1
|
Gregg BM, Gupta S, Tepp WH, Pellett S. Expression of Recombinant Clostridial Neurotoxin by C. tetani. Microorganisms 2024; 12:2611. [PMID: 39770813 PMCID: PMC11678509 DOI: 10.3390/microorganisms12122611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 12/11/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025] Open
Abstract
Tetanus neurotoxins (TeNT) and botulinum neurotoxins (BoNTs) are closely related ~150 kDa protein toxins that together comprise the group of clostridial neurotoxins (CNTs) expressed by various species of Clostridia. While TeNT is expressed as a single polypeptide, BoNTs are always produced alongside multiple non-toxic proteins that form a stabilizing complex with BoNT and are encoded in a conserved toxin gene cluster. It is unknown how tent evolved without a similar gene cluster and why complex-free TeNT is secreted as a stable and soluble protein by C. tetani, whereas complexing proteins appear to be essential for BoNT stability in culture supernatants of C. botulinum. To assess whether the stability of TeNT is due to an innate property of the toxin or is a result of C. tetani's intra- and extra-cellular environment, both TeNT and complex-free BoNT/A1ERY were expressed recombinantly in atoxic C. tetani and analyzed for expression and stability. The strong clostridial ferredoxin (fdx) promotor resulted in the expression of recombinant TeNT at greater levels and earlier time points than endogenously produced TeNT. Recombinant BoNT/A1ERY was similarly expressed by atoxic C. tetani, although partial degradation was observed. The rBoNT/A1ERY produced in C. tetani was also partially proteolytically processed to the dichain form. Investigations of bacterial growth media and pH conditions found that the stability of rTeNT and rBoNT/A1ERY in spent media of C. tetani or C. botulinum was affected by growth media but not by pH. These data indicate that the distinct metabolism of C. tetani or C. botulinum under various growth conditions is a primary factor in creating a more or less favorable environment for complex-free CNT stability.
Collapse
Affiliation(s)
- Brieana M. Gregg
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
- Wake Forest Institute for Regenerative Medicine, Winston Salem, NC 27157, USA
| | - Sonal Gupta
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - William H. Tepp
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Sabine Pellett
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
2
|
Shitada C, Sekizuka T, Yamamoto A, Sakamoto C, Hashino M, Kuroda M, Takahashi M. Comparative pathogenomic analysis reveals a highly tetanus toxin-producing clade of Clostridium tetani isolates in Japan. mSphere 2023; 8:e0036923. [PMID: 38009947 PMCID: PMC10732020 DOI: 10.1128/msphere.00369-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 10/12/2023] [Indexed: 11/29/2023] Open
Abstract
IMPORTANCE C. tetani is a spore-forming, anaerobic bacterium that produces a toxin causing muscle stiffness and paralysis. Tetanus is preventable with the toxoid vaccine, but it remains a significant public health threat in regions with low vaccine coverage. However, there are relatively few isolates and limited genomic information available worldwide. In Japan, about 100 cases are reported each year, but there have been no nationwide surveys of isolates, and no genomic information from Japanese isolates has been published. In our study, we analyzed the genomes of 151 strains from a limited survey of soil in Kumamoto, Japan. Our findings revealed a high degree of genetic diversity, and we also identified a subset of strains that produced significantly more toxin, which provides new insights into the pathogenesis of tetanus. Our findings lay the foundation for future studies to investigate the distribution and evolution of C. tetani in Japan and neighboring countries.
