the megalopolis of Valle de México.
Collapse
Affiliation(s)
- Nicolas Tromas
- UMR CARRTEL - INRAE, 75bis Av. de Corzent, 74200, Thonon les Bains, France; Department of Microbiology and Immunology, McGill, Montreal, Canada.
| | - Dana F Simon
- Department of Chemistry, Université de Montréal, Montreal, Canada
| | - Nathalie Fortin
- Energy, Mines and Environment Research Centre, National Research Council Canada, Montreal, Canada
| | - Miriam Hernández-Zamora
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Laboratorio de Hidrobiología Experimental, México City, Mexico
| | - Autumn Pereira
- Department of Microbiology and Immunology, McGill, Montreal, Canada
| | - Alberto Mazza
- Energy, Mines and Environment Research Centre, National Research Council Canada, Montreal, Canada
| | | | - Marie-Josée Levesque
- Energy, Mines and Environment Research Centre, National Research Council Canada, Montreal, Canada
| | - Laura Martínez-Jerónimo
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Laboratorio de Hidrobiología Experimental, México City, Mexico
| | - Paloma Antuna-González
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Laboratorio de Hidrobiología Experimental, México City, Mexico
| | - Gabriel Munoz
- Department of Chemistry, Université de Montréal, Montreal, Canada
| | - B Jesse Shapiro
- Department of Microbiology and Immunology, McGill, Montreal, Canada
| | - Sébastien Sauvé
- Department of Chemistry, Université de Montréal, Montreal, Canada
| | - Fernando Martínez-Jerónimo
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Laboratorio de Hidrobiología Experimental, México City, Mexico.
| |
Collapse
|
2
|
Di Marco Pisciottano I, Gallo P. A cyanobacterial outbreak in Lake Avernus: Targeted and untargeted analyses and follow up actions for food safety. CHEMOSPHERE 2025; 370:144006. [PMID: 39708947 DOI: 10.1016/j.chemosphere.2024.144006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 12/16/2024] [Accepted: 12/19/2024] [Indexed: 12/23/2024]
Abstract
A massive Planktothrix rubescens bloom was observed during 2022 in the Lake Avernus, a volcanic lake located in Campania Region (Southern Italy). The cyanobacterial mass migrated, through a channel, to the near Gulf of Pozzuoli, causing the contamination of two marine sites dedicated to mussel farming, thus posing a potential risk for consumers' health. Mussel and water samples, from both the sea and the lake were collected weekly and analyzed by liquid chromatography coupled to tandem mass spectrometry, for identification and quantification of 10 microcystins. Moreover, the samples were analyzed by high resolution mass spectrometry in untargeted mode to determine other cyanotoxins basing on the accurate mass of the precursor ions and their MS/MS spectra. The microcystins were not detected at all, whereas other bioactive peptides, such as anabaenopeptins and oscillamide Y, were detected according to the toxicological profiles described for Planktothrix rubescens in the scientific literature. The case reported represents a modern approach for rapid characterization of some environmental outbreaks, as well as an example regarding how the public Health Authority can manage the possible risk for food safety, due to unknown substances and to enforce legal follow up actions.
Collapse
Affiliation(s)
- Ilaria Di Marco Pisciottano
- Department of Chemistry, Istituto Zooprofilattico Sperimentale del Mezzogiorno, via Salute 2, Portici, Naples, 80055, Italy.
| | - Pasquale Gallo
- Department of Chemistry, Istituto Zooprofilattico Sperimentale del Mezzogiorno, via Salute 2, Portici, Naples, 80055, Italy
| |
Collapse
|
3
|
Wang Z, Mikulski CM, Kent M, Leighfield T, Doucette GJ, Ramsdell JS. Determination of microcystins and nodularins in ambient freshwater and seawater by liquid chromatography-mass spectrometry including toxin screening and identification. Anal Chim Acta 2025; 1335:343449. [PMID: 39643304 DOI: 10.1016/j.aca.2024.343449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 11/07/2024] [Accepted: 11/18/2024] [Indexed: 12/09/2024]
Abstract
BACKGROUND Microcystins (MCs) and nodularins (NODs) produced by cyanobacteria occur in ambient freshwaters and across the freshwater-marine continuum, and pose health threats through drinking and recreational waters, as well as food resources. Approximately 300 MC and NOD toxins have been published, but less than 15 of them are commercially available as toxin standards. Our aim herein was to rapidly identify and quantify all toxin congeners, including those without standards, in water samples even at low abundance by reversed-phase solid phase extraction (SPE)-liquid chromatography-tandem mass spectrometry (LC-MS/MS) to provide insights into toxin levels and potential toxicity. RESULTS Trizma instead of acid was used as an ion pairing reagent to increase retention of MCs without arginine residues on Strata X SPE. Toxin elution from Oasis HLB SPE was complicated by their hydrophilic and lipophilic interactions with HLB sorbent. Three stable isotope-labeled (SIL) toxin standards representing MCs carrying 2, 1, and 0 arginine residues served as internal standards (IS) for toxin determination and evaluation of cyanobacterial cell lysis methods. Average recoveries of toxin standards in lake water and seawater using the HLB sorbent for validation ranged from 90 to 109 % except MC-WR & LW (71-87 %) with detection limits from 1.3 to 23.7 ng L-1. Doubly charged protonated toxin molecular ions were employed as precursors for tandem MS to screen and identify toxin congeners using a hybrid triple quadrupole linear ion trap MS. More than 30 (4 new) MCs were detected in Microcystis aeruginosa strain LE-3 culture. SIGNIFICANCE This is the first report to explain the issues with and possible mechanisms for SPE extraction of MCs from water, to use SIL-IS to evaluate methods for lysing cyanobacterial cells for MC release, and to show that doubly rather than singly charged toxin molecular ions as MS/MS precursors enabled efficient screening, identification, and quantification of all toxins at low levels. A MC with homoalanine residue at position 1 was reported for the first time.
