1
|
Cova TF, Ferreira C, Nunes SCC, Pais AACC. Structural Similarity, Activity, and Toxicity of Mycotoxins: Combining Insights from Unsupervised and Supervised Machine Learning Algorithms. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:6173-6188. [PMID: 40013497 DOI: 10.1021/acs.jafc.4c08527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
A large number of mycotoxins and related fungal metabolites have not been assessed in terms of their toxicological impacts. Current methodologies often prioritize specific target families, neglecting the complexity and presence of co-occurring compounds. This work addresses a fundamental question: Can we assess molecular similarity and predict the toxicity of mycotoxins in silico using a defined set of molecular descriptors? We propose a rapid nontarget screening approach for multiple classes of mycotoxins, integrating both unsupervised and supervised machine learning models, alongside molecular and physicochemical descriptors to enhance the understanding of structural similarity, activity, and toxicity. Clustering analyses identify natural clusters corresponding to the known mycotoxin families, indicating that mycotoxins belonging to the same cluster share similar molecular properties. However, topological descriptors play a significant role in distinguishing between acutely toxic and nonacutely toxic compounds. Random forest (RF) and neural networks (NN), combined with molecular descriptors, contribute to improved knowledge and predictive capability regarding mycotoxin toxicity profiles. RF allows the prediction of toxicity using data reflecting mainly structural features and performs well in the presence of descriptors reflecting biological activity. NN models prove to be more sensitive to biological activity descriptors than RF. The use of descriptors encompassing structural complexity and diversity, chirality and symmetry, connectivity, atomic charge, and polarizability, together with descriptors representing lipophilicity, absorption, and permeation of molecules, is crucial for predicting toxicity, facilitating broader toxicological evaluations.
Collapse
Affiliation(s)
- Tânia F Cova
- Coimbra Chemistry Centre, Department of Chemistry, Institute of Molecular Sciences (IMS), Faculty of Sciences and Technology, University of Coimbra, R. Larga 2, 3004-535 Coimbra, Portugal
| | - Cláudia Ferreira
- Coimbra Chemistry Centre, Department of Chemistry, Institute of Molecular Sciences (IMS), Faculty of Sciences and Technology, University of Coimbra, R. Larga 2, 3004-535 Coimbra, Portugal
| | - Sandra C C Nunes
- Coimbra Chemistry Centre, Department of Chemistry, Institute of Molecular Sciences (IMS), Faculty of Sciences and Technology, University of Coimbra, R. Larga 2, 3004-535 Coimbra, Portugal
| | - Alberto A C C Pais
- Coimbra Chemistry Centre, Department of Chemistry, Institute of Molecular Sciences (IMS), Faculty of Sciences and Technology, University of Coimbra, R. Larga 2, 3004-535 Coimbra, Portugal
| |
Collapse
|
2
|
Chibuogwu MO, Reed H, Groves CL, Mueller B, Barrett-Wilt G, Webster RW, Goeser J, Smith DL. Influence of Hybrid Class and Ensiling Duration on Deoxynivalenol Accumulation and Its Derivative Deoxynivalenol-3-Glucoside While Ensiling Corn for Silage. PLANT DISEASE 2024; 108:3631-3638. [PMID: 39172494 DOI: 10.1094/pdis-06-24-1166-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
In silage corn (Zea mays L.), Fusarium graminearum causes diseases and produces the mycotoxin deoxynivalenol (DON). The work presented here investigated DON accumulation and its fate during the ensiling of ground, whole-plant material obtained from dual-purpose (DP) and brown midrib (BMR) corn hybrids. Multiyear field trials arranged in a randomized complete block design were conducted in Wisconsin to evaluate BMR and DP corn hybrids in response to fungicide treatment. At harvest, the samples were chopped and vacuum sealed for a mini-silo time series assessment with silos opened following anaerobic fermentation for 0, 30, 60, 90, and 120 days. Repeated measures analysis of ensiled corn showed that hybrid (P < 0.01) and ensiling duration (P < 0.01) significantly impacted DON concentration through ensiling, whereas fungicide treatment had no significant effect (P > 0.05). Across hybrids and treatments, DON concentrations detected at harvest were the lowest with DON-3-glucoside at harvest significantly (P < 0.01) and highly correlated (r = 0.74) with DON concentration 30-days after ensiling. These findings suggest that mycotoxin testing in corn should include not only DON but also conjugates of DON that can be metabolized back to DON and increase the final DON concentration during ensiling.
Collapse
Affiliation(s)
- Maxwell O Chibuogwu
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI, U.S.A
| | - Hannah Reed
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI, U.S.A
| | - Carol L Groves
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI, U.S.A
| | - Brian Mueller
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI, U.S.A
| | - Gregory Barrett-Wilt
- Mass Spectrometry Core Facility, University of Wisconsin-Madison, Madison, WI, U.S.A
| | | | - John Goeser
- Animal and Dairy Sciences Department, University of Wisconsin-Madison, Madison, WI, U.S.A
- Rock River Laboratory, Inc., Watertown, WI, U.S.A
| | - Damon L Smith
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI, U.S.A
| |
Collapse
|
3
|
Topi D, Damani Z, Babič J, Jakovac-Strajn B, Tavčar-Kalcher G. The Presence of Some Minor Aspergillus and Penicillium Unregulated Mycotoxins in Main Cereals Cultivated in Albania. Molecules 2024; 29:5292. [PMID: 39598681 PMCID: PMC11596144 DOI: 10.3390/molecules29225292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 10/28/2024] [Accepted: 11/06/2024] [Indexed: 11/29/2024] Open
Abstract
(1) Background: Food and feed safety legislation does not concern all the mycotoxins generated by Penicillium and Aspergillus spp. Certain mycotoxins, including mycophenolic acid (MPA), cyclopiazonic acid (CPA), penicillic acid (PA), roquefortine C (ROQ C), and gliotoxin (GLI), are regarded as having lower toxicity levels, and hence are not included in food and feed legislation. It is obvious that xenobiotics, including mycotoxins, exert synergistic harmful health effects on human and animal when exposed through food and feed. (2) Methods: The presence of these substances in maize and wheat grown in Albania across two consecutive harvesting seasons was investigated by liquid chromatography and mass spectrometry (LC-MS/MS). (3) Results: The findings indicated the presence of these mycotoxins in maize grain but not in wheat grain. In the 2014 season, they exhibited a higher contamination incidence than in the 2015 season. The most commonly detected mycotoxin was MPA, followed by CPA and ROQ C toxin, while PA and GLI were not detected. The MPA revealed a concentration range of 72.9-3447 μg/kg, with a mean value of 1064 μg/kg. Mycophenolic acid was detected in the maize samples collected during the 2015 season. (4) Conclusions: These findings suggest that focusing the investigation only on "controlled" mycotoxins will not produce a proper risk assessment and may not adequately address the possible harmful impacts of mycotoxins on human and animal health due to mycotoxins' co-occurrence.
Collapse
Affiliation(s)
- Dritan Topi
- Institute of Food Safety, Feed and Environment, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000 Ljubljana, Slovenia; (J.B.); (B.J.-S.); (G.T.-K.)
