1
|
Xiao H, Meng X, Songtao Li, Li Z, Fang S, Wang Y, Li J, Tang J, Ma L. Combined drug anti-deep vein thrombosis therapy based on platelet membrane biomimetic targeting nanotechnology. Biomaterials 2024; 311:122670. [PMID: 38941685 DOI: 10.1016/j.biomaterials.2024.122670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 06/07/2024] [Accepted: 06/14/2024] [Indexed: 06/30/2024]
Abstract
After orthopedic surgeries, such as hip replacement, many patients are prone to developing deep vein thrombosis (DVT), which in severe cases can lead to fatal pulmonary embolism or major bleeding. Clinical intervention with high-dose anticoagulant therapy inevitably carries the risk of bleeding. Therefore, a targeted drug delivery system that adjusts local DVT lesions and potentially reduces drug dosage and toxic side effects important. In this study, we developed a targeted drug delivery platelet-derived nanoplatform (AMSNP@PM-rH/A) for DVT treatment that can simultaneously deliver a direct thrombin inhibitor (DTI) Recombinant Hirudin (rH), and the Factor Xa inhibitor Apixaban (A) by utilizing Aminated mesoporous silica nanoparticles (AMSNP). This formulation exhibits improved biocompatibility and blood half-life and can effectively eliminate deep vein thrombosis lesions and achieve therapeutic effects at half the dosage. Furthermore, we employed various visualization techniques to capture the targeted accumulation and release of a platelet membrane (PM) coating in deep vein thrombosis and explored its potential targeting mechanism.
Collapse
Affiliation(s)
- Hang Xiao
- The Key Laboratory of TCM Collateral Disease Theory Research, School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, PR China
| | - Xiangrui Meng
- Traditional Chinese Medicine (TCM) Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China.
| | - Songtao Li
- Traditional Chinese Medicine (TCM) Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Zhiyong Li
- The Key Laboratory of TCM Collateral Disease Theory Research, School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, PR China
| | - Shuo Fang
- The Key Laboratory of TCM Collateral Disease Theory Research, School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, PR China
| | - Yaonan Wang
- The Core Facilities of Modern Pharmaceuticals, School of Pharmaceutical Sciences, Capital Medical University, Beijing, 100069, PR China
| | - Jing Li
- The Key Laboratory of TCM Collateral Disease Theory Research, School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, PR China
| | - Jianyuan Tang
- Traditional Chinese Medicine (TCM) Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China.
| | - Li Ma
- The Key Laboratory of TCM Collateral Disease Theory Research, School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, PR China.
| |
Collapse
|
2
|
Kim S, Nowicki KW, Kohyama K, Mittal A, Ye S, Wang K, Fujii T, Rajesh S, Cao C, Mantena R, Barbuto M, Jung Y, Gross BA, Friedlander RM, Wagner WR. Development of an Injectable, ECM-Derivative Embolic for the Treatment of Cerebral Saccular Aneurysms. Biomacromolecules 2024; 25:4879-4890. [PMID: 39001820 PMCID: PMC11323012 DOI: 10.1021/acs.biomac.4c00321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 07/05/2024] [Accepted: 07/05/2024] [Indexed: 07/15/2024]
Abstract
Cerebral aneurysms are a source of neurological morbidity and mortality, most often as a result of rupture. The most common approach for treating aneurysms involves endovascular embolization using nonbiodegradable medical devices, such as platinum coils. However, the need for retreatment due to the recanalization of coil-treated aneurysms highlights the importance of exploring alternative solutions. In this study, we propose an injectable extracellular matrix-derived embolic formed in situ by Michael addition of gelatin-thiol (Gel-SH) and hyaluronic acid vinyl sulfone (HA-VS) that may be delivered with a therapeutic agent (here, RADA-SP) to fill and remodel aneurysmal tissue without leaving behind permanent foreign bodies. The injectable embolic material demonstrated rapid gelation under physiological conditions, forming a highly porous structure and allowing for cellular infiltration. The injectable embolic exhibited thrombogenic behavior in vitro that was comparable to that of alginate injectables. Furthermore, in vivo studies in a murine carotid aneurysm model demonstrated the successful embolization of a saccular aneurysm and extensive cellular infiltration both with and without RADA-SP at 3 weeks, with some evidence of increased vascular or fibrosis markers with RADA-SP incorporation. The results indicate that the developed embolic has inherent potential for acutely filling cerebrovascular aneurysms and encouraging the cellular infiltration that would be necessary for stable, chronic remodeling.