Collapse
Affiliation(s)
- Zhihong Wang
- HAB Monitoring & Reference Branch, Stressor Detection and Impacts Division, National Centers for Coastal Ocean Science, NOAA National Ocean Service, 331 Fort Johnson Road, Charleston, SC, 29412, USA.
| | - Christina M Mikulski
- HAB Monitoring & Reference Branch, Stressor Detection and Impacts Division, National Centers for Coastal Ocean Science, NOAA National Ocean Service, 331 Fort Johnson Road, Charleston, SC, 29412, USA
| | - Makayla Kent
- CSS, Inc. under contract to NOAA, HAB Monitoring & Reference Branch, Stressor Detection and Impacts Division, National Centers for Coastal Ocean Science, NOAA National Ocean Service, 331 Fort Johnson Road, Charleston, SC, 29412, USA
| | - Tod Leighfield
- HAB Monitoring & Reference Branch, Stressor Detection and Impacts Division, National Centers for Coastal Ocean Science, NOAA National Ocean Service, 331 Fort Johnson Road, Charleston, SC, 29412, USA
| | - Gregory J Doucette
- HAB Monitoring & Reference Branch, Stressor Detection and Impacts Division, National Centers for Coastal Ocean Science, NOAA National Ocean Service, 331 Fort Johnson Road, Charleston, SC, 29412, USA
| | - John S Ramsdell
- HAB Monitoring & Reference Branch, Stressor Detection and Impacts Division, National Centers for Coastal Ocean Science, NOAA National Ocean Service, 331 Fort Johnson Road, Charleston, SC, 29412, USA
| |
Collapse
|
4
|
Martínez-Piernas AB, Badagian N, Brena BM, Pérez-Parada A, García-Reyes JF. Identification and occurrence of microcystins in freshwaters and fish from a eutrophic dam through LC-HRMS. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 959:178230. [PMID: 39721529 DOI: 10.1016/j.scitotenv.2024.178230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 12/19/2024] [Accepted: 12/19/2024] [Indexed: 12/28/2024]
Abstract
Microcystins (MCs) are cyclic heptapeptides originating from various cyanobacteria in eutrophic aquatic environments. Their potential consequences on ecosystems and public health underscores the need to explore MCs' occurrence. In this study, liquid chromatography coupled to high-resolution mass spectrometry (LC-HRMS) analysis and a suspect screening workflow supported by open-source tools were employed for the determination of MCs in freshwater and biota samples from a eutrophic dam in Uruguay. MS2 spectra were acquired using higher-energy collisional dissociation (HCD), data-dependent acquisition (DDA), and stepped NCE of [M + H]+ and [M + 2H]2+ ions. In addition to the confirmation of 3 MCs in the samples, a comprehensive study of the acquired spectra led to the tentative identification of 30 MCs, including 2 partially described variants not previously reported. 33 MCs were determined in freshwaters, exhibiting a maximum MC concentration in a sample of 12731 μg/L. Regarding fish, the 61 % of the samples exhibited at least a positive determination. 8 MCs were detected and [D-Leu1]MC-LR, [seco-4/5]MC-LR, MC-LR, MC-RR, MC-WR, and [D-Asp3]MC-RR could be semi-quantified (3-127 μg/kg, w.w). In 2 samples, the MC-LR content per 100 g of fish was found to be close to 80 % the tolerable daily intake for chronic exposure recommended by the WHO. The identification of [seco-4/5]MC-LR in biota highlights the labile byproducts of MCs and the need for wide-scope analytical approaches. This study emphasizes the extensive range of MCs present in eutrophic freshwater environments, their accumulation in exposed biota, and their potential entry into the food web.
Collapse
Affiliation(s)
- Ana B Martínez-Piernas
- Analytical Chemistry Research Group (FQM-323), Department of Physical and Analytical Chemistry, University of Jaen, 23071 Jaén, Spain.
| | - Natalia Badagian
- Biochemistry Area, Department of Biosciences, Faculty of Chemistry, Universidad de la República, Av. Gral. Flores 2124, Montevideo 11800, Uruguay
| | - Beatriz M Brena
- Biochemistry Area, Department of Biosciences, Faculty of Chemistry, Universidad de la República, Av. Gral. Flores 2124, Montevideo 11800, Uruguay
| | - Andrés Pérez-Parada
- Technological Development Department, Centro Universitario Regional del Este, Universidad de la República, Ruta 9, Rocha 27000, Uruguay.
| | - Juan F García-Reyes
- Analytical Chemistry Research Group (FQM-323), Department of Physical and Analytical Chemistry, University of Jaen, 23071 Jaén, Spain; University Research Institute for Olives Grove and Olive Oil, University of Jaen, Jaén, Spain
| |
Collapse
|
5
|
Premathilaka SH, Westrick JA, Isailovic D. Identification of Serine-Containing Microcystins by UHPLC-MS/MS Using Thiol and Sulfoxide Derivatizations and Detection of Novel Neutral Losses. Anal Chem 2024; 96:775-786. [PMID: 38170221 PMCID: PMC11908619 DOI: 10.1021/acs.analchem.3c04047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Microcystins (MCs) are hepatotoxic cyclic heptapeptides produced by cyanobacteria, and their structural diversity has led to the discovery of more than 300 congeners to date. However, with known amino acid combinations, many more MC congeners are theoretically possible, suggesting many remain unidentified. Herein, two novel serine (Ser)-containing MCs were putatively identified in a Lake Erie cyanobacterial harmful algal bloom (cyanoHAB), using high-resolution UHPLC-MS as well as thiol and sulfoxide derivatization procedures. These MCs contain an α,β-unsaturated carbonyl on methyl dehydroalanine (Mdha) residue that undergoes Michael addition to produce a thiol-derivatized MC. Derivatization reactions using various thiolation reagents were followed by MS/MS, and two Python codes were used for data analysis and structural elucidation of MCs. Two novel MCs containing Ser at position 1 (i.e., next to Mdha) were putatively identified as [Ser1]MC-RR and [Ser1]MC-YR. Using thiol- and sulfoxide-modified [Ser1]MCs, identifications were confirmed by the observation of specific neutral losses of the oxidized thiols or sulfoxides in CID-MS/MS spectra in both positive and negative electrospray ionization (ESI) modes. These novel neutral losses are unique for MCs with Mdha and an adjacent Ser residue. Data suggest that a gas-phase reaction occurs between oxygen from adjacent Ser residue and sulfur of the Mdha-bonded thiol or sulfoxide, which leads to the formation and detection of stable cyclic MC ions in MS/MS spectra at m/z values corresponding to the loss of oxidized thiols or oxidized sulfoxides from Ser1-containing MCs.