- Department of Chemistry, Faculty of Natural Sciences, University of Tirana, Blvd. Zogu 1, No. 25/1, 1016 Tirana, Albania
| | - Zamir Damani
- Department of Diagnostics and Rehabilitation, Faculty of Medical Technical Sciences, University of Medicine of Tirana, Kongresi i Manastirit Street, P.O. BOX 1000 Tirana, Albania;
| | - Janja Babič
- Institute of Food Safety, Feed and Environment, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000 Ljubljana, Slovenia; (J.B.); (B.J.-S.); (G.T.-K.)
| | - Breda Jakovac-Strajn
- Institute of Food Safety, Feed and Environment, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000 Ljubljana, Slovenia; (J.B.); (B.J.-S.); (G.T.-K.)
| | - Gabrijela Tavčar-Kalcher
- Institute of Food Safety, Feed and Environment, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000 Ljubljana, Slovenia; (J.B.); (B.J.-S.); (G.T.-K.)
| |
Collapse
|
4
|
Mwabulili F, Li P, Shi J, Zhang H, Xie Y, Ma W, Sun S, Yang Y, Li Q, Li X, Jia H. Research diversity and advances in simultaneous removal of multi-mycotoxin. Toxicon 2024; 250:108106. [PMID: 39306098 DOI: 10.1016/j.toxicon.2024.108106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/18/2024] [Accepted: 09/19/2024] [Indexed: 10/14/2024]
Abstract
Mycotoxins are toxic secondary metabolites produced by different fungal species under specific environmental conditions. The common and regulated mycotoxins are such as deoxynivalenol (DON), zearalenone (ZEN), ochratoxin (OTA), aflatoxin B1 (AFB1), and fumonisins (FB). These mycotoxins are highly regulated in feed and food because their effects start to exert from their lowest exposures and are abundant in our common environment. However, there are other emerging mycotoxins such as apicidin, beauvericin, aurofusarin, and enniatins which are also harmful. Thus, making a total of around 500 forms of mycotoxins. The existence of mycotoxins in feed and food has a significant impact on animal and human health, which ultimately, slows down economic growth globally. According to this review, different approaches to removing multi-mycotoxin separately or simultaneously have been stated. Mostly, the review focused on the simultaneous removal of different multiple mycotoxins. This is because the current studies show a growing trend in reporting the co-existence of multiple mycotoxins in feed and food materials, however, most detoxifying approaches are for singular mycotoxins. Therefore, the physical, chemical, and biological approaches to remove multi-mycotoxin have been elucidated as well as their advantages and limitations. Furthermore, the authors give suggestions on the way forward to reduce exposure to mycotoxins and diminish their health effects in society. Lastly, the authors emphasized introducing more stringent limits for co-existing mycotoxins, especially those that have the same health effects by acting synergistically, such as AFB1 and OTA, which both act as carcinogenic agents.
Collapse
Affiliation(s)
- Fred Mwabulili
- College of Food Science and Engineering, Henan Key Laboratory of Cereal and Oil Food Safety and Nutrition, Henan University of Technology, Zhengzhou, Henan, 450001, China; Department of Food Science and Technology, College of Agricultural Sciences and Technology, Mbeya University of Science and Technology, P.O. Box 131, Mbeya, 53119, Tanzania
| | - Peng Li
- Centre for Complexity Science, Henan University of Technology, Zhengzhou, Henan, 450001, China
| | - Jinghao Shi
- College of Food Science and Engineering, Henan Key Laboratory of Cereal and Oil Food Safety and Nutrition, Henan University of Technology, Zhengzhou, Henan, 450001, China
| | - Hongxin Zhang
- College of Food Science and Engineering, Henan Key Laboratory of Cereal and Oil Food Safety and Nutrition, Henan University of Technology, Zhengzhou, Henan, 450001, China
| | - Yanli Xie
- College of Food Science and Engineering, Henan Key Laboratory of Cereal and Oil Food Safety and Nutrition, Henan University of Technology, Zhengzhou, Henan, 450001, China.
| | - Weibin Ma
- College of Food Science and Engineering, Henan Key Laboratory of Cereal and Oil Food Safety and Nutrition, Henan University of Technology, Zhengzhou, Henan, 450001, China
| | - Shumin Sun
- College of Food Science and Engineering, Henan Key Laboratory of Cereal and Oil Food Safety and Nutrition, Henan University of Technology, Zhengzhou, Henan, 450001, China
| | - Yuhui Yang
- College of Food Science and Engineering, Henan Key Laboratory of Cereal and Oil Food Safety and Nutrition, Henan University of Technology, Zhengzhou, Henan, 450001, China
| | - Qian Li
- College of Food Science and Engineering, Henan Key Laboratory of Cereal and Oil Food Safety and Nutrition, Henan University of Technology, Zhengzhou, Henan, 450001, China
| | - Xiao Li
- College of Food Science and Engineering, Henan Key Laboratory of Cereal and Oil Food Safety and Nutrition, Henan University of Technology, Zhengzhou, Henan, 450001, China
| | - Hang Jia
- College of Food Science and Engineering, Henan Key Laboratory of Cereal and Oil Food Safety and Nutrition, Henan University of Technology, Zhengzhou, Henan, 450001, China
| |
Collapse
|
5
|
Widodo OS, Uno S, Kokushi E, Yamato O, Mardianto MFF, Shinya U, Kano Y, Kawashima C, Fushimi Y, Ono T, Taniguchi M, Takagi M. Exposure of Cattle Breeding Herds to Naturally Co-Contaminated Zearalenone and Deoxynivalenol: The Relevance of a Urinary Mycotoxin Monitoring System for Herd Health and Food Safety. Toxins (Basel) 2024; 16:402. [PMID: 39330860 PMCID: PMC11436142 DOI: 10.3390/toxins16090402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/05/2024] [Accepted: 09/13/2024] [Indexed: 09/28/2024] Open
Abstract
The widespread presence of Fusarium mycotoxins in animal feed is a global issue, not only for the health of livestock but also for ensure the safety of food as an end product. High concentrations of zearalenone (ZEN) and deoxynivalenol (DON) have been detected in the diets of Japanese Black (JB) and Holstein Friesian (HF) breeding herds. Consequently, we monitored serum biochemical parameters over a long time in both herds, focusing on anti-Müllerian hormone (AMH) levels and acute-phase inflammation. Additionally, urinary 8-hydroxy-2'-deoxyguanosine (8-OHdG) and progesterone levels were measured in the HF herd. The JB herd, a ZEN-dominant model with low DON contamination, demonstrated ZEN levels that exceeded the Japanese limit in the purchased total mixed rations (TMR). Conversely, the HF herd, which primary consumes DON-dominant feed with low ZEN contamination, had high DON levels in the dent corn silage. Specifically, the JB herd's TMR contained 1.79 mg/kg ZEN and 0.58 mg/kg DON, whereas the HF herd's silage had 15.3 mg/kg DON (dried sample) and 0.1 mg/kg ZEN. Enzyme-linked immunoassay were used to measure urinary ZEN-DON levels following confirmation through liquid chromatography-tandem mass spectrometry. Urinary ZEN-DON levels measured were significantly correlated (p < 0.05, r > 0.6) in both herds. In the HF herd, AMH levels increased (p = 0.01) and serum amyloid A (SAA) levels decreased (p = 0.02) when contaminated and at the end of the monitoring period. Additionally, urinary ZEN and DON levels were significantly correlated with SAA levels (ZEN: p = 0.00, r = 0.46; DON: p = 0.03, r = 0.33), with an increase in ZEN and DON levels resulting in higher SAA levels. The JB herd showed no significant differences. Additionally, in the HF herd, 8-OHdG/Cre levels increased significantly during major contamination periods (p < 0.05). Clinical data from the HF herd indicated an increase in mastitis cases and treatment rates during periods of major contamination. Abortion rates in the HF herd decreased from 22.9% (before monitoring) to 8.9% (during the high contamination period) and finally to 1% (at the end of the monitoring period), with corresponding increases in progesterone levels. ZEN-DON contamination adversely affects breeding cattle's productivity, reproductive performance, and health. Therefore, monitoring urinary ZEN-DON is valuable for detecting contaminants and ensuring the safety of food products.
Collapse
Affiliation(s)
- Oky Setyo Widodo
- Joint Graduate School of Veterinary Sciences, Yamaguchi University, Yamaguchi 753-8515, Japan; (O.S.W.); (M.T.)