Collapse
Affiliation(s)
- Chie Shitada
- Toxin and Biologicals Research Laboratory, Kumamoto Health Science University, Kumamoto, Japan
- The Chemo-Sero-Therapeutic Research Institute, Kumamoto, Japan
| | - Tsuyoshi Sekizuka
- Pathogen Genomics Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Akihiko Yamamoto
- Department of Bacteriology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Chiyomi Sakamoto
- Toxin and Biologicals Research Laboratory, Kumamoto Health Science University, Kumamoto, Japan
- The Chemo-Sero-Therapeutic Research Institute, Kumamoto, Japan
| | - Masanori Hashino
- Pathogen Genomics Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Makoto Kuroda
- Pathogen Genomics Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Motohide Takahashi
- Toxin and Biologicals Research Laboratory, Kumamoto Health Science University, Kumamoto, Japan
- The Chemo-Sero-Therapeutic Research Institute, Kumamoto, Japan
| |
Collapse
|
3
|
Pei H, Zhu C, Shu F, Lu Z, Wang H, Ma K, Wang J, Lan R, Shang F, Xue T. CodY: An Essential Transcriptional Regulator Involved in Environmental Stress Tolerance in Foodborne Staphylococcus aureus RMSA24. Foods 2023; 12:3166. [PMID: 37685098 PMCID: PMC10486358 DOI: 10.3390/foods12173166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/04/2023] [Accepted: 08/15/2023] [Indexed: 09/10/2023] Open
Abstract
Staphylococcus aureus (S. aureus), as the main pathogen in milk and dairy products, usually causes intoxication with vomiting and various kinds of inflammation after entering the human body. CodY, an important transcriptional regulator in S. aureus, plays an important role in regulating metabolism, growth, and virulence. However, little is known about the role of CodY on environmental stress tolerance. In this research, we revealed the role of CodY in environmental stress tolerance in foodborne S. aureus RMSA24. codY mutation significantly reduced the tolerance of S. aureus to desiccation and oxidative, salt, and high-temperature stresses. However, S. aureus was more tolerant to low temperature stress due to mutation of codY. We found that the expressions of two important heat shock proteins-GroEL and DanJ-were significantly down-regulated in the mutant codY. This suggests that CodY may indirectly regulate the high- and low-temperature tolerance of S. aureus by regulating the expressions of groEL and danJ. This study reveals a new mechanism of environmental stress tolerance in S. aureus and provides new insights into controlling the contamination and harm caused by S. aureus in the food industry.
Collapse
Affiliation(s)
- Hao Pei
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; (H.P.); (C.Z.); (F.S.); (Z.L.); (H.W.); (K.M.); (J.W.); (R.L.); (F.S.)
| | - Chengfeng Zhu
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; (H.P.); (C.Z.); (F.S.); (Z.L.); (H.W.); (K.M.); (J.W.); (R.L.); (F.S.)
| | - Fang Shu
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; (H.P.); (C.Z.); (F.S.); (Z.L.); (H.W.); (K.M.); (J.W.); (R.L.); (F.S.)
| | - Zhengfei Lu
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; (H.P.); (C.Z.); (F.S.); (Z.L.); (H.W.); (K.M.); (J.W.); (R.L.); (F.S.)
| | - Hui Wang
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; (H.P.); (C.Z.); (F.S.); (Z.L.); (H.W.); (K.M.); (J.W.); (R.L.); (F.S.)
| | - Kai Ma
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; (H.P.); (C.Z.); (F.S.); (Z.L.); (H.W.); (K.M.); (J.W.); (R.L.); (F.S.)
| | - Jun Wang
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; (H.P.); (C.Z.); (F.S.); (Z.L.); (H.W.); (K.M.); (J.W.); (R.L.); (F.S.)
| | - Ranxiang Lan
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; (H.P.); (C.Z.); (F.S.); (Z.L.); (H.W.); (K.M.); (J.W.); (R.L.); (F.S.)
| | - Fei Shang
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; (H.P.); (C.Z.); (F.S.); (Z.L.); (H.W.); (K.M.); (J.W.); (R.L.); (F.S.)
- Food Procession Research Institute, Anhui Agricultural University, Hefei 230036, China
| | - Ting Xue
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; (H.P.); (C.Z.); (F.S.); (Z.L.); (H.W.); (K.M.); (J.W.); (R.L.); (F.S.)