Collapse
Affiliation(s)
- Sanduni H Premathilaka
- Department of Chemistry and Biochemistry, University of Toledo, Toledo, Ohio 43606, United States
| | - Judy A Westrick
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Dragan Isailovic
- Department of Chemistry and Biochemistry, University of Toledo, Toledo, Ohio 43606, United States
| |
Collapse
|
6
|
Chatterjee S, More M. Cyanobacterial Harmful Algal Bloom Toxin Microcystin and Increased Vibrio Occurrence as Climate-Change-Induced Biological Co-Stressors: Exposure and Disease Outcomes via Their Interaction with Gut-Liver-Brain Axis. Toxins (Basel) 2023; 15:289. [PMID: 37104227 PMCID: PMC10144574 DOI: 10.3390/toxins15040289] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 04/12/2023] [Accepted: 04/12/2023] [Indexed: 04/28/2023] Open
Abstract
The effects of global warming are not limited to rising global temperatures and have set in motion a complex chain of events contributing to climate change. A consequence of global warming and the resultant climate change is the rise in cyanobacterial harmful algal blooms (cyano-HABs) across the world, which pose a threat to public health, aquatic biodiversity, and the livelihood of communities that depend on these water systems, such as farmers and fishers. An increase in cyano-HABs and their intensity is associated with an increase in the leakage of cyanotoxins. Microcystins (MCs) are hepatotoxins produced by some cyanobacterial species, and their organ toxicology has been extensively studied. Recent mouse studies suggest that MCs can induce gut resistome changes. Opportunistic pathogens such as Vibrios are abundantly found in the same habitat as phytoplankton, such as cyanobacteria. Further, MCs can complicate human disorders such as heat stress, cardiovascular diseases, type II diabetes, and non-alcoholic fatty liver disease. Firstly, this review describes how climate change mediates the rise in cyanobacterial harmful algal blooms in freshwater, causing increased levels of MCs. In the later sections, we aim to untangle the ways in which MCs can impact various public health concerns, either solely or in combination with other factors resulting from climate change. In conclusion, this review helps researchers understand the multiple challenges brought forth by a changing climate and the complex relationships between microcystin, Vibrios, and various environmental factors and their effect on human health and disease.
Collapse
Affiliation(s)
- Saurabh Chatterjee
- Environmental Health and Disease Laboratory, Department of Environmental and Occupational Health, Program in Public Health, University of California–Irvine, Irvine, CA 92697, USA
- Toxicology Core, NIEHS Center for Oceans and Human Health on Climate Change Interactions, Department of Environmental and Occupational Health, Program in Public Health, University of California–Irvine, Irvine, CA 92697, USA
- Division of Infectious Disease, Department of Medicine, UCI School of Medicine, University of California–Irvine, Irvine, CA 92697, USA
| | - Madhura More
- Environmental Health and Disease Laboratory, Department of Environmental and Occupational Health, Program in Public Health, University of California–Irvine, Irvine, CA 92697, USA
| |
Collapse
|
7
|
Yang Y, Yang L, Zheng M, Cao D, Liu G. Data acquisition methods for non-targeted screening in environmental analysis. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2023.116966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
8
|
Chia MA, Ameh I, George KC, Balogun EO, Akinyemi SA, Lorenzi AS. Genetic Diversity of Microcystin Producers (Cyanobacteria) and Microcystin Congeners in Aquatic Resources across Africa: A Review Paper. TOXICS 2022; 10:772. [PMID: 36548605 PMCID: PMC9783101 DOI: 10.3390/toxics10120772] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/30/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
Microcystins are produced by multifaceted organisms called cyanobacteria, which are integral to Africa's freshwater environments. The excessive proliferation of cyanobacteria caused by rising temperature and eutrophication leads to the production and release of copious amounts of microcystins, requiring critical management and control approaches to prevent the adverse environmental and public health problems associated with these bioactive metabolites. Despite hypotheses reported to explain the phylogeography and mechanisms responsible for cyanobacterial blooms in aquatic water bodies, many aspects are scarcely understood in Africa due to the paucity of investigations and lack of uniformity of experimental methods. Due to a lack of information and large-scale studies, cyanobacteria occurrence and genetic diversity are seldom reported in African aquatic ecosystems. This review covers the diversity and geographical distribution of potential microcystin-producing and non-microcystin-producing cyanobacterial taxa in Africa. Molecular analyses using housekeeping genes (e.g., 16S rRNA, ITS, rpoC1, etc.) revealed significant sequence divergence across several cyanobacterial strains from East, North, West, and South Africa, but the lack of uniformity in molecular markers employed made continent-wise phylogenetic comparisons impossible. Planktothrix agardhii, Microcystis aeruginosa, and Cylindrospermopsis raciborskii (presently known as Raphidiopsis raciborskii) were the most commonly reported genera. Potential microcystin (MCs)-producing cyanobacteria were detected using mcy genes, and several microcystin congeners were recorded. Studying cyanobacteria species from the African continent is urgent to effectively safeguard public and environmental health because more than 80% of the continent has no data on these important microorganisms and their bioactive secondary metabolites.