- Division of Animal Husbandry, Faculty of Veterinary Medicine, Airlangga University, Surabaya 60115, Indonesia;
| | - Seiichi Uno
- Faculty of Fisheries, Kagoshima University, Kagoshima 890-0056, Japan; (S.U.); (E.K.)
| | - Emiko Kokushi
- Faculty of Fisheries, Kagoshima University, Kagoshima 890-0056, Japan; (S.U.); (E.K.)
| | - Osamu Yamato
- Division of Animal Husbandry, Faculty of Veterinary Medicine, Airlangga University, Surabaya 60115, Indonesia;
- Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima 890-0065, Japan
| | - M. Fariz Fadillah Mardianto
- Department of Mathematics, Faculty of Science and Technology, Airlangga University, Surabaya 60115, Indonesia;
| | - Urara Shinya
- Soo Agricultural Mutual Aid Association, Kagoshima 899-8212, Japan; (U.S.); (Y.K.)
| | - Yuto Kano
- Soo Agricultural Mutual Aid Association, Kagoshima 899-8212, Japan; (U.S.); (Y.K.)
| | - Chiho Kawashima
- Field Center of Animal Science, Obihiro University of Agriculture and Veterinary Medicine, Obihiro 080-8555, Japan;
| | | | - Tetsushi Ono
- Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi 753-8515, Japan;
| | - Masayasu Taniguchi
- Joint Graduate School of Veterinary Sciences, Yamaguchi University, Yamaguchi 753-8515, Japan; (O.S.W.); (M.T.)
- Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi 753-8515, Japan;
| | - Mitsuhiro Takagi
- Joint Graduate School of Veterinary Sciences, Yamaguchi University, Yamaguchi 753-8515, Japan; (O.S.W.); (M.T.)
- Division of Animal Husbandry, Faculty of Veterinary Medicine, Airlangga University, Surabaya 60115, Indonesia;
- Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi 753-8515, Japan;
| |
Collapse
|
6
|
Alba-Mejía JE, Domínguez-Rodríguez G, Středa T, Středová H, Lojková L, Horký P, Skaličková S, Skládanka J. Mycotoxin production in different varieties of Dactylis glomerata L. silage in response to biological and chemical additives. PLoS One 2024; 19:e0309662. [PMID: 39208293 PMCID: PMC11361648 DOI: 10.1371/journal.pone.0309662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024] Open
Abstract
Silage has been identified as a source of different microbial toxins, that may impair farm animal health and productivity as human health can also be compromised. In this sense, the aim of this study was to determine the impact of silage additives on the concentrations of deoxynivalenol (DON) and zearalenone (ZEN) mycotoxins and, eventually, to evaluate the hygienic quality of orchardgrass (Dactylis glomerata L.) silage based on the concentration of them compared to control silage. This study evaluated the influence of biological and chemical additives used in six different varieties of orchardgrass silage on DON and ZEN mycotoxin contents for the first time. The content of both fusariotoxins (DON and ZEN) in fresh matter and grass silage were below the threshold stipulated by the European Commission. The concentration of DON ranges from ~21.86 to 37.26 ng/kg, ~10.21 to 15 ng/kg, ~20.72 to 29.14 ng/kg; and ZEN range from ~3.42 to 7.87 ng/kg, ~3.85 to 8.62 ng/kg and ~2.15 to 5.08 ng/kg, in control, biological and chemical silages, respectively. In general, the biological additive was more efficient for preventing DON contamination, whereas the chemical additive was more efficient for preventing ZEN contamination in grass silage. In summary, the results obtained in this work demonstrate that biological and chemical additives can inhibit fungal growth and mycotoxin production on Dactylis glomerata L. silage and whose use could prevent animal and human diseases.
Collapse
Affiliation(s)
- Jhonny E. Alba-Mejía
- Department of Crop Science, Breeding and Plant Protection, Faculty of AgriSciences, Mendel University in Brno, Brno, Czech Republic
| | - Gloria Domínguez-Rodríguez
- Departamento de Química Analítica, Química Física e Ingeniería Química, Facultad de Ciencias, Universidad de Alcalá, Alcalá de Henares, Madrid, Spain
| | - Tomáš Středa
- Department of Crop Science, Breeding and Plant Protection, Faculty of AgriSciences, Mendel University in Brno, Brno, Czech Republic
| | - Hana Středová
- Department of Applied and Landscape Ecology, Faculty of AgriSciences, Mendel University in Brno, Brno, Czech Republic
| | - Lea Lojková
- Department of Crop Science, Breeding and Plant Protection, Faculty of AgriSciences, Mendel University in Brno, Brno, Czech Republic
| | - Pavel Horký
- Department of Animal Nutrition and Forage Production, Faculty of AgriSciences, Mendel University in Brno, Brno, Czech Republic
| | - Sylvie Skaličková
- Department of Animal Nutrition and Forage Production, Faculty of AgriSciences, Mendel University in Brno, Brno, Czech Republic
| | - Jiří Skládanka
- Department of Animal Nutrition and Forage Production, Faculty of AgriSciences, Mendel University in Brno, Brno, Czech Republic
| |
Collapse
|
7
|
Franchino C, Vita V, Iammarino M, De Pace R. Monitoring of Animal Feed Contamination by Mycotoxins: Results of Five Years of Official Control by an Accredited Italian Laboratory. Microorganisms 2024; 12:173. [PMID: 38257999 PMCID: PMC10819248 DOI: 10.3390/microorganisms12010173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/13/2024] [Accepted: 01/14/2024] [Indexed: 01/24/2024] Open
Abstract
Mycotoxin contamination of animal feed is a complex issue in both animal wellness and food safety. The most diffused mycotoxins subject to the official control of animal feed are Aflatoxin B1 (AF), Zearalenone (ZEA), Deoxynivalenol (DON), Ochratoxin A (OCRA), Fumonisins (FUMO), and T-2/HT-2 toxins. This work describes the results of five years of monitoring focused on the evaluation of mycotoxin contamination of animal feed. Analytical determinations were carried out by means of accredited ELISA. The obtained results showed a non-alarming scenario, with several samples resulting as "non-compliant" according to the Maximum Residue Limits (MRLs) set in European Regulation No. 574/2011. Out of 722 analyzed samples coming from 2 Italian regions, Apulia and Basilicata, 14 samples were characterized by mycotoxin concentrations higher than related MRL; in particular, 5, 4, and 5 non-compliant samples for DON, AF, and ZEA, respectively. This study also evaluated the possible correlations between mycotoxin type and feed use with a special focus on animal sensitivity to mycotoxins.
Collapse
Affiliation(s)
| | | | - Marco Iammarino
- Istituto Zooprofilattico Sperimentale di Puglia e Basilicata, Via Manfredonia 20, 71121 Foggia, Italy; (C.F.); (V.V.)
| | - Rita De Pace
- Istituto Zooprofilattico Sperimentale di Puglia e Basilicata, Via Manfredonia 20, 71121 Foggia, Italy; (C.F.); (V.V.)
| |
Collapse
|
8
|
Zhang C, Jiang J, Li J, Zhang J, Zhang X, Wang H. Long transportation duration affects nutrient composition, mycotoxins and microbial community in whole-plant corn silage. Front Vet Sci 2023; 10:1189358. [PMID: 37275604 PMCID: PMC10234506 DOI: 10.3389/fvets.2023.1189358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 05/02/2023] [Indexed: 06/07/2023] Open
Abstract
Introduction Potential nutrient losses and mycotoxin accumulation caused by abnormal fermentation during transportation from cropland to dairy farms leads to the diseases incidence and threatens the health of dairy cows, then further causes financial losses. The aim of this study was to investigate the effects of different transportation times on the nutritional composition, mycotoxins, and microbial communities in whole-plant corn silage (WPCS). Methods Three groups were subjected to different transport times: DY, short (<200 min); ZY, medium time (300-500 min); and CY, long transport time (>600 min). WPCS were collected from the same field, and nutrient composition and microbial composition before and after transportation were analyzed. Results and discussion Our results showed that the temperature of WPCS was higher in the ZY and CY groups than in the DY group (P < 0.01). There were no significant differences in dry matter (DM), crude protein (CP), neutral detergent fiber (NDF), acid detergent fiber (ADF), ether extract (EE) and starch contents after different transportation times (P > 0.05), whereas the starch and water-soluble carbohydrates (WSC) contents in the CY group was significantly decreased after transport (P < 0.05). Similarly, the concentration of vomitoxin in the DY and CY groups declined markedly (P < 0.05) and the zearalenone content in the DY group also significantly decreased after transportation (P < 0.05). Regarding the analysis of microorganisms in WPCS, UniFrac-distance matrices and Shannon indices showed differences in the ZY group (P < 0.05), but fungal diversities were not influenced by the transport time (P > 0.05). In the ZY group, the relative abundance of Lactiplantibacillus decreased significantly after transportation (P > 0.05), but the relative abundances of unidentified_Chloroplast, Pantoea, Gluconobacter, unidentified Acetobacter and Acinetobacter increased markedly (P < 0.05). In addition, the relative abundances of Acetobacter and Gluconobacter in the CY group increased after transport (P < 0.05). Among fungal communities, a total of three, nine, and ten different fungal flora were observed in the DY, ZY, and CY groups, respectively, although no difference was found in fungal diversity. In conclusion, increased temperature, loss of starch, and mycotoxin variation were found with increased transport time. This might be the result of competition between bacteria and fungi, and novel technologies will need to be utilized for further exploration of the mechanism.