- Food Procession Research Institute, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
4
|
Wu S, Qin B, Deng S, Liu Y, Zhang H, Lei L, Feng G. CodY is modulated by YycF and affects biofilm formation in Staphylococcus aureus. Front Microbiol 2022; 13:967567. [PMID: 36304951 PMCID: PMC9593060 DOI: 10.3389/fmicb.2022.967567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 08/30/2022] [Indexed: 11/21/2022] Open
Abstract
Background Staphylococcus aureus (S. aureus) is the leading cause of various infective diseases, including topical soft tissue infections. The goals of this study were to investigate the roles of YycF and CodY in the regulation of biofilm formation and pathogenicity. Methods Electrophoretic mobility shift assay (EMSA) was conducted to validate the bound promoter regions of YycF protein. We constructed the codY up-regulated or down-regulated S. aureus mutants. The biofilm biomass was determined by crystal violet microtiter assay and scanning electron microscopy (SEM). Quantitative RT-PCR analysis was used to detect the transcripts of biofilm-related genes. The live and dead cells of S. aureus biofilm were also investigated by confocal laser scanning microscopy (CLSM). We constructed an abscess infection in Sprague Dawley (SD) rat models to determine the effect of CodY on bacterial pathogenicity. We further used the RAW264.7, which were cocultured with S. aureus, to evaluate the effect of CodY on macrophages apoptosis. Result Quantitative RT-PCR analyses reveled that YycF negatively regulates codY expression. EMSA assays indicated that YycF protein directly binds to the promoter regions of codY gene. Quantitative RT-PCR confirmed the construction of dual- mutant stains codY + ASyycF and codY-ASyycF. The SEM results showed that the biofilm formation in the codY + ASyycF group was sparser than those in the other groups. The crystal violet assays indicated that the codY + ASyycF group formed less biofilms, which was consistent with the immunofluorescence results of the lowest live cell ration in the codY + ASyycF group. The expression levels of biofilm-associated icaA gene were significantly reduced in the codY + strain, indicating codY negatively regulates the biofilm formation. Furthermore, CodY impedes the pathogenicity in a rat-infection model. After cocultured with bacteria or 4-h in vitro, the apoptosis rates of macrophage cells were lowest in the codY + group. Conclusions YycF negatively regulate the expression of codY. By interaction with codY, YycF could modulate S. aureus biofilm formation via both eDNA- dependent and PIA- dependent pathways, which can be a significant target for antibiofilm. CodY not only impedes the pathogenicity but also has a role on immunoregulation. Thus, the current evidence may provide a supplementary strategy for managing biofilm infections.
Collapse
Affiliation(s)
- Shizhou Wu
- Department of Orthopedics, Orthopaedic Research Institute, West China Hospital, Sichuan University, Chengdu, China
| | - Boquan Qin
- Department of Orthopedics, Orthopaedic Research Institute, West China Hospital, Sichuan University, Chengdu, China
| | - Shu Deng
- Boston University Henry M. Goldman School of Dental Medicine, Boston, MA, United States
| | - Yunjie Liu
- West China School of Public Health, Sichuan University, Chengdu, China
| | - Hui Zhang
- Department of Orthopedics, Orthopaedic Research Institute, West China Hospital, Sichuan University, Chengdu, China
| | - Lei Lei
- Department of Preventive Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- *Correspondence: Lei Lei,
| | - Guoying Feng
- College of Electronics and Information Engineering, Sichuan University, Chengdu, China
- Guoying Feng,
| |
Collapse
|
5
|
Regulatory Networks Controlling Neurotoxin Synthesis in Clostridium botulinum and Clostridium tetani. Toxins (Basel) 2022; 14:toxins14060364. [PMID: 35737025 PMCID: PMC9229411 DOI: 10.3390/toxins14060364] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/16/2022] [Accepted: 05/21/2022] [Indexed: 12/30/2022] Open
Abstract