Collapse
Affiliation(s)
- Mathias Ahii Chia
- Department of Botany, Ahmadu Bello University, Zaria 810107, Nigeria
| | - Ilu Ameh
- Department of Biochemistry, Ahmadu Bello University, Zaria 810107, Nigeria
- African Centre of Excellence for Neglected Tropical Diseases and Forensic Biotechnology, Ahmadu Bello University, Zaria 810107, Nigeria
| | - Korie Chibuike George
- Department of Biochemistry, Ahmadu Bello University, Zaria 810107, Nigeria
- African Centre of Excellence for Neglected Tropical Diseases and Forensic Biotechnology, Ahmadu Bello University, Zaria 810107, Nigeria
| | | | | | - Adriana Sturion Lorenzi
- Department of Cellular Biology, Institute of Biological Sciences, University of Brasília—UnB, Brasília 70910-900, Brazil
| |
Collapse
|
9
|
Baliu-Rodriguez D, Peraino NJ, Premathilaka SH, Birbeck JA, Baliu-Rodriguez T, Westrick JA, Isailovic D. Identification of Novel Microcystins Using High-Resolution MS and MS n with Python Code. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:1652-1663. [PMID: 35018784 DOI: 10.1021/acs.est.1c04296] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Cyanotoxins called microcystins (MCs) are highly toxic and can be present in drinking water sources. Determining the structure of MCs is paramount because of its effect on toxicity. Though over 300 MC congeners have been discovered, many remain unidentified. Herein, a method is described for the putative identification of MCs using liquid chromatography (LC) coupled with high-resolution (HR) Orbitrap mass spectrometry (MS) and a new bottom-up sequencing strategy. Maumee River water samples were collected during a harmful algal bloom and analyzed by LC-MS with simultaneous HRMS and MS/MS. Unidentified ions with characteristic MC fragments (135 and 213 m/z) were recognized as possible novel MC congeners. An innovative workflow was developed for the putative identification of these ions. Python code was written to generate the potential structures of unidentified MCs and to assign ions after the fragmentation for structural confirmation. The workflow enabled the putative identification of eight previously reported MCs for which standards are not available and two newly discovered congeners, MC-HarR and MC-E(OMe)R.
Collapse
Affiliation(s)
- David Baliu-Rodriguez
- Department of Chemistry and Biochemistry, University of Toledo, Toledo, Ohio 43606, United States
| | - Nicholas J Peraino
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Sanduni H Premathilaka
- Department of Chemistry and Biochemistry, University of Toledo, Toledo, Ohio 43606, United States
| | - Johnna A Birbeck
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | | | - Judy A Westrick
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Dragan Isailovic
- Department of Chemistry and Biochemistry, University of Toledo, Toledo, Ohio 43606, United States
| |
Collapse
|
10
|
Zervou SK, Kaloudis T, Gkelis S, Hiskia A, Mazur-Marzec H. Anabaenopeptins from Cyanobacteria in Freshwater Bodies of Greece. Toxins (Basel) 2021; 14:4. [PMID: 35050981 PMCID: PMC8781842 DOI: 10.3390/toxins14010004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/06/2021] [Accepted: 12/15/2021] [Indexed: 12/27/2022] Open
Abstract
Cyanobacteria are photosynthetic microorganisms that are able to produce a large number of secondary metabolites. In freshwaters, under favorable conditions, they can rapidly multiply, forming blooms, and can release their toxic/bioactive metabolites in water. Among them, anabaenopeptins (APs) are a less studied class of cyclic bioactive cyanopeptides. The occurrence and structural variety of APs in cyanobacterial blooms and cultured strains from Greek freshwaters were investigated. Cyanobacterial extracts were analyzed with LC-qTRAP MS/MS using information-dependent acquisition in enhanced ion product mode in order to obtain the fragmentation mass spectra of APs. Thirteen APs were detected, and their possible structures were annotated based on the elucidation of fragmentation spectra, including three novel ones. APs were present in the majority of bloom samples (91%) collected from nine Greek lakes during different time periods. A large variety of APs was observed, with up to eight congeners co-occurring in the same sample. AP F (87%), Oscillamide Y (87%) and AP B (65%) were the most frequently detected congeners. Thirty cyanobacterial strain cultures were also analyzed. APs were only detected in one strain (Microcystis ichtyoblabe). The results contribute to a better understanding of APs produced by freshwater cyanobacteria and expand the range of structurally characterized APs.
Collapse
Affiliation(s)
- Sevasti-Kiriaki Zervou
- Laboratory of Photo-Catalytic Processes and Environmental Chemistry, Institute of Nanoscience & Nanotechnology, National Centre for Scientific Research “Demokritos”, Patriarchou Grigoriou E & 27 Neapoleos Str., 15310 Athens, Greece; (T.K.); (A.H.)
| | - Triantafyllos Kaloudis
- Laboratory of Photo-Catalytic Processes and Environmental Chemistry, Institute of Nanoscience & Nanotechnology, National Centre for Scientific Research “Demokritos”, Patriarchou Grigoriou E & 27 Neapoleos Str., 15310 Athens, Greece; (T.K.); (A.H.)
| | - Spyros Gkelis
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Anastasia Hiskia
- Laboratory of Photo-Catalytic Processes and Environmental Chemistry, Institute of Nanoscience & Nanotechnology, National Centre for Scientific Research “Demokritos”, Patriarchou Grigoriou E & 27 Neapoleos Str., 15310 Athens, Greece; (T.K.); (A.H.)