Collapse
Affiliation(s)
- Caixia Zhang
- College of Animal Science and Technology, Inner Mongolia Agricultural University, Hohhot, China
| | - Jun Jiang
- Inner Mongolia Yili Industrial Group Co., Ltd., Hohhot, China
| | - Junfeng Li
- Inner Mongolia Yili Industrial Group Co., Ltd., Hohhot, China
| | - Jiming Zhang
- Inner Mongolia Yili Industrial Group Co., Ltd., Hohhot, China
| | - Xinyue Zhang
- National Center of Technology Innovation for Dairy, Hohhot, China
| | - Hairong Wang
- College of Animal Science and Technology, Inner Mongolia Agricultural University, Hohhot, China
| |
Collapse
|
9
|
García-Nicolás M, Arroyo-Manzanares N, Campillo N, Reyes-Palomo C, Sanz-Fernández S, Fenoll J, Rodríguez-Estévez V, Viñas P. Use of polypyrrole ferrite microparticles and liquid chromatography-mass spectrometry for testing natural grass contamination by multiclass mycotoxins. Mikrochim Acta 2023; 190:178. [PMID: 37022520 PMCID: PMC10079724 DOI: 10.1007/s00604-023-05763-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 03/26/2023] [Indexed: 04/07/2023]
Abstract
An analytical methodology based on the combination of dispersive magnetic solid-phase extraction (DMSPE) and liquid chromatography-mass spectrometry (LC-MS) is proposed to explore the occurrence of 13 mycotoxins (aflatoxins B1, G1, B2, and G2; deoxynivalenol; T-2 toxin; ochratoxin A; HT-2 toxin; enniatins A, A1, B, and B2; and beauvericin) and their derivatives in natural grass samples. Magnetic microparticles (Fe3O4) coated with polypyrrole (PPy) polymer were used in DMSPE sample treatment as adsorbent phase, and Fourier-transform infrared spectroscopy, field emission scanning electron microscopy, and energy dispersive X-ray spectroscopy have been used for its characterization. The experimental parameters influencing the adsorption and desorption steps of DMSPE have been optimized. Method validation has been carried out obtaining limits of quantification between 0.07 and 92 μg kg-1 corresponding to enniatin B or A1 and DON, respectively. A total of 83 natural grass samples from 8 dehesa farms were analysed. Enniatin B was found in all the samples (0.29 to 488 μg kg-1 concentration range) followed by enniatin B1 (92.8% of the samples) with a 0.12-137 μg kg-1 concentration range. Moreover, co-occurrence of mycotoxins was studied and between 2 and 5 mycotoxins appeared simultaneously in 97.6% of the samples. Distribution of the contamination according to natural grass location was also investigated.
Collapse
Affiliation(s)
- María García-Nicolás
- Department of Analytical Chemistry, Faculty of Chemistry, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, E-30100, Murcia, Spain
| | - Natalia Arroyo-Manzanares
- Department of Analytical Chemistry, Faculty of Chemistry, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, E-30100, Murcia, Spain
| | - Natalia Campillo
- Department of Analytical Chemistry, Faculty of Chemistry, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, E-30100, Murcia, Spain
| | - Carolina Reyes-Palomo
- Department of Animal Production, UIC ENZOEM, International Agrifood Campus of Excellence (ceiA3), University of Cordoba, Campus de Rabanales, 14071, Córdoba, Spain
| | - Santos Sanz-Fernández
- Department of Animal Production, UIC ENZOEM, International Agrifood Campus of Excellence (ceiA3), University of Cordoba, Campus de Rabanales, 14071, Córdoba, Spain
| | - José Fenoll
- Sustainability and Quality Group of Fruit and Vegetable Products, Murcia Institute of Agricultural and Environmental Research and Development, C/Mayor s/n. La Alberca, 30150, Murcia, Spain
| | - Vicente Rodríguez-Estévez
- Department of Animal Production, UIC ENZOEM, International Agrifood Campus of Excellence (ceiA3), University of Cordoba, Campus de Rabanales, 14071, Córdoba, Spain
| | - Pilar Viñas
- Department of Analytical Chemistry, Faculty of Chemistry, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, E-30100, Murcia, Spain.
| |
Collapse
|
10
|
Xia GH, Huang Y, Wu CR, Zhang MZ, Yin HY, Yang F, Chen C, Hao J. Characterization of mycotoxins and microbial community in whole-plant corn ensiled in different silo types during aerobic exposure. Front Microbiol 2023; 14:1136022. [PMID: 37051520 PMCID: PMC10083429 DOI: 10.3389/fmicb.2023.1136022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 03/09/2023] [Indexed: 03/29/2023] Open
Abstract
Silage can be contaminated with mycotoxins and accidental fungi after aerobic exposure. The study assessed the effects of bunker silos (BS), round bales (RB), and silage bags (SB) on the nutritional characteristics, fermentation quality, aerobic stability, mycotoxin levels and microbial communities of whole-plant corn silage (WPCS). After 90 days of fermentation, silages were opened and sampled at 0, 1, 3, 5, 7, and 9 days of exposure. SB group conserved higher lactic acid and dry matter contents and a lower pH value than other groups after 9 days of exposure (p < 0.05). The SB group showed the longest aerobic stability (202 h) among all silages (p < 0.05). The concentrations of aflatoxin B1, trichothecenes and fumonisin B1 were significantly lower in SB after 9 days of exposure (p < 0.05). Acetobacter became the dominant bacteria in BS and RB groups after 5 days of exposure. However, Lactobacillus still dominated the bacterial community in SB group. Acetobacter was positively correlated with pH, acetic acid content, and ammonia-N content (p < 0.05). Lactobacillus was positively correlated with Kazachstania and Candida abundances (p < 0.01) but negatively correlated with Fusarium abundance (p < 0.05). Considering the feed value and food safety of silage in the feeding process, silage bags are recommended for WPCS according to the observed nutritional quality, fermentation index and mycotoxin content.
Collapse
Affiliation(s)
- Guang-hao Xia
- College of Animal Science, Guizhou University, Guiyang, China
| | - Yuan Huang
- College of Animal Science, Guizhou University, Guiyang, China
| | - Chang-rong Wu
- College of Animal Science, Guizhou University, Guiyang, China
| | - Ming-zhu Zhang
- College of Animal Science, Guizhou University, Guiyang, China
| | - Hai-yan Yin
- College of Animal Science, Guizhou University, Guiyang, China
| | - Feng Yang
- Guizhou Grassland Technology Extending Station, Guiyang, China
| | - Chao Chen
- College of Animal Science, Guizhou University, Guiyang, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China
| | - Jun Hao
- College of Animal Science, Guizhou University, Guiyang, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China
- *Correspondence: Jun Hao,
| |
Collapse
|
11
|
Ferrari L, Fumagalli F, Rizzi N, Grandi E, Vailati S, Manoni M, Ottoboni M, Cheli F, Pinotti L. An Eight-Year Survey on Aflatoxin B1 Indicates High Feed Safety in Animal Feed and Forages in Northern Italy. Toxins (Basel) 2022; 14:toxins14110763. [PMID: 36356013 PMCID: PMC9699321 DOI: 10.3390/toxins14110763] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/25/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022] Open
Abstract
Aflatoxins (AFs) remain the main concern for the agricultural and dairy industries due to their effects on the performances and quality of livestock production. Aflatoxins are always unavoidable and should be monitored. The objective of this paper is to bring to light a significant volume of data on AF contamination in several animal feed ingredients in Northern Italy. The Regional Breeders Association of Lombardy has been conducting a survey program to monitor mycotoxin contamination in animal feeds, and in this paper, we present data relating to AFB1 contamination. In most cases (95%), the concentrations were low enough to ensure compliance with the European Union's (EU's) maximum admitted levels for animal feed ingredients. However, the data show a high variability in AF contamination between different matrices and, within the same matrix, a high variability year over year. High levels of AFs were detected in maize and cotton, especially in the central part of the second decade of this century, i.e., 2015-2018, which has shown a higher risk of AF contamination in feed materials in Northern Italy. Variability due to climate change and the international commodity market affect future prospects to predict the presence of AFs. Supplier monitoring and control and reduced buying of contaminated raw materials, as well as performing analyses of each batch, help reduce AF spread.