Clostridium botulinum and Clostridium tetani are Gram-positive, spore-forming, and anaerobic bacteria that produce the most potent neurotoxins, botulinum toxin (BoNT) and tetanus toxin (TeNT), responsible for flaccid and spastic paralysis, respectively. The main habitat of these toxigenic bacteria is the environment (soil, sediments, cadavers, decayed plants, intestinal content of healthy carrier animals). C. botulinum can grow and produce BoNT in food, leading to food-borne botulism, and in some circumstances, C. botulinum can colonize the intestinal tract and induce infant botulism or adult intestinal toxemia botulism. More rarely, C. botulinum colonizes wounds, whereas tetanus is always a result of wound contamination by C. tetani. The synthesis of neurotoxins is strictly regulated by complex regulatory networks. The highest levels of neurotoxins are produced at the end of the exponential growth and in the early stationary growth phase. Both microorganisms, except C. botulinum E, share an alternative sigma factor, BotR and TetR, respectively, the genes of which are located upstream of the neurotoxin genes. These factors are essential for neurotoxin gene expression. C. botulinum and C. tetani share also a two-component system (TCS) that negatively regulates neurotoxin synthesis, but each microorganism uses additional distinct sets of TCSs. Neurotoxin synthesis is interlocked with the general metabolism, and CodY, a master regulator of metabolism in Gram-positive bacteria, is involved in both clostridial species. The environmental and nutritional factors controlling neurotoxin synthesis are still poorly understood. The transition from amino acid to peptide metabolism seems to be an important factor. Moreover, a small non-coding RNA in C. tetani, and quorum-sensing systems in C. botulinum and possibly in C. tetani, also control toxin synthesis. However, both species use also distinct regulatory pathways; this reflects the adaptation of C. botulinum and C. tetani to different ecological niches.
Collapse
|
6
|
Pennings JLA, Abachin E, Esson R, Hodemaekers H, Francotte A, Claude JB, Vanhee C, Uhlrich S, Vandebriel RJ. Regulation of Clostridium tetani Neurotoxin Expression by Culture Conditions. Toxins (Basel) 2022; 14:toxins14010031. [PMID: 35051008 PMCID: PMC8778922 DOI: 10.3390/toxins14010031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/22/2021] [Accepted: 12/29/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Ensuring consistency of tetanus neurotoxin (TeNT) production by Clostridium tetani could help to ensure consistent product quality in tetanus vaccine manufacturing, ultimately contributing to reduced animal testing. The aim of this study was to identify RNA signatures related to consistent TeNT production using standard and non-standard culture conditions. METHODS We applied RNA sequencing (RNA-Seq) to study C. tetani gene expression in small-scale batches under several culture conditions. RESULTS We identified 1381 time-dependent differentially expressed genes (DEGs) reflecting, among others, changes in growth rate and metabolism. Comparing non-standard versus standard culture conditions identified 82 condition-dependent DEGs, most of which were specific for one condition. The tetanus neurotoxin gene (tetX) was highly expressed but showed expression changes over time and between culture conditions. The tetX gene showed significant down-regulation at higher pH levels (pH 7.8), which was confirmed by the quantification data obtained with the recently validated targeted LC-MS/MS approach. CONCLUSIONS Non-standard culture conditions lead to different gene expression responses. The tetX gene appears to be the best transcriptional biomarker for monitoring TeNT production as part of batch-to-batch consistency testing during tetanus vaccine manufacturing.
Collapse
Affiliation(s)
- Jeroen L. A. Pennings
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), 3721 MA Bilthoven, The Netherlands; (H.H.); (R.J.V.)
- Correspondence:
| | - Eric Abachin
- Sanofi Pasteur, 1541 Avenue Marcel Mérieux, 69280 Marcy l’Etoile, France; (E.A.); (R.E.); (S.U.)
| | - Raphaël Esson
- Sanofi Pasteur, 1541 Avenue Marcel Mérieux, 69280 Marcy l’Etoile, France; (E.A.); (R.E.); (S.U.)
| | - Hennie Hodemaekers
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), 3721 MA Bilthoven, The Netherlands; (H.H.); (R.J.V.)
| | - Antoine Francotte
- Department of Chemical and Physical Health Risks, Sciensano, 14 Rue Juliette Wytsman, 1050 Brussels, Belgium; (A.F.); (C.V.)