| | - Hanna Mazur-Marzec
- Division of Marine Biotechnology, University of Gdansk, Al. Marszałka Piłsudskiego 46, 81-378 Gdynia, Poland;
| |
Collapse
|
11
|
Affiliation(s)
- Susan D Richardson
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29205, United States
| | - Thomas A Ternes
- Federal Institute of Hydrology, Am Mainzer Tor 1, Koblenz 56068, Germany
| |
Collapse
|
12
|
Solliec M, Roy-Lachapelle A, Storck V, Callender K, Greer CW, Barbeau B. A data-independent acquisition approach based on HRMS to explore the biodegradation process of organic micropollutants involved in a biological ion-exchange drinking water filter. CHEMOSPHERE 2021; 277:130216. [PMID: 33780680 DOI: 10.1016/j.chemosphere.2021.130216] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 03/01/2021] [Accepted: 03/05/2021] [Indexed: 06/12/2023]
Abstract
Drinking water producers continuously develop innovative treatment processes to effectively remove organic micropollutants from raw water. Biological ion-exchange (BIEX) water treatment is one of these new techniques under development and showing great potential. In order to investigate if biodegradation is highly involved in such a removal technique, cultures were prepared with microorganisms sampled on the resins of a BIEX filter. Then, organic micropollutants were spiked into these cultures and their (bio)degradation was followed over 30 days by ultra-high performance liquid chromatography coupled to high-resolution mass spectrometry (UHPLC-HRMS). The purpose of this study was firstly to develop an analytical method using UHPLC-HRMS able to monitor the degradation of three spiked organic micropollutants in culture. Beyond quantification, this method allowed the simultaneous recording of fragmentation information via the use of a data-independent acquisition approach to perform a non-exhaustive search of transformation products related to the spiked micropollutants in culture aliquots. Secondly, a data treatment approach was developed to process raw spectral data generated by aliquots analysis by optimizing the precursor isolation mass windows, the accurate mass tolerance, peak intensity thresholds and choice of database. The use of this new method with a post-data acquisition treatment approach completed by the exhaustive study of fragmentation spectra allowed the tentative identification of 11 transformation products related to the spiked compounds. Finally, 16S rRNA gene amplicon sequencing revealed that bacterial genera known for their ability to degrade the spiked micropollutants were present in the microbial community of the BIEX drinking water filter.
Collapse
Affiliation(s)
- Morgan Solliec
- NSERC Industrial Chair on Drinking Water, Department of Civil Engineering, Polytechnique School of Montreal, Montreal, QC, Canada.
| | - Audrey Roy-Lachapelle
- Environment and Climate Change Canada, Aquatic Contaminants Research Division, Montreal, QC, Canada
| | - Veronika Storck
- NSERC Industrial Chair on Drinking Water, Department of Civil Engineering, Polytechnique School of Montreal, Montreal, QC, Canada
| | - Katrina Callender
- National Research Council Canada, Energy, Mining and Environment Research Centre, Montreal, QC, Canada
| | - Charles W Greer
- National Research Council Canada, Energy, Mining and Environment Research Centre, Montreal, QC, Canada
| | - Benoit Barbeau
- NSERC Industrial Chair on Drinking Water, Department of Civil Engineering, Polytechnique School of Montreal, Montreal, QC, Canada
| |
Collapse
|
13
|
Anabaenopeptins: What We Know So Far. Toxins (Basel) 2021; 13:toxins13080522. [PMID: 34437393 PMCID: PMC8402340 DOI: 10.3390/toxins13080522] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/19/2021] [Accepted: 05/25/2021] [Indexed: 12/14/2022] Open
Abstract
Cyanobacteria are microorganisms with photosynthetic mechanisms capable of colonizing several distinct environments worldwide. They can produce a vast spectrum of bioactive compounds with different properties, resulting in an improved adaptative capacity. Their richness in secondary metabolites is related to their unique and diverse metabolic apparatus, such as Non-Ribosomal Peptide Synthetases (NRPSs). One important class of peptides produced by the non-ribosomal pathway is anabaenopeptins. These cyclic hexapeptides demonstrated inhibitory activity towards phosphatases and proteases, which could be related to their toxicity and adaptiveness against zooplankters and crustaceans. Thus, this review aims to identify key features related to anabaenopeptins, including the diversity of their structure, occurrence, the biosynthetic steps for their production, ecological roles, and biotechnological applications.
Collapse
|
14
|
Jones MR, Pinto E, Torres MA, Dörr F, Mazur-Marzec H, Szubert K, Tartaglione L, Dell'Aversano C, Miles CO, Beach DG, McCarron P, Sivonen K, Fewer DP, Jokela J, Janssen EML. CyanoMetDB, a comprehensive public database of secondary metabolites from cyanobacteria. WATER RESEARCH 2021; 196:117017. [PMID: 33765498 DOI: 10.1016/j.watres.2021.117017] [Citation(s) in RCA: 159] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 02/26/2021] [Accepted: 03/06/2021] [Indexed: 05/06/2023]
Abstract
Harmful cyanobacterial blooms, which frequently contain toxic secondary metabolites, are reported in aquatic environments around the world. More than two thousand cyanobacterial secondary metabolites have been reported from diverse sources over the past fifty years. A comprehensive, publically-accessible database detailing these secondary metabolites would facilitate research into their occurrence, functions and toxicological risks. To address this need we created CyanoMetDB, a highly curated, flat-file, openly-accessible database of cyanobacterial secondary metabolites collated from 850 peer-reviewed articles published between 1967 and 2020. CyanoMetDB contains 2010 cyanobacterial metabolites and 99 structurally related compounds. This has nearly doubled the number of entries with complete literature metadata and structural composition information compared to previously available open access databases. The dataset includes microcytsins, cyanopeptolins, other depsipeptides, anabaenopeptins, microginins, aeruginosins, cyclamides, cryptophycins, saxitoxins, spumigins, microviridins, and anatoxins among other metabolite classes. A comprehensive database dedicated to cyanobacterial secondary metabolites facilitates: (1) the detection and dereplication of known cyanobacterial toxins and secondary metabolites; (2) the identification of novel natural products from cyanobacteria; (3) research on biosynthesis of cyanobacterial secondary metabolites, including substructure searches; and (4) the investigation of their abundance, persistence, and toxicity in natural environments.