Collapse
Affiliation(s)
- Luca Ferrari
- Department of Veterinary Medicine and Animal Sciences (DIVAS), Università degli Studi di Milano, Via dell’ Università, 26900 Lodi, Italy
| | - Francesca Fumagalli
- Department of Veterinary Medicine and Animal Sciences (DIVAS), Università degli Studi di Milano, Via dell’ Università, 26900 Lodi, Italy
| | - Nicoletta Rizzi
- Associazione Regionale Allevatori della Lombardia (ARAL), Via Kennedy, 26013 Crema, Italy
| | - Elisa Grandi
- Associazione Regionale Allevatori della Lombardia (ARAL), Via Kennedy, 26013 Crema, Italy
| | - Serena Vailati
- Associazione Regionale Allevatori della Lombardia (ARAL), Via Kennedy, 26013 Crema, Italy
| | - Michele Manoni
- Department of Veterinary Medicine and Animal Sciences (DIVAS), Università degli Studi di Milano, Via dell’ Università, 26900 Lodi, Italy
| | - Matteo Ottoboni
- Department of Veterinary Medicine and Animal Sciences (DIVAS), Università degli Studi di Milano, Via dell’ Università, 26900 Lodi, Italy
| | - Federica Cheli
- Department of Veterinary Medicine and Animal Sciences (DIVAS), Università degli Studi di Milano, Via dell’ Università, 26900 Lodi, Italy
- CRC I-WE (Coordinating Research Centre: Innovation for Well-Being and Environment), Università degli Studi di Milano, 20133 Milan, Italy
| | - Luciano Pinotti
- Department of Veterinary Medicine and Animal Sciences (DIVAS), Università degli Studi di Milano, Via dell’ Università, 26900 Lodi, Italy
- CRC I-WE (Coordinating Research Centre: Innovation for Well-Being and Environment), Università degli Studi di Milano, 20133 Milan, Italy
- Correspondence:
| |
Collapse
|
12
|
Tan H, Li Y, Zhou H, Guo T, Zhou Y, Zhang Y, Ma L. Temperature and pH levels: Key factors effecting hidden/free zearalenone during maize processing. Food Res Int 2022; 160:111721. [DOI: 10.1016/j.foodres.2022.111721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/27/2022] [Accepted: 07/19/2022] [Indexed: 11/04/2022]
|
13
|
Walte HG, Knappstein K, Maul R, Steinberg P. Re-evaluation of aflatoxin M1
transfer into milk
of high-yielding cows considering ration composition. JOURNAL OF ANIMAL AND FEED SCIENCES 2022. [DOI: 10.22358/jafs/151045/2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
14
|
Wang W, Yang X, Li J, Dong Z, Zhao J, Shao T, Yuan X. Effects of hexanoic acid on microbial communities, fermentation, and hygienic quality of corn silages infested with toxigenic fungi. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:3522-3534. [PMID: 34841530 DOI: 10.1002/jsfa.11696] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 11/14/2021] [Accepted: 11/28/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND This study aims to reveal the effects of hexanoic acid on the microbial communities, fermentation, and the hygienic quality of corn silages with or without fungal infection. Fungal-infested (FI) and non-infested (NFI) whole-crop corn samples were separately ensiled without (control, CON) or with hexanoic acid (Hex, 90% purity) at 0.2 g·kg-1 fresh weight (FW). RESULT The addition of Hex accelerated the pH decline during the first 5 days of ensiling regardless of fungal infestation. The lactic acid (LA) concentration in Hex silages was lower than that in CON during 45 days of ensiling; however the FI-Hex silage had the highest LA concentration among treatments on day 90. The Hex silage showed lower aflatoxin B1 (AFB1 ), zearalenone (ZEA), and deoxynivalenol (DON) concentrations than CON for FI silages. On day 5, the addition of Hex decreased the relative abundance of Klebsiella, Pantoea, and Enterobacter compared with CON, regardless of fungal infestation. This inhibitory effect lasted until day 90 for NFI silages but disappeared for FI silages on day 90. The fungal infestation resulted in the accumulation of Candida (34.05%) and Wickerhamomyces (19.46%). Hex decreased the relative abundance of Asperigillus, Issatchenkia, and Penicillium for NFI silages on day 5; however, its inhibitory effects were not observed in FI silages on day 5. CONCLUSION Fungal infestation was associated with poor fermentation and hygienic quality of corn silage. Adding Hex accelerated the pH decline and maintained the antifungal activity until 90 days of ensiling, attenuating adverse effects of fungal infestation on the fermentation and preventing the accumulation of mycotoxins in corn silages. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Wenbo Wang
- Institute of Ensiling and Processing of Grass, College of Agro-grassland Science, Nanjing Agricultural University, Nanjing, China
| | - Xin Yang
- Institute of Ensiling and Processing of Grass, College of Agro-grassland Science, Nanjing Agricultural University, Nanjing, China
| | - Junfeng Li
- Institute of Ensiling and Processing of Grass, College of Agro-grassland Science, Nanjing Agricultural University, Nanjing, China
| | - Zhihao Dong
- Institute of Ensiling and Processing of Grass, College of Agro-grassland Science, Nanjing Agricultural University, Nanjing, China
| | - Jie Zhao
- Institute of Ensiling and Processing of Grass, College of Agro-grassland Science, Nanjing Agricultural University, Nanjing, China
| | - Tao Shao
- Institute of Ensiling and Processing of Grass, College of Agro-grassland Science, Nanjing Agricultural University, Nanjing, China
| | - Xianjun Yuan
- Institute of Ensiling and Processing of Grass, College of Agro-grassland Science, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
15
|
Kelman M, Renaud J, Baines D, Yeung KC, Miller J, Sumarah M. Mycotoxin determination in fungal contaminated Canadian silage toxic to dairy cows and goats. WORLD MYCOTOXIN J 2022. [DOI: 10.3920/wmj2021.2764] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Silage has become a key component of year-long animal feed in Canada and parts of northern Europe. It provides several advantages to farmers over traditional feed components, such as increased digestibility, higher nutrient content and preservation of the forages to meet seasonal feeding demands. Some ensiled materials can contain toxic fungal metabolites resulting from ‘in field’ contamination. In addition, when improperly stored or exposed to air during the feedout stage, silage is highly susceptible to aerobic spoilage by yeasts and filamentous fungi resulting in lower nutrient value and further mycotoxin contamination. In this study, silage samples were collected from 25 Canadian dairy goat and cattle farms where animals experienced feed-related health issues. Twenty-six unique fungal species were isolated from these samples, with the majority being Penicillium. High resolution liquid chromatography tandem mass spectrometry (HRLC-MS/MS) was used to identify a total of 125 known mycotoxins and fungal secondary metabolites from these silage samples, many of which were not produced by the 26 isolated filamentous fungi grown in agar cultures. Various mycotoxins resulting from preharvest contamination were detected, including ergot alkaloids, fumonisins and trichothecenes, some in high concentrations. Toxins produced after harvest included roquefortine C, citrinin and penitrem A. This study reinforces the need for farmers to implement best management practices to minimise fungal contamination and the resulting mycotoxin deposition in their crop and stored feed to maintain animal health.