| | | | - Céline Vanhee
- Department of Chemical and Physical Health Risks, Sciensano, 14 Rue Juliette Wytsman, 1050 Brussels, Belgium; (A.F.); (C.V.)
| | - Sylvie Uhlrich
- Sanofi Pasteur, 1541 Avenue Marcel Mérieux, 69280 Marcy l’Etoile, France; (E.A.); (R.E.); (S.U.)
| | - Rob J. Vandebriel
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), 3721 MA Bilthoven, The Netherlands; (H.H.); (R.J.V.)
| |
Collapse
|
7
|
Francotte A, Esson R, Abachin E, Vanhamme M, Dobly A, Carpick B, Uhlrich S, Dierick JF, Vanhee C. Development and validation of a targeted LC-MS/MS quantitation method to monitor cell culture expression of tetanus neurotoxin during vaccine production. Talanta 2022; 236:122883. [PMID: 34635263 DOI: 10.1016/j.talanta.2021.122883] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/10/2021] [Accepted: 09/12/2021] [Indexed: 10/20/2022]
Abstract
The tetanus neurotoxin (TeNT) is one of the most toxic proteins known to man, which prior to the use of the vaccine against the TeNT producing bacteria Clostridium tetani, resulted in a 20% mortality rate upon infection. The clinical detrimental effects of tetanus have decreased immensely since the introduction of global vaccination programs, which depend on sustainable vaccine production. One of the major critical points in the manufacturing of these vaccines is the stable and reproducible production of high levels of toxin by the bacterial seed strains. In order to minimize time loss, the amount of TeNT is often monitored during and at the end of the bacterial culturing. The different methods that are currently available to assess the amount of TeNT in the bacterial medium suffer from variability, lack of sensitivity, and/or require specific antibodies. In accordance with the consistency approach and the three Rs (3Rs), both aiming to reduce the use of animals for testing, in-process monitoring of TeNT production could benefit from animal and antibody-free analytical tools. In this paper, we describe the development and validation of a new and reliable antibody free targeted LC-MS/MS method that is able to identify and quantify the amount of TeNT present in the bacterial medium during the different production time points up to the harvesting of the TeNT just prior to further upstream purification and detoxification. The quantitation method, validated according to ICH guidelines and by the application of the total error approach, was utilized to assess the amount of TeNT present in the cell culture medium of two TeNT production batches during different steps in the vaccine production process prior to the generation of the toxoid. The amount of TeNT generated under different physical stress conditions applied during bacterial culture was also monitored.
Collapse
Affiliation(s)
- Antoine Francotte
- Department of Expertise and Service Provision, Quality of Vaccines and Blood Products, Sciensano, 14 rue Juliette Wytsman, 1050, Brussels, Belgium; Department of Chemical and Physical Health Risks, Medicines and Health Care Products, Sciensano, 14 rue Juliette Wytsman, 1050, Brussels, Belgium
| | - Raphael Esson
- Sanofi Pasteur, 1541 Avenue Marcel Mérieux, 69280, Marcy l'Etoile, France
| | - Eric Abachin
- Sanofi Pasteur, 1541 Avenue Marcel Mérieux, 69280, Marcy l'Etoile, France
| | - Melissa Vanhamme
- Department of Chemical and Physical Health Risks, Medicines and Health Care Products, Sciensano, 14 rue Juliette Wytsman, 1050, Brussels, Belgium
| | - Alexandre Dobly
- Department of Expertise and Service Provision, Quality of Vaccines and Blood Products, Sciensano, 14 rue Juliette Wytsman, 1050, Brussels, Belgium
| | - Bruce Carpick
- Sanofi Pasteur, 1755 Steeles Ave West, Toronto, Ontario, Canada
| | - Sylvie Uhlrich
- Sanofi Pasteur, 1541 Avenue Marcel Mérieux, 69280, Marcy l'Etoile, France
| | | | - Celine Vanhee
- Department of Chemical and Physical Health Risks, Medicines and Health Care Products, Sciensano, 14 rue Juliette Wytsman, 1050, Brussels, Belgium.