Collapse
Affiliation(s)
- Martin R Jones
- Department of Environmental Chemistry, Swiss Federal Institute of Aquatic Science and Technology (Eawag), 8600 Duebendorf, Switzerland
| | - Ernani Pinto
- Centre for Nuclear Energy in Agriculture, University of São Paulo, CEP 13418-260 Piracicaba, SP, Brazil
| | - Mariana A Torres
- School of Pharmaceutical Sciences, University of São Paulo, CEP 05508-900, São Paulo - SP, Brazil
| | - Fabiane Dörr
- School of Pharmaceutical Sciences, University of São Paulo, CEP 05508-900, São Paulo - SP, Brazil
| | - Hanna Mazur-Marzec
- Division of Marine Biotechnology, University of Gdansk, Al. Marszałka Piłsudskiego 46, 81-378 Gdynia, Poland
| | - Karolina Szubert
- Division of Marine Biotechnology, University of Gdansk, Al. Marszałka Piłsudskiego 46, 81-378 Gdynia, Poland
| | - Luciana Tartaglione
- Department of Pharmacy, School of Medicine and Surgery, University of Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy
| | - Carmela Dell'Aversano
- Department of Pharmacy, School of Medicine and Surgery, University of Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy
| | - Christopher O Miles
- Biotoxin Metrology, National Research Council Canada, 1411 Oxford Street, Nova Scotia, Halifax B3H 3Z1, Canada
| | - Daniel G Beach
- Biotoxin Metrology, National Research Council Canada, 1411 Oxford Street, Nova Scotia, Halifax B3H 3Z1, Canada
| | - Pearse McCarron
- Biotoxin Metrology, National Research Council Canada, 1411 Oxford Street, Nova Scotia, Halifax B3H 3Z1, Canada
| | - Kaarina Sivonen
- Department of Microbiology, University of Helsinki, 00014 Helsinki, Finland
| | - David P Fewer
- Department of Microbiology, University of Helsinki, 00014 Helsinki, Finland
| | - Jouni Jokela
- Department of Microbiology, University of Helsinki, 00014 Helsinki, Finland
| | - Elisabeth M-L Janssen
- Department of Environmental Chemistry, Swiss Federal Institute of Aquatic Science and Technology (Eawag), 8600 Duebendorf, Switzerland.
| |
Collapse
|
15
|
Occurrence of microcystins, anabaenopeptins and other cyanotoxins in fish from a freshwater wildlife reserve impacted by harmful cyanobacterial blooms. Toxicon 2021; 194:44-52. [PMID: 33610629 DOI: 10.1016/j.toxicon.2021.02.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 01/16/2021] [Accepted: 02/15/2021] [Indexed: 02/02/2023]
Abstract
Harmful algal blooms of cyanobacteria (CyanoHABs) can lead to the release of potent toxins that can seriously affect ecosystem integrity. Some freshwater watersheds are particularly at risk considering the threats to already imperiled wildlife. The consumption of tainted drinking water and contaminated food also raises concerns for human health. In the present study, a pilot survey was conducted in the riverine ecosystem of the Pike River Ecological Reserve (QC, Canada) near Missisquoi Bay, Lake Champlain. We examined the occurrence of multiclass cyanotoxins including 12 microcystins, anatoxins, cylindrospermopsin (CYN), anabaenopeptins (AP-A, AP-B), and cyanopeptolin-A in surface waters and wild-caught fish during the summer 2018. Out of the 18 targeted cyanotoxins, 14 were detected in bloom-impacted surface water samples; toxins peaked during early-mid September with the highest concentrations for MC-LR (3.8 μg L-1) and MC-RR (2.9 μg L-1). Among the 71 field-collected fish from 10 species, 30% had positive detections to at least one cyanotoxin. In positive samples, concentration ranges in fish muscle were as follows for summed microcystins (∑MCs: 0.16-9.2 μg kg-1), CYN (46-75 μg kg-1), AP-A (1.1-5.4 μg kg-1), and AP-B (0.12-5.0 μg kg-1). To the best of our knowledge, this is one the first reports of anabaenopeptins occurrence in wildlife. The maximum ∑MCs in fish was 1.15-fold higher than the World Health Organization (WHO) daily intake recommendation for adults and nearly equated the derived value for young children. The concentration of CYN was also about 3-fold higher than the limit derived from the human health guideline values.
Collapse
|
16
|
Roy-Lachapelle A, Solliec M, Sauvé S, Gagnon C. Evaluation of ELISA-based method for total anabaenopeptins determination and comparative analysis with on-line SPE-UHPLC-HRMS in freshwater cyanobacterial blooms. Talanta 2020; 223:121802. [PMID: 33298288 DOI: 10.1016/j.talanta.2020.121802] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 10/19/2020] [Accepted: 10/20/2020] [Indexed: 11/30/2022]
Abstract
Anabaenopeptins (APs) are bioactive cyanopeptides of emerging concern produced by cyanobacteria. The research for analytical development has recently gained in importance due to their abundance in toxic cyanobacterial blooms. A new commercial enzyme-linked immunosorbent assay kit for the determination of total APs (APtot ELISA) has been released promising a rapid response with good cost efficiency for the routine monitoring of uncommon cyanopeptides. The present study explores the suitability of this new kit in comparison with a validated quantitative analytical method based on liquid chromatography coupled to mass spectrometry (LC-MS). The validation results were comparable with both methods for accuracy, precision, and calibration. Method detection limits were more sensitive using LC-MS specifically evaluated at 0.011 and 0.013 μg L-1 for AP-A and B respectively, compared to APtot ELISA evaluated at 0.10 μg L-1 for total of the two. For APtot ELISA, results were independent from the matrix; however, a systematic signal response was measured in blanks, requiring a blank subtraction in data treatment. Cross-reactivity of APtot ELISA was investigated by analyzing ten cyanopeptides selected for their abundance and diversity. Cyanopeptolin A (CP-A), nodularin-R (NOD), microcystin (MC)-RR, [Asp3]RR, and HilR showed cross-reactivity with an average overestimation going from 25 to 66%. Considering the contribution of cross-reactive cyanopeptides, thirteen lake samples out of fifteen showed higher concentrations using APtot ELISA with overestimation values up to 2261% compared to LC-MS. In light of this study results, LC-MS should still be preconized for the study and monitoring of APs when sensitivity and specificity are needed.