Collapse
Affiliation(s)
- M.J. Kelman
- London Research and Development Centre, Agriculture and Agri-Food Canada, 1391 Sandford Street, London, Ontario N5V 4T3, Canada
| | - J.B. Renaud
- London Research and Development Centre, Agriculture and Agri-Food Canada, 1391 Sandford Street, London, Ontario N5V 4T3, Canada
| | - D. Baines
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, 5403 1st Avenue South Lethbridge, Alberta T1J 4B1, Canada
| | - K.K.-C. Yeung
- Department of Chemistry, University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 5B7, Canada
- Department of Biochemistry, University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 5C1, Canada
| | - J.D Miller
- Department of Chemistry, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada
| | - M.W. Sumarah
- London Research and Development Centre, Agriculture and Agri-Food Canada, 1391 Sandford Street, London, Ontario N5V 4T3, Canada
| |
Collapse
|
16
|
Fusilier K, Chilvers MI, Limay-Rios V, Singh MP. Mycotoxin Co-Occurrence in Michigan Harvested Maize Grain. Toxins (Basel) 2022; 14:431. [PMID: 35878169 PMCID: PMC9324039 DOI: 10.3390/toxins14070431] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 06/09/2022] [Accepted: 06/10/2022] [Indexed: 11/30/2022] Open
Abstract
Mycotoxins are secondary metabolites produced by fungi that, depending on the type and exposure levels, can be a threat to human and animal health. When multiple mycotoxins occur together, their risk effects on human and animal health can be additive or synergistic. Little information is known about the specific types of mycotoxins or their co-occurrence in the state of Michigan and the Great Lakes region of the United States. To understand the types, incidences, severities, and frequency of co-occurrence of mycotoxins in maize grain (Zea mays L.), samples were collected from across Michigan over two years and analyzed for 20 different mycotoxins. Every sample was contaminated with at least four and six mycotoxins in 2017 and 2018, respectively. Incidence and severity of each mycotoxin varied by year and across locations. Correlations were found between mycotoxins, particularly mycotoxins produced by Fusarium spp. Environmental differences at each location played a role in which mycotoxins were present and at what levels. Overall, data from this study demonstrated that mycotoxin co-occurrence occurs at high levels in Michigan, especially with mycotoxins produced by Fusarium spp., such as deoxynivalenol.
Collapse
Affiliation(s)
- Katlin Fusilier
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA; (K.F.); (M.I.C.)
| | - Martin I. Chilvers
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA; (K.F.); (M.I.C.)
| | - Victor Limay-Rios
- Ridgetown Campus, University of Guelph, Ridgetown, ON NOP 2CO, Canada;
| | - Maninder P. Singh
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA; (K.F.); (M.I.C.)
| |
Collapse
|
17
|
Hoffmans Y, Schaarschmidt S, Fauhl-Hassek C, van der Fels-Klerx H. Factors during Production of Cereal-Derived Feed That Influence Mycotoxin Contents. Toxins (Basel) 2022; 14:301. [PMID: 35622548 PMCID: PMC9143035 DOI: 10.3390/toxins14050301] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/11/2022] [Accepted: 04/20/2022] [Indexed: 02/01/2023] Open
Abstract
Mycotoxins are naturally present in cereal-based feed materials; however, due to adverse effects on animal health, their presence in derived animal feed should be minimized. A systematic literature search was conducted to obtain an overview of all factors from harvest onwards influencing the presence and concentration of mycotoxins in cereal-based feeds. The feed production processes covered included the harvest time, post-harvest practices (drying, cleaning, storage), and processing (milling, mixing with mycotoxin binders, extrusion cooking, ensiling). Delayed harvest supports the production of multiple mycotoxins. The way feed materials are dried after harvest influences the concentration of mycotoxins therein. Applying fungicides on the feed materials after harvest as well as cleaning and sorting can lower the concentration of mycotoxins. During milling, mycotoxins might be redistributed in cereal feed materials and fractions thereof. It is important to know which parts of the cereals are used for feed production and whether or not mycotoxins predominantly accumulate in these fractions. For feed production, mostly the milling fractions with outer parts of cereals, such as bran and shorts, are used, in which mycotoxins concentrate during processing. Wet-milling of grains can lower the mycotoxin content in these parts of the grain. However, this is typically accompanied by translocation of mycotoxins to the liquid fractions, which might be added to by-products used as feed. Mycotoxin binders can be added during mixing of feed materials. Although binders do not remove mycotoxins from the feed, the mycotoxins become less bioavailable to the animal and, in the case of food-producing animals, to the consumer, lowering the adverse effects of mycotoxins. The effect of extruding cereal feed materials is dependent on several factors, but in principle, mycotoxin contents are decreased after extrusion cooking. The results on ensiling are not uniform; however, most of the data show that mycotoxin production is supported during ensiling when oxygen can enter this process. Overall, the results of the literature review suggest that factors preventing mycotoxin production have greater impact than factors lowering the mycotoxin contents already present in feed materials.
Collapse
Affiliation(s)
- Yvette Hoffmans
- Wageningen Food Safety Research, Akkermaalsbos 2, 6708 WB Wageningen, The Netherlands;
| | - Sara Schaarschmidt
- Department Safety in the Food Chain, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, D-10589 Berlin, Germany; (S.S.); (C.F.-H.)
| | - Carsten Fauhl-Hassek
- Department Safety in the Food Chain, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, D-10589 Berlin, Germany; (S.S.); (C.F.-H.)
| | | |
Collapse
|
18
|
Huang R, Zhang F, Wang T, Zhang Y, Li X, Chen Y, Ma C. Effect of Intrinsic Tannins on the Fermentation Quality and Associated with the Bacterial and Fungal Community of Sainfoin Silage. Microorganisms 2022; 10:microorganisms10050844. [PMID: 35630290 PMCID: PMC9147618 DOI: 10.3390/microorganisms10050844] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/15/2022] [Accepted: 04/16/2022] [Indexed: 01/31/2023] Open
Abstract
Sainfoin (Onobrychis viciifolia) is rich in condensed tannins (CT). CT function includes inhibiting bacterial and fungi activity during the ensiling process. We used polyethylene glycol (PEG) to deactivate tannin activity to find out the effects of CT. The results show that the addition of PEG increased dry-matter loss (8.32% vs. 14.15%, on a dry-matter basis) after 60 d of ensiling, and also increased lactic acid (10.90% vs. 15.90%, on a dry-matter basis) and acetic-acid content (7.32% vs. 13.85%, on a dry-matter basis) after 30 d of ensiling. The PEG-treated group increased its Pediococcus relative abundance (0.37−3.38% vs. 7.82−23.5%,) during the ensiling process, increased its Gibellulopsis relative abundance after 3 d of ensiling (5.96% vs. 19.52%), increased its Vishniacozyma relative abundance after 3 d and 7 d of ensiling (2.36% vs. 17.02%, 3.65% vs. 17.17%), and increased its Aspergillus relative abundance after 7 d, 14 d and 60 d of ensiling (0.28% vs. 1.32%, 0.49% vs. 2.84% and 1.74% vs. 7.56%). However, the PEG-treated group decreased its Alternaria relative abundance during entire ensiling process (14.00−25.21% vs. 3.33−7.49%). These results suggest that condensed tannins inhibit lactic-acid bacteria fermentation though reducing Pediococcus activity, and inhibiting fungi activity depending on different strains.