Collapse
Affiliation(s)
- Seungil Kim
- Department
of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- Department
of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- McGowan
Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Kamil W. Nowicki
- Department
of Neurosurgery, School of Medicine, University
of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- Department
of Neurosurgery, School of Medicine, Yale, New
Haven, Connecticut 06520, United States
| | - Keishi Kohyama
- Department
of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- McGowan
Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Aditya Mittal
- Department
of Neurosurgery, School of Medicine, University
of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Sangho Ye
- Department
of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- Department
of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- McGowan
Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Kai Wang
- Discovery
Center for Musculoskeletal Recovery, Schoen
Adams Research Institute at Spaulding, Charlestown, Massachusetts 02115, United States
- Department
of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Taro Fujii
- Department
of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- McGowan
Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Shivbaskar Rajesh
- Department
of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- McGowan
Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Catherine Cao
- Division
of Experimental Pathology, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, United States
| | - Rohit Mantena
- Department
of Neurosurgery, School of Medicine, University
of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Marianna Barbuto
- Department
of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- Department
of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- McGowan
Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- Ri.MED
Foundation, Cardiac Tissue Engineering Laboratory, Ri.MED Foundation, Palermo 90133, Italy
- Department
of Biological, Chemical and Pharmaceutical
Sciences and Technologies (STEBICEF), University of Palermo, Palermo 90133, Italy
| | - Youngmee Jung
- Center
for Biomaterials, Biomedical Research Institute, Korea Institute of
Science and Technology (KIST), Seoul 130-650, Republic
of Korea
- School of
Electrical and Electronic Engineering, YU-KIST
Institute, Yonsei University, Seoul 130-650 Republic of Korea
| | - Bradley A. Gross
- Department
of Neurosurgery, School of Medicine, University
of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Robert M. Friedlander
- Department
of Neurosurgery, School of Medicine, University
of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - William R. Wagner
- Department
of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- Department
of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- McGowan
Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| |
Collapse
|
3
|
Qiao S, Kang Y, Tan X, Zhou X, Zhang C, Lai S, Liu J, Shao L. Nanomaterials-induced programmed cell death: Focus on mitochondria. Toxicology 2024; 504:153803. [PMID: 38616010 DOI: 10.1016/j.tox.2024.153803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/03/2024] [Accepted: 04/10/2024] [Indexed: 04/16/2024]
Abstract
Nanomaterials are widely utilized in several domains, such as everyday life, societal manufacturing, and biomedical applications, which expand the potential for nanomaterials to penetrate biological barriers and interact with cells. Multiple studies have concentrated on the particular or improper utilization of nanomaterials, resulting in cellular death. The primary mode of cell death caused by nanotoxicity is programmable cell death, which includes apoptosis, ferroptosis, necroptosis, and pyroptosis. Based on our prior publications and latest research, mitochondria have a vital function in facilitating programmed cell death caused by nanomaterials, as well as initiating or transmitting death signal pathways associated with it. Therefore, this review takes mitochondria as the focal point to investigate the internal molecular mechanism of nanomaterial-induced programmed cell death, with the aim of identifying potential targets for prevention and treatment in related studies.
Collapse
Affiliation(s)
- Shijia Qiao
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Yiyuan Kang
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Xiner Tan
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Xinru Zhou
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Can Zhang
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Shulin Lai
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Jia Liu
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China.
| | - Longquan Shao
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China.
| |
Collapse
|
4
|
Peng Y, Yang Z, Sun H, Li J, Lan X, Liu S. Nanomaterials in Medicine: Understanding Cellular Uptake, Localization, and Retention for Enhanced Disease Diagnosis and Therapy. Aging Dis 2024; 16:AD.2024.0206-1. [PMID: 38421835 PMCID: PMC11745437 DOI: 10.14336/ad.2024.0206-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 02/06/2024] [Indexed: 03/02/2024] Open
Abstract
Nanomaterials (NMs) have emerged as promising tools for disease diagnosis and therapy due to their unique physicochemical properties. To maximize the effectiveness and design of NMs-based medical applications, it is essential to comprehend the complex mechanisms of cellular uptake, subcellular localization, and cellular retention. This review illuminates the various pathways that NMs take to get from the extracellular environment to certain intracellular compartments by investigating the various mechanisms that underlie their interaction with cells. The cellular uptake of NMs involves complex interactions with cell membranes, encompassing endocytosis, phagocytosis, and other active transport mechanisms. Unique uptake patterns across cell types highlight the necessity for customized NMs designs. After internalization, NMs move through a variety of intracellular routes that affect where they are located subcellularly. Understanding these pathways is pivotal for enhancing the targeted delivery of therapeutic agents and imaging probes. Furthermore, the cellular retention of NMs plays a critical role in sustained therapeutic efficacy and long-term imaging capabilities. Factors influencing cellular retention include nanoparticle size, surface chemistry, and the cellular microenvironment. Strategies for prolonging cellular retention are discussed, including surface modifications and encapsulation techniques. In conclusion, a comprehensive understanding of the mechanisms governing cellular uptake, subcellular localization, and cellular retention of NMs is essential for advancing their application in disease diagnosis and therapy. This review provides insights into the intricate interplay between NMs and biological systems, offering a foundation for the rational design of next-generation nanomedicines.