Collapse
Affiliation(s)
- Audrey Roy-Lachapelle
- Aquatic Contaminants Research Division, Environment and Climate Change Canada, 105 McGill, Montréal, Québec, H2Y 2E7, Canada
| | - Morgan Solliec
- NSERC-Industrial Chair on Drinking Water, CGM Department, École Polytechnique de Montréal, Montréal, QC, H3T 1J4, Canada
| | - Sébastien Sauvé
- Department of Chemistry, Université de Montréal, Montréal, Québec, H3C 3J7, Canada
| | - Christian Gagnon
- Aquatic Contaminants Research Division, Environment and Climate Change Canada, 105 McGill, Montréal, Québec, H2Y 2E7, Canada.
| |
Collapse
|
17
|
Kust A, Řeháková K, Vrba J, Maicher V, Mareš J, Hrouzek P, Chiriac MC, Benedová Z, Tesařová B, Saurav K. Insight into Unprecedented Diversity of Cyanopeptides in Eutrophic Ponds Using an MS/MS Networking Approach. Toxins (Basel) 2020; 12:E561. [PMID: 32878042 PMCID: PMC7551678 DOI: 10.3390/toxins12090561] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 08/24/2020] [Accepted: 08/28/2020] [Indexed: 12/18/2022] Open
Abstract
Man-made shallow fishponds in the Czech Republic have been facing high eutrophication since the 1950s. Anthropogenic eutrophication and feeding of fish have strongly affected the physicochemical properties of water and its aquatic community composition, leading to harmful algal bloom formation. In our current study, we characterized the phytoplankton community across three eutrophic ponds to assess the phytoplankton dynamics during the vegetation season. We microscopically identified and quantified 29 cyanobacterial taxa comprising non-toxigenic and toxigenic species. Further, a detailed cyanopeptides (CNPs) profiling was performed using molecular networking analysis of liquid chromatography-tandem mass spectrometry (LC-MS/MS) data coupled with a dereplication strategy. This MS networking approach, coupled with dereplication, on the online global natural product social networking (GNPS) web platform led us to putatively identify forty CNPs: fourteen anabaenopeptins, ten microcystins, five cyanopeptolins, six microginins, two cyanobactins, a dipeptide radiosumin, a cyclooctapeptide planktocyclin, and epidolastatin 12. We applied the binary logistic regression to estimate the CNPs producers by correlating the GNPS data with the species abundance. The usage of the GNPS web platform proved a valuable approach for the rapid and simultaneous detection of a large number of peptides and rapid risk assessments for harmful blooms.
Collapse
Affiliation(s)
- Andreja Kust
- Laboratory of Algal Biotechnology-Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, 37901 Třeboň, Czech Republic; (A.K.); (J.M.); (P.H.)
- Biology Centre of the Czech Academy of Sciences, Institute of Hydrobiology, 37005 České Budějovice, Czech Republic; (K.Ř.); (J.V.); (M.-C.C.)
| | - Klára Řeháková
- Biology Centre of the Czech Academy of Sciences, Institute of Hydrobiology, 37005 České Budějovice, Czech Republic; (K.Ř.); (J.V.); (M.-C.C.)
- Institute of Botany of the Czech Academy of Sciences, 37901 Třeboň, Czech Republic
| | - Jaroslav Vrba
- Biology Centre of the Czech Academy of Sciences, Institute of Hydrobiology, 37005 České Budějovice, Czech Republic; (K.Ř.); (J.V.); (M.-C.C.)
- Faculty of Science, University of South Bohemia, 37005 České Budějovice, Czech Republic
| | - Vincent Maicher
- Nicholas School of the Environment, Duke University, Durham, NC 27710, USA;
| | - Jan Mareš
- Laboratory of Algal Biotechnology-Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, 37901 Třeboň, Czech Republic; (A.K.); (J.M.); (P.H.)
- Biology Centre of the Czech Academy of Sciences, Institute of Hydrobiology, 37005 České Budějovice, Czech Republic; (K.Ř.); (J.V.); (M.-C.C.)
- Faculty of Science, University of South Bohemia, 37005 České Budějovice, Czech Republic
| | - Pavel Hrouzek
- Laboratory of Algal Biotechnology-Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, 37901 Třeboň, Czech Republic; (A.K.); (J.M.); (P.H.)
- Faculty of Science, University of South Bohemia, 37005 České Budějovice, Czech Republic
| | - Maria-Cecilia Chiriac
- Biology Centre of the Czech Academy of Sciences, Institute of Hydrobiology, 37005 České Budějovice, Czech Republic; (K.Ř.); (J.V.); (M.-C.C.)
| | - Zdeňka Benedová
- ENKI, o.p.s. Třeboň, Dukelská 145, 37901 Třeboň, Czech Republic; (Z.B.); (B.T.)
| | - Blanka Tesařová
- ENKI, o.p.s. Třeboň, Dukelská 145, 37901 Třeboň, Czech Republic; (Z.B.); (B.T.)
- Faculty of Agriculture, University of South Bohemia, Applied Ecology Laboratory, 37005 České Budějovice, Czech Republic
| | - Kumar Saurav
- Laboratory of Algal Biotechnology-Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, 37901 Třeboň, Czech Republic; (A.K.); (J.M.); (P.H.)
| |
Collapse
|
18
|
Absence of Cyanotoxins in Llayta, Edible Nostocaceae Colonies from the Andes Highlands. Toxins (Basel) 2020; 12:toxins12060382. [PMID: 32526918 PMCID: PMC7354591 DOI: 10.3390/toxins12060382] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/25/2020] [Accepted: 06/05/2020] [Indexed: 01/16/2023] Open
Abstract
Edible Llayta are cyanobacterial colonies consumed in the Andes highlands. Llayta and four isolated cyanobacteria strains were tested for cyanotoxins (microcystin, nodularin, cylindrospermopsin, saxitoxin and β-N-methylamino-L-alanine-BMAA) using molecular and chemical methods. All isolates were free of target genes involved in toxin biosynthesis. Only DNA from Llayta amplified the mcyE gene. Presence of microcystin-LR and BMAA in Llayta extracts was discarded by LC/MS analyses. The analysed Llayta colonies have an incomplete microcystin biosynthetic pathway and are a safe food ingredient.