Collapse
|
19
|
Penagos-Tabares F, Khiaosa-Ard R, Schmidt M, Pacífico C, Faas J, Jenkins T, Nagl V, Sulyok M, Labuda R, Zebeli Q. Fungal species and mycotoxins in mouldy spots of grass and maize silages in Austria. Mycotoxin Res 2022; 38:117-136. [PMID: 35347677 PMCID: PMC9038934 DOI: 10.1007/s12550-022-00453-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 02/18/2022] [Accepted: 03/08/2022] [Indexed: 12/23/2022]
Abstract
Fungi and mycotoxins in silage can have detrimental consequences for both cattle and human health. This pilot study identified, via the routinary direct plating method, the dominant cultivable fungi in mouldy grass silages (GS) (n = 19) and maize silages (MS) (n = 28) from Austria. The profiles of regulated, modified, and emerging mycotoxins together with other fungal metabolites were analysed via LC-(ESI)MS/MS. Penicillium roqueforti, Saccharomyces spp., Geotrichum candidum, Aspergillus fumigatus and Monascus ruber were the most frequent fungal organisms identified. Other species including Mucor circinelloides, Fusarium spp. and Paecilomyces niveus were detected at lower frequencies. The presence of complex mixtures of toxic and potentially toxic compounds was evidenced by high levels and occurrences (≥ 50%) of Penicillium-produced compounds such as mycophenolic acid (MPA), roquefortines (ROCs), andrastins (ANDs) and marcfortine A. Mouldy silages contained toxins commonly produced by genus Fusarium (e.g. zearalenone (ZEN) and trichothecenes), Alternaria (like tenuazonic acid (TeA) and alternariol (AHO)) and Aspergillus (such as sterigmatocystin (STC)). Compared to those in GS, mouldy spots in MS presented significantly higher fungal counts and more diverse toxin profiles, in addition to superior levels of Fusarium spp., Penicillium spp. and total fungal metabolites. Generally, no correlation between mould counts and corresponding metabolites was detected, except for the counts of P. roqueforti, which were positively correlated with Penicillium spp. metabolites in mouldy MS. This study represents a first assessment of the fungal diversity in mouldy silage in Austria and highlights its potential role as a substantial contributor to contamination with complex mycotoxin mixtures in cattle diets.
Collapse
Affiliation(s)
- Felipe Penagos-Tabares
- Institute of Animal Nutrition and Functional Plant Compounds, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210, Vienna, Austria
| | - Ratchaneewan Khiaosa-Ard
- Institute of Animal Nutrition and Functional Plant Compounds, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210, Vienna, Austria.
| | - Marlene Schmidt
- Institute of Animal Nutrition and Functional Plant Compounds, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210, Vienna, Austria
| | - Cátia Pacífico
- Institute of Animal Nutrition and Functional Plant Compounds, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210, Vienna, Austria
| | - Johannes Faas
- BIOMIN Research Center, Technopark 1, 3430, Tulln a.d. Donau, Austria
| | - Timothy Jenkins
- BIOMIN Research Center, Technopark 1, 3430, Tulln a.d. Donau, Austria
| | - Veronika Nagl
- BIOMIN Research Center, Technopark 1, 3430, Tulln a.d. Donau, Austria
| | - Michael Sulyok
- Department IFA-Tulln, University of Natural Resources and Life Sciences (BOKU), Konrad Lorenzstrasse 20, 3430, Tulln, Austria
| | - Roman Labuda
- Institute of Food Safety, Food Technology and Veterinary Public Health, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210, Vienna, Austria
- Research Platform Bioactive Microbial Metabolites (BiMM), 3430, Tulln a.d. Donau, Austria
| | - Qendrim Zebeli
- Institute of Animal Nutrition and Functional Plant Compounds, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210, Vienna, Austria
- Department for Farm Animals and Veterinary Public Health, Christian-Doppler-Laboratory for Innovative Gut Health Concepts in Livestock (CDL-LiveGUT), University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210, Vienna, Austria
| |
Collapse
|
20
|
Wang LQ, Wu KT, Yang P, Hou F, Rajput SA, Qi DS, Wang S. Transcriptomics Reveals the Effect of Thymol on the Growth and Toxin Production of Fusarium graminearum. Toxins (Basel) 2022; 14:142. [PMID: 35202169 PMCID: PMC8877954 DOI: 10.3390/toxins14020142] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/05/2022] [Accepted: 02/11/2022] [Indexed: 12/20/2022] Open
Abstract
Fusarium graminearum is a harmful pathogen causing head blight in cereals such as wheat and barley, and thymol has been proven to inhibit the growth of many pathogens. This study aims to explore the fungistatic effect of thymol on F. graminearum and its mechanism. Different concentrations of thymol were used to treat F. graminearum. The results showed that the EC50 concentration of thymol against F. graminearum was 40 μg/mL. Compared with the control group, 40 μg/mL of thymol reduced the production of Deoxynivalenol (DON) and 3-Ac-DON by 70.1% and 78.2%, respectively. Our results indicate that thymol can effectively inhibit the growth and toxin production of F. graminearum and cause an extensive transcriptome response. Transcriptome identified 16,727 non-redundant unigenes and 1653 unigenes that COG did not annotate. The correlation coefficients between samples were all >0.941. When FC was 2.0 times, a total of 3230 differential unigenes were identified, of which 1223 were up-regulated, and 2007 were down-regulated. Through the transcriptome, we confirmed that the expression of many genes involved in F. graminearum growth and synthesis of DON and other secondary metabolites were also changed. The gluconeogenesis/glycolysis pathway may be a potential and important way for thymol to affect the growth of F. graminearum hyphae and the production of DON simultaneously.
Collapse
Affiliation(s)
- Lian-Qun Wang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (L.-Q.W.); (K.-T.W.); (P.Y.)
- Department of Animal Science, College of Animal Science and Technology, Tarim University, Aral 843300, China;
| | - Kun-Tan Wu
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (L.-Q.W.); (K.-T.W.); (P.Y.)
| | - Ping Yang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (L.-Q.W.); (K.-T.W.); (P.Y.)
| | - Fang Hou
- Department of Animal Science, College of Animal Science and Technology, Tarim University, Aral 843300, China;
| | - Shahid Ali Rajput
- Faculty of Veterinary and Animal Science, Muhammad Nawaz Shareef University of Agriculture, Multan 60000, Punjab, Pakistan;
| | - De-Sheng Qi
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (L.-Q.W.); (K.-T.W.); (P.Y.)
| | - Shuai Wang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (L.-Q.W.); (K.-T.W.); (P.Y.)
| |
Collapse
|
21
|
Sadhasivam S, Marshi R, Barda O, Zakin V, Britzi M, Gamliel A, Sionov E. Ensiling process and pomegranate peel extract as a natural additive in potential prevention of fungal and mycotoxin contamination in silage. Toxicol Rep 2022; 9:1557-1565. [PMID: 35936058 PMCID: PMC9347003 DOI: 10.1016/j.toxrep.2022.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/21/2022] [Accepted: 07/23/2022] [Indexed: 11/25/2022] Open
Abstract
A study was conducted on six animal feed centers in Israel where fungal and mycotoxin presence was examined in maize and wheat silages. Fumonisin mycotoxins FB1 and FB2 were present in every maize silage sample analyzed. Interestingly, no correlation was found between the occurrence of specific mycotoxins and the presence of the fungal species that might produce them in maize and wheat silages. We further investigated the effect of pomegranate peel extract (PPE) on Fusarium infection and fumonisin biosynthesis in laboratory-prepared maize silage. PPE had an inhibitory effect on FB1 and FB2 biosynthesis by Fusarium proliferatum, which resulted in up to 90 % reduction of fumonisin production in silage samples compared to untreated controls. This finding was supported by qRT-PCR analysis, showing downregulation of key genes involved in the fumonisin-biosynthesis pathway under PPE treatment. Our results present promising new options for the use of natural compounds that may help reduce fungal and mycotoxin contamination in agricultural foodstuff, and potentially replace traditionally used synthetic chemicals. The mycotoxins fumonisin B1 and B2 were detected in all analyzed maize silage samples. No correlation was found between mycotoxins and their fungal sources in silages. Treatment with PPE demonstrated strong anti-mycotoxigenic activity in silages samples.