Collapse
Affiliation(s)
- Yue Peng
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine & Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Colleges and Universities Key Laboratory of Biological Molecular Medicine Research & Guangxi Key Laboratory of Brain Science, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, China
| | - Zhengshuang Yang
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine & Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Colleges and Universities Key Laboratory of Biological Molecular Medicine Research & Guangxi Key Laboratory of Brain Science, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, China
| | - Hui Sun
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine & Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Colleges and Universities Key Laboratory of Biological Molecular Medicine Research & Guangxi Key Laboratory of Brain Science, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, China
| | - Jinling Li
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine & Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Colleges and Universities Key Laboratory of Biological Molecular Medicine Research & Guangxi Key Laboratory of Brain Science, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, China
| | - Xiuwan Lan
- Guangxi Colleges and Universities Key Laboratory of Biological Molecular Medicine Research & Guangxi Key Laboratory of Brain Science, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, China
| | - Sijia Liu
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine & Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Colleges and Universities Key Laboratory of Biological Molecular Medicine Research & Guangxi Key Laboratory of Brain Science, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
5
|
Yao Y, Zhang T, Tang M. Toxicity mechanism of engineered nanomaterials: Focus on mitochondria. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 343:123231. [PMID: 38154775 DOI: 10.1016/j.envpol.2023.123231] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/22/2023] [Accepted: 12/24/2023] [Indexed: 12/30/2023]
Abstract
With the rapid development of nanotechnology, engineered nanomaterials (ENMs) are widely used in various fields. This has exacerbated the environmental pollution and human exposure of ENMs. The study of toxicity of ENMs and its mechanism has become a hot research topic in recent years. Mitochondrial damage plays an important role in the toxicity of ENMs. This paper reviews the structural damage, dysfunction, and molecular level perturbations caused by different ENMs to mitochondria, including ZnO NPs, Ag NPs, TiO2 NPs, iron oxide NPs, cadmium-based quantum dots, CuO NPs, silica NPs, carbon-based nanomaterials. Among them, mitochondrial quality control plays an important role in mitochondrial damage. We further summarize the cellular level outcomes caused by mitochondrial damage, mainly including, apoptosis, ferroptosis, pyroptosis and inflammation response. In addition, we concluded that reducing mitochondrial damage at source as well as accelerating recovery from mitochondrial damage through ENMs modification and pharmacological intervention are two feasible strategies. This review further provides new insights into the mitochondrial toxicity mechanisms of ENMs and provides a new foothold for predicting human health and environmental risks of ENMs.
Collapse
Affiliation(s)
- Yongshuai Yao
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, PR China
| | - Ting Zhang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, PR China
| | - Meng Tang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, PR China.
| |
Collapse
|
6
|
Ding R, Li Y, Yu Y, Sun Z, Duan J. Prospects and hazards of silica nanoparticles: Biological impacts and implicated mechanisms. Biotechnol Adv 2023; 69:108277. [PMID: 37923235 DOI: 10.1016/j.biotechadv.2023.108277] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 11/07/2023]
Abstract
With the thrive of nanotechnology, silica nanoparticles (SiNPs) have been extensively adopted in the agriculture, food, cosmetic, and even biomedical industries. Due to the mass production and use, SiNPs inevitably entered the environment, resulting in ecological toxicity and even posing a threat to human health. Although considerable investigations have been conducted to assess the toxicity of SiNPs, the correlation between SiNPs exposure and consequent health risks remains ambiguous. Since the biological impacts of SiNPs can differ from their design and application, the toxicity assessment for SiNPs may be extremely difficult. This review discussed the application of SiNPs in different fields, especially their biomedical use, and documented their potential release pathways into the environment. Meanwhile, the current process of assessing SiNPs-related toxicity on various model organisms and cell lines was also detailed, thus estimating the health threats posed by SiNPs exposure. Finally, the potential toxic mechanisms of SiNPs were also elaborated based on results obtained from both in vivo and in vitro trials. This review generally summarizes the biological effects of SiNPs, which will build up a comprehensive perspective of the application and toxicity of SiNPs.