Collapse
|
19
|
Filatova D, Núñez O, Farré M. Ultra-Trace Analysis of Cyanotoxins by Liquid Chromatography Coupled to High-Resolution Mass Spectrometry. Toxins (Basel) 2020; 12:toxins12040247. [PMID: 32290413 PMCID: PMC7232229 DOI: 10.3390/toxins12040247] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/07/2020] [Accepted: 04/07/2020] [Indexed: 12/19/2022] Open
Abstract
The increasing frequency of episodes of harmful algal blooms of cyanobacterial origin is a risk to ecosystems and human health. The main human hazard may arise from drinking water supply and recreational water use. For this reason, efficient multiclass analytical methods are needed to assess the level of cyanotoxins in water reservoirs and tackle these problems. This work describes the development of a fast, sensitive, and robust analytical method for multiclass cyanotoxins determination based on dual solid-phase extraction (SPE) procedure using a polymeric cartridge, Oasis HLB (Waters Corporation, Milford, MA, USA), and a graphitized non-porous carbon cartridge, SupelcleanTM ENVI-CarbTM (Sigma-Aldrich, St. Louis, MO, USA), followed by ultra-high-performance liquid chromatography high-resolution mass spectrometry (SPE-UHPLC-HRMS). This method enabled the analysis of cylindrospermopsin, anatoxin-a, nodularin, and seven microcystins (MC-LR, MC-RR, MC-YR, MC-LA, MC-LY, MC-LW, MC-LF). The method limits of detection (MLOD) of the validated approach were between 4 and 150 pg/L. The analytical method was applied to assess the presence of the selected toxins in 21 samples collected in three natural water reservoirs in the Ter River in Catalonia (NE of Spain) used to produce drinking water for Barcelona city (Spain).
Collapse
Affiliation(s)
- Daria Filatova
- Department of Environmental Chemistry, IDAEA-CSIC, 08034 Barcelona, Spain;
| | - Oscar Núñez
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, 08028 Barcelona, Spain;
- Serra Húnter Professor, Generalitat de Catalunya, 08007 Barcelona, Spain
| | - Marinella Farré
- Department of Environmental Chemistry, IDAEA-CSIC, 08034 Barcelona, Spain;
- Correspondence:
| |
Collapse
|
20
|
Bouaïcha N, Miles CO, Beach DG, Labidi Z, Djabri A, Benayache NY, Nguyen-Quang T. Structural Diversity, Characterization and Toxicology of Microcystins. Toxins (Basel) 2019; 11:E714. [PMID: 31817927 PMCID: PMC6950048 DOI: 10.3390/toxins11120714] [Citation(s) in RCA: 251] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 12/02/2019] [Accepted: 12/04/2019] [Indexed: 11/22/2022] Open
Abstract
Hepatotoxic microcystins (MCs) are the most widespread class of cyanotoxins and the one that has most often been implicated in cyanobacterial toxicosis. One of the main challenges in studying and monitoring MCs is the great structural diversity within the class. The full chemical structure of the first MC was elucidated in the early 1980s and since then, the number of reported structural analogues has grown steadily and continues to do so, thanks largely to advances in analytical methodology. The structures of some of these analogues have been definitively elucidated after chemical isolation using a combination of techniques including nuclear magnetic resonance, amino acid analysis, and tandem mass spectrometry (MS/MS). Others have only been tentatively identified using liquid chromatography-MS/MS without chemical isolation. An understanding of the structural diversity of MCs, the genetic and environmental controls for this diversity and the impact of structure on toxicity are all essential to the ongoing study of MCs across several scientific disciplines. However, because of the diversity of MCs and the range of approaches that have been taken for characterizing them, comprehensive information on the state of knowledge in each of these areas can be challenging to gather. We have conducted an in-depth review of the literature surrounding the identification and toxicity of known MCs and present here a concise review of these topics. At present, at least 279 MCs have been reported and are tabulated here. Among these, about 20% (55 of 279) appear to be the result of chemical or biochemical transformations of MCs that can occur in the environment or during sample handling and extraction of cyanobacteria, including oxidation products, methyl esters, or post-biosynthetic metabolites. The toxicity of many MCs has also been studied using a range of different approaches and a great deal of variability can be observed between reported toxicities, even for the same congener. This review will help clarify the current state of knowledge on the structural diversity of MCs as a class and the impacts of structure on toxicity, as well as to identify gaps in knowledge that should be addressed in future research.
Collapse
Affiliation(s)
- Noureddine Bouaïcha
- Écologie, Systématique et Évolution, Univ. Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, 91405 Orsay, France; (A.D.); (N.Y.B.)
| | - Christopher O. Miles
- Biotoxin Metrology, National Research Council Canada, 1411 Oxford St, Halifax, NS B3H 3Z1, Canada; (C.O.M.); (D.G.B.)
| | - Daniel G. Beach
- Biotoxin Metrology, National Research Council Canada, 1411 Oxford St, Halifax, NS B3H 3Z1, Canada; (C.O.M.); (D.G.B.)
| | - Zineb Labidi
- Laboratoire Biodiversité et Pollution des Écosystèmes, Faculté des Sciences de la Nature et de la Vie, Université Chadli Bendjedid d’El Taref, 36000 El Taref, Algeria;
| | - Amina Djabri
- Écologie, Systématique et Évolution, Univ. Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, 91405 Orsay, France; (A.D.); (N.Y.B.)
- Laboratoire Biodiversité et Pollution des Écosystèmes, Faculté des Sciences de la Nature et de la Vie, Université Chadli Bendjedid d’El Taref, 36000 El Taref, Algeria;
| | - Naila Yasmine Benayache
- Écologie, Systématique et Évolution, Univ. Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, 91405 Orsay, France; (A.D.); (N.Y.B.)
| | - Tri Nguyen-Quang
- Biofluids and Biosystems Modeling (BBML), Faculty of Agriculture, Dalhousie University, 39 Cox Road, Truro, B2N 5E3 Nova Scotia, Canada;
| |
Collapse
|