| |
Collapse
|
8
|
Garrigues L, Do TD, Bideaux C, Guillouet SE, Meynial-Salles I. Insights into Clostridium tetani: From genome to bioreactors. Biotechnol Adv 2021; 54:107781. [PMID: 34029623 DOI: 10.1016/j.biotechadv.2021.107781] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 03/17/2021] [Accepted: 05/19/2021] [Indexed: 11/15/2022]
Abstract
Tetanus vaccination is of major importance for public health in most countries in the world. The World Health Organization indicated that 15,000 tetanus cases were reported in 2018 (Organization, World Health, 2019). Currently, vaccine manufacturers use tetanus toxin produced by Clostridium tetani fermentation in complex media. The complex components, commonly derived from animal sources, introduce potential variability in cultures. To achieve replicable fermentation and to avoid toxic or allergic reactions from animal-source compounds, several studies have tried to switch from complex to chemically defined media without affecting toxin titers. The present review introduces the current knowledge on i) C. tetani strain diversity, whole-genome sequences and metabolic networks; ii) toxin regulation and synthesis; and iii) culture media, cultivation processes and growth requirements. We critically reviewed the reported data on metabolism in C. tetani and completed comparative genomic and proteomic analyses with other Clostridia species. We integrated genomic data based on whole-genome sequence annotation, supplemented with cofactor specificities determined by protein sequence identity, in a new map of C. tetani central metabolism. This is the first data review that integrates insights from omics experiments on C. tetani. The overview of C. tetani physiology described here could provide support for the design of new chemically defined media devoid of complex sources for toxin production.
Collapse
Affiliation(s)
- Lucile Garrigues
- TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
| | - Thuy Duong Do
- TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
| | - Carine Bideaux
- TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
| | | | | |
Collapse
|
9
|
Identification of a non-coding RNA and its putative involvement in the regulation of tetanus toxin synthesis in Clostridium tetani. Sci Rep 2021; 11:4157. [PMID: 33603121 PMCID: PMC7892561 DOI: 10.1038/s41598-021-83623-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 01/29/2021] [Indexed: 11/17/2022] Open
Abstract
Clostridium tetani produces the tetanus toxin (TeNT), one of the most powerful bacterial toxins known to humankind and responsible for tetanus. The regulation of toxin expression is complex and involves the alternative sigma factor TetR as well as other regulators. Here, a transcriptional analysis of the TeNT-encoding large plasmid of C. tetani identified a putative non-coding small RNA (sRNA), located in close vicinity of the 3′ untranslated region of the tent gene. A northern blot experiment could identify a respective sRNA with a size of approx. 140 nucleotides. Sequence analysis showed that the sRNA contains a 14-nucleotide region that is complementary to a 5′ located region of tent. In order to investigate the function of the sRNA, we applied a RNA interference approach targeting the sRNA in two C. tetani wild-type strains; the constructed antisense C. tetani strains showed an approx. threefold increase in both extracellular and total TeNT production compared to the respective wild-type strains. In addition, recombinant C. tetani strains were constructed that contained tent-locus harboring plasmids with and without the sRNA. However, the introduction of the tent-locus without the sRNA in a C. tetani strain lacking the wild-type TeNT-encoding large plasmid resulted in a lower TeNT production compared to the same strain with recombinant tent-locus with the sRNA. This suggests that the expression or the effect of the sRNA is modulated by the C. tetani genetic background, notably that of the wild-type TeNT-encoding large plasmid. In addition, some recombinant strains exhibited modulated growth patterns, characterized by premature bacterial cell lysis. Taken together, our data indicate that the sRNA acts as a negative regulator of TeNT synthesis, with a possible impact on the growth of C. tetani. We hypothesize that the role of this sRNA is to limit toxin levels in the exponential growth phase in order to prevent premature bacterial lysis.
Collapse
|