Collapse
Affiliation(s)
- Ruiyang Ding
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Yang Li
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Yang Yu
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Zhiwei Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China.
| | - Junchao Duan
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
7
|
Li J, Yi X, Liu L, Wang X, Ai J. Advances in tumor nanotechnology: theragnostic implications in tumors via targeting regulated cell death. Apoptosis 2023:10.1007/s10495-023-01851-3. [PMID: 37184582 DOI: 10.1007/s10495-023-01851-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/29/2023] [Indexed: 05/16/2023]
Abstract
Cell death constitutes an indispensable part of the organismal balance in the human body. Generally, cell death includes regulated cell death (RCD) and accidental cell death (ACD), reflecting the intricately molecule-dependent process and the uncontrolled response, respectively. Furthermore, diverse RCD pathways correlate with multiple diseases, such as tumors and neurodegenerative diseases. Meanwhile, with the development of precision medicine, novel nano-based materials have gradually been applied in the clinical diagnosis and treatment of tumor patients. As the carrier, organic, inorganic, and biomimetic nanomaterials could facilitate the distribution, improve solubility and bioavailability, enhance biocompatibility and decrease the toxicity of drugs in the body, therefore, benefiting tumor patients with better survival outcomes and quality of life. In terms of the most studied cell death pathways, such as apoptosis, necroptosis, and pyroptosis, plenty of studies have explored specific types of nanomaterials targeting the molecules and signals in these pathways. However, no attempt was made to display diverse nanomaterials targeting different RCD pathways comprehensively. In this review, we elaborate on the potential mechanisms of RCD, including intrinsic and extrinsic apoptosis, necroptosis, ferroptosis, pyroptosis, autophagy-dependent cell death, and other cell death pathways together with corresponding nanomaterials. The thorough presentation of RCD pathways and diverse nano-based materials may provide a wider cellular and molecular landscape of tumor diagnosis and treatments.
Collapse
Affiliation(s)
- Jin Li
- Department of Urology/Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Xianyanling Yi
- Department of Urology/Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Liangren Liu
- Department of Urology/Institute of Urology, West China Hospital, Sichuan University, Chengdu, China.
| | - Xiaohui Wang
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China.
| | - Jianzhong Ai
- Department of Urology/Institute of Urology, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
8
|
Tkachenko A, Onishchenko A, Myasoedov V, Yefimova S, Havranek O. Assessing regulated cell death modalities as an efficient tool for in vitro nanotoxicity screening: a review. Nanotoxicology 2023; 17:218-248. [PMID: 37083543 DOI: 10.1080/17435390.2023.2203239] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
Nanomedicine is a fast-growing field of nanotechnology. One of the major obstacles for a wider use of nanomaterials for medical application is the lack of standardized toxicity screening protocols for assessing the safety of newly synthesized nanomaterials. In this review, we focus on less frequently studied nanomaterials-induced regulated cell death (RCD) modalities, including eryptosis, necroptosis, pyroptosis, and ferroptosis, as a tool for in vitro nanomaterials safety evaluation. We summarize the latest insights into the mechanisms that mediate these RCDs in response to nanomaterials exposure. Comprehensive data from reviewed studies suggest that ROS (reactive oxygen species) overproduction and ROS-mediated pathways play a central role in nanomaterials-induced RCDs activation. On the other hand, studies also suggest that individual properties of nanomaterials, including size, shape, or surface charge, could determine specific toxicity pathways with consequent RCD induction as well. We anticipate that the evaluation of RCDs can become one of the mechanism-based screening methods in nanotoxicology. In addition to the toxicity assessment, evaluation of necroptosis-, pyroptosis-, and ferroptosis-promoting capacity of nanomaterials could simultaneously provide useful information for specific medical applications as could be their anti-tumor potential. Moreover, a detailed understanding of molecular mechanisms driving nanomaterials-mediated induction of immunogenic RCDs will substantially aid novel anti-tumor nanodrugs development.