Collapse
|
22
|
Occurrence of mycotoxins and mycotoxigenic fungi in silage from the north of Portugal at feed-out. Int J Food Microbiol 2022; 365:109556. [DOI: 10.1016/j.ijfoodmicro.2022.109556] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/29/2021] [Accepted: 01/23/2022] [Indexed: 11/22/2022]
|
23
|
Li J, Wang W, Chen S, Shao T, Tao X, Yuan X. Effect of Lactic Acid Bacteria on the Fermentation Quality and Mycotoxins Concentrations of Corn Silage Infested with Mycotoxigenic Fungi. Toxins (Basel) 2021; 13:toxins13100699. [PMID: 34678992 PMCID: PMC8537395 DOI: 10.3390/toxins13100699] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 09/06/2021] [Accepted: 09/28/2021] [Indexed: 12/05/2022] Open
Abstract
This study was conducted to evaluate the effect of lactic acid bacteria (LAB) on fermentation quality, mycotoxin concentrations, and microbial communities of whole-crop corn silages infested with mycotoxigenic fungi. Cultured spores (106 cfu/mL) of mycotoxigenic Aspergillus flavus and Fusarium graminearum were sprayed (5 mL) on corn forage on 27 July and 10 August 2018. On 21 August 2018, sprayed (FI; 3 plots) and unsprayed (NFI; 3 plots) corn forage were harvested at the 1/2 kernel milk line stage, followed by chopping and ensiling without inoculants (CON), or with Lactobacillus buchneri (LB, 1 × 106 cfu/g FW), Lactobacillus plantarum (LT, 1 × 106 cfu/g FW), or L. buchneri + L. plantarum (BT: both L. buchneri and L. plantarum applied at 0.5 × 106 cfu/g FW). After 90 d of ensiling, FI silages had a higher (p < 0.05) pH value and higher acetic acid (ACA), ethanol, and ammonia nitrogen (ammonia N) concentrations, but lower (p < 0.05) lactic acid (LA) concentrations than NFI silage. The inoculants decreased pH and increased LA concentration and LA/ACA compared with CON. The aflatoxin B1 (AFB1) was only detected in FI fresh corn and silages; ensiling decreased (p < 0.05) AFB1 concentration compared with fresh corn, and LB and BT decreased AFB1 concentration compared with CON. The zearalenone (ZEN), deoxynivalenol (DON), and fumonisin B1 (FB1) concentrations were similar (p < 0.05) for NFI silages, while ZEN concentration in BT was the lowest (p < 0.05) among all FI silages; DON and FB1 concentrations in LB, LT, and BT silages were significantly lower (p < 0.05) than those of CON in FI silages. The fungal infestation increased the bacterial and fungal diversity of silages compared with NFI silages. The FI silages had a higher relative abundance (RA) of Lactobacillus, Weissella, Wickerhamomyces, Pichia, and Epicoccum than the corresponding NFI silages. The RA of Aspergillus and Fusarium markedly decreased after 90 d of ensiling, and the inoculation expanded this trend irrespective of fungal infestation. The Penicillium in FI silages survived after 90 d of ensiling, while the inoculants decreased the RA of Penicillium. Inoculants mitigate the adverse effects of fungal infestation on corn silage quality by changing the bacterial and fungal communities.
Collapse
|
24
|
Weaver AC, Weaver DM, Adams N, Yiannikouris A. Co-Occurrence of 35 Mycotoxins: A Seven-Year Survey of Corn Grain and Corn Silage in the United States. Toxins (Basel) 2021; 13:toxins13080516. [PMID: 34437387 PMCID: PMC8402310 DOI: 10.3390/toxins13080516] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/19/2021] [Accepted: 07/20/2021] [Indexed: 12/04/2022] Open
Abstract
Mycotoxins contaminate crops worldwide and play a role in animal health and performance. Multiple mycotoxins may co-occur which may increase the impact on the animal. To assess the multiple mycotoxin profile of corn (Zea mays), we conducted a 7-year survey of new crop corn grain and silage in the United States. A total of 711 grain and 1117 silage samples were collected between 2013 and 2019 and analyzed for the simultaneous presence of 35 mycotoxins using ultra-performance liquid chromatography–tandem mass spectrometry. The measured mean number of mycotoxins per sample were 4.8 (grain) and 5.2 (silage), ranging from 0 to 13. Fusaric acid (FA) was most frequently detected in 78.1 and 93.8% of grains and silages, respectively, followed by deoxynivalenol (DON) in 75.7 and 88.2% of samples. Fumonisin B1 (FB1), fumonisin B2 and 15-acetyl-deoxynivalenol (15ADON) followed. The greatest (p < 0.05) co-occurrence was between FA and DON in 59.1% of grains and 82.7% of silages, followed by FA with FB1, DON with 15ADON, and FA with 15ADON. Although many samples had lower mycotoxin concentrations, 1.6% (grain) and 7.9% (silage) of tested samples had DON ≥ 5000 µg/kg. Fumonisins were detected ≥ 10,000 µg/kg in 9.6 and 3.9% of grain and silage samples, respectively. Concentrations in grain varied by year for eight mycotoxin groups (p < 0.05), while all 10 groups showed yearly variations in silage. Our survey suggest that multiple mycotoxins frequently co-occur in corn grain and silage in the United States, and some of the more prevalent mycotoxins are those that may not be routinely analyzed (i.e., FA and 15ADON). Assessment of multiple mycotoxins should be considered when developing management programs.
Collapse
Affiliation(s)
- Alexandra C. Weaver
- Alltech Inc., 3031 Catnip Hill Road, Nicholasville, KY 40356, USA;
- Correspondence:
| | | | | | | |
Collapse
|
25
|
Rocchetti G, Ghilardelli F, Bonini P, Lucini L, Masoero F, Gallo A. Changes of Milk Metabolomic Profiles Resulting from a Mycotoxins-Contaminated Corn Silage Intake by Dairy Cows. Metabolites 2021; 11:475. [PMID: 34436416 PMCID: PMC8400352 DOI: 10.3390/metabo11080475] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/20/2021] [Accepted: 07/21/2021] [Indexed: 01/06/2023] Open
Abstract
In this study, an untargeted metabolomics approach based on ultra-high-performance liquid chromatography coupled with high-resolution mass spectrometry (UHPLC-HRMS) was used for investigating changes in chemical profiles of cow milk considering diets based on mycotoxins-contaminated corn silages. For this purpose, 45 milk samples were classified into five clusters according to the corn silage contamination profile, namely (1) low levels of Aspergillus- and Penicillium-mycotoxins; (2) low levels of fumonisins and other Fusarium-mycotoxins; (3) high levels of Aspergillus-mycotoxins; (4) high levels of non-regulated Fusarium-mycotoxins; (5) high levels of fumonisins and their metabolites, and subsequently analyzed by UHPLC-HRMS followed by a multivariate statistical analysis (both unsupervised and supervised statistical approaches). Overall, the milk metabolomic profile highlighted potential correlations between the quality of contaminated corn silages (as part of the total mixed ration) and milk composition. Metabolomics allowed to identify 628 significant milk metabolites as affected by the five levels of corn silage contamination considered, with amino acids and peptides showing the highest metabolite set enrichment (134 compounds). Additionally, 78 metabolites were selected as the best discriminant of the prediction model built, possessing a variable importance in projection score >1.2. The average Log Fold-Change variations of the discriminant metabolites provided evidence that sphingolipids, together with purine and pyrimidine-derived metabolites were the most affected chemical classes. Also, metabolomics revealed a significant accumulation of oxidized glutathione in milk samples belonging to the silage cluster contaminated by emerging Aspergillus toxins, likely involved in the oxidative imbalance. These preliminary findings provide new insights into the potential role of milk metabolomics to provide chemical indicators of mycotoxins-contaminated corn silage feeding systems.
Collapse
Affiliation(s)
- Gabriele Rocchetti
- Department of Animal Science, Food and Nutrition, Faculty of Agricultural, Food and Environmental Sciences, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy; (F.G.); (F.M.); (A.G.)
- Department for Sustainable Food Process, Faculty of Agricultural, Food and Environmental Sciences, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy;
| | - Francesca Ghilardelli
- Department of Animal Science, Food and Nutrition, Faculty of Agricultural, Food and Environmental Sciences, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy; (F.G.); (F.M.); (A.G.)
| | | | - Luigi Lucini
- Department for Sustainable Food Process, Faculty of Agricultural, Food and Environmental Sciences, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy;
| | - Francesco Masoero
- Department of Animal Science, Food and Nutrition, Faculty of Agricultural, Food and Environmental Sciences, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy; (F.G.); (F.M.); (A.G.)
| | - Antonio Gallo
- Department of Animal Science, Food and Nutrition, Faculty of Agricultural, Food and Environmental Sciences, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy; (F.G.); (F.M.); (A.G.)
| |
Collapse
|