Collapse
Affiliation(s)
- Anton Tkachenko
- BIOCEV, First Faculty of Medicine, Charles University, Vestec, Czechia
- Research Institute of Experimental and Clinical Medicine, Kharkiv National Medical University, Kharkiv, Ukraine
| | - Anatolii Onishchenko
- Research Institute of Experimental and Clinical Medicine, Kharkiv National Medical University, Kharkiv, Ukraine
| | - Valeriy Myasoedov
- Department of Medical Biology, Kharkiv National Medical University, Kharkiv, Ukraine
| | - Svetlana Yefimova
- Institute for Scintillation Materials, National Academy of Sciences of Ukraine, Kharkiv, Ukraine
| | - Ondrej Havranek
- BIOCEV, First Faculty of Medicine, Charles University, Vestec, Czechia
- Department of Hematology, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czechia
| |
Collapse
|
9
|
WANG W, LI Q, MA Q, XIA R, GAO B, WANG Y, WANG J. Effects of moxibustion at bilateral Feishu (BL13) and Xinshu (BL15) combined with benazepril on myocardial cells apoptosis index and apoptosis-related proteins cytochrome c and apoptosis-inducing factor in rats with chronic heart failure. J TRADIT CHIN MED 2022; 42:227-233. [PMID: 35473343 PMCID: PMC9924675 DOI: 10.19852/j.cnki.jtcm.20220126.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2023]
Abstract
OBJECTIVE To observe the effects of moxibustion at bilateral Feishu (BL13) and Xinshu (BL15) combined with benazepril on myocardial cells apoptosis index, the expression levels of apoptosis-related proteins cytochrome c (Cyt-C) and apoptosis-inducing factor (AIF) in chronic heart failure (CHF) rats. METHODS Sixty-five rats were randomly divided into normal group () and model-I group (). After modeling, CHF rats in model-I group were divided into model group, moxibustion group, benazepril group, moxibustion plus benazepril group (abbreviated as aibei group, the same below), 10 rats in each group. Echocardiogram index was examined by echocardiography. Hemodynamic indices were measured by rat cardiac function meter. Serum B-type brain natriuretic peptide (BNP) was detected by enzyme-linked immunosorbent assay. Myocardial cells apoptosis index was detected by terminal-deoxynucleoitidyl transferase mediated nick end labeling staining. Pathological changes of myocardial tissues were observed by hematoxylin and eosin staining. The expression levels of Cyt-C and AIF in myocardial tissues were detected by Western blot. RESULTS Compared with normal group, ejection fraction and left ventricular diameter shortening rate in model-Ⅰ group were significantly reduced, myocardial cells of rats in model group exhibited unclear transverse striations, cells swellings and vacuoles, cardiac functions were deteriorated, serum BNP level, myocardial cells apoptosis index, and the expression levels of Cyt-C and AIF were significantly increased. Compared with model group, myocardial cells of rats in moxibustion group, benazepril group, and aibei group were dyed more evenly, muscle fibers were arranged relatively neatly, cardiac functions were improved, serum BNP level, myocardial cells apoptosis index, and the expression levels of Cyt-C and AIF were significantly decreased. Compared with aibei group, cardiac functions were worsened, myocardial cells apoptosis index, and the expression levels of Cyt-C and AIF were increased. CONCLUSION Moxibustion at bilateral Feishu (BL13) and Xinshu (BL15) combined with benazepril could improve CHF better than moxibustion at bilateral Feishu (BL13) and Xinshu (BL15) or benazepril alone. The mechanisms might be that they can inhibit the expressions of Cyt-C and AIF, and inhibit the apoptosis of cardiomyocytes.
Collapse
Affiliation(s)
- Wei WANG
- 1 College of Chinese Medicine, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Qingling LI
- 1 College of Chinese Medicine, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Qiang MA
- 2 Graduate school, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Ran XIA
- 2 Graduate school, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Bing GAO
- 2 Graduate school, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Yi WANG
- 3 College of Acupuncture and Massage, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Jing WANG
- 4 Xin’an Medical Key Laboratory; Anhui University of Chinese Medicine, Hefei 230012, China
- Prof. WANG Jing, Xin’an Medical Key Laboratory; Anhui University of Chinese Medicine, Hefei 230012, China. , Telephone: +86-13955189703
| |
Collapse
|