1
|
Muller JAI, Bourke LA, Campbell SID, Cardoso FC. Venom peptides regulating Ca 2+ homeostasis: neuroprotective potential. Trends Pharmacol Sci 2025:S0165-6147(25)00047-1. [PMID: 40240234 DOI: 10.1016/j.tips.2025.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 03/14/2025] [Accepted: 03/17/2025] [Indexed: 04/18/2025]
Abstract
Venom peptides specialized in modulating intracellular calcium ([Ca2+]i) offer a treasure trove of pharmacological properties to regulate aberrant Ca2+ homeostasis in disease. Combined with emerging advances across peptide optimization, disease models, and functional bioassays, these venom peptides could unlock new therapies restoring Ca2+ homeostasis. In this opinion, we explore the pharmacology of venom peptides modulating [Ca2+]i signaling along with recent breakthroughs propelling venom peptide-based drug discovery. We predict a transformative era in therapeutic development harnessing venom peptides targeting dysfunctional Ca2+ signaling in intractable conditions such as neurodegenerative diseases.
Collapse
Affiliation(s)
- Jessica A I Muller
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland, 4072, Australia
| | - Lachlan A Bourke
- School of the Environment, The University of Queensland, St. Lucia, Queensland, 4072, Australia
| | - Sam I D Campbell
- School of the Environment, The University of Queensland, St. Lucia, Queensland, 4072, Australia
| | - Fernanda C Cardoso
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland, 4072, Australia.
| |
Collapse
|
2
|
Calvete JJ, Lomonte B, Tena-Garcés J, Zollweg M, Mebs D. Mandibular gland proteomics of the Mexican alligator lizard, Abronia graminea, and the red-lipped arboreal alligator lizard, Abronia lythrochila. Toxicon 2024; 249:108055. [PMID: 39097104 DOI: 10.1016/j.toxicon.2024.108055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 08/05/2024]
Abstract
A useful approach to deepen our knowledge about the origin and evolution of venom systems in Reptilia has been exploring the vast biodiversity of this clade of vertebrates in search of orally produced proteins with toxic actions, as well as their corresponding delivery systems. The occurrence of toxins in anguimorph lizards has been demonstrated experimentally or inferred from reports of the toxic effects of the oral secretions of taxa within the Varanidae and Helodermatidae families. In the present study, we have focused on two alligator lizards of the Anguidae family, the Mexican alligator lizard, Abronia graminea, and the red-lipped arboreal alligator lizard, A. lythrochila. In addition, the fine morphology of teeth of the latter species is described. The presence of a conserved set of proteins, including B-type natriuretic peptides, cysteine-rich secretory proteins, group III phospholipase A2, and kallikrein, in submandibular gland extracts was demonstrated for both Abronia species. These proteins belong to toxin families found in oral gland secretions of venomous reptile species. This finding, along with previous demonstration of toxin-producing taxa in both paleo- and neoanguimorpha clades, provides further support for the existence of a handful of conserved toxin families in oral secretions across the 100+ million years of Anguimorpha cladogenesis.
Collapse
Affiliation(s)
- Juan J Calvete
- Laboratorio de Venómica Evolutiva y Traslacional, Instituto de Biomedicina de Valencia, C.S.I.C., Jaime Roig 11, 46010, Valencia, Spain.
| | - Bruno Lomonte
- Instituto Clodomiro Picado, Facultad de Microbiologia, Universidad de Costa Rica, San José, 11501, Costa Rica.
| | - Jordi Tena-Garcés
- Laboratorio de Venómica Evolutiva y Traslacional, Instituto de Biomedicina de Valencia, C.S.I.C., Jaime Roig 11, 46010, Valencia, Spain.
| | | | - Dietrich Mebs
- Institute of Legal Medicine, Goethe University of Frankfurt, Kennedyallee 104, D-60569, Frankfurt, Germany.
| |
Collapse
|
3
|
Dobson J, Chowdhury A, Tai-A-Pin J, van der Ploeg H, Gillett A, Fry BG. The Clot Thickens: Differential Coagulotoxic and Cardiotoxic Activities of Anguimorpha Lizard Venoms. Toxins (Basel) 2024; 16:283. [PMID: 38922177 PMCID: PMC11209219 DOI: 10.3390/toxins16060283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/11/2024] [Accepted: 06/17/2024] [Indexed: 06/27/2024] Open
Abstract
Despite their evolutionary novelty, lizard venoms are much less studied in comparison to the intense research on snake venoms. While the venoms of helodermatid lizards have long been assumed to be for defensive purposes, there is increasing evidence of toxic activities more useful for predation than defence (such as paralytic neurotoxicity). This study aimed to ascertain the effects of Heloderma, Lanthanotus, and Varanus lizard venoms on the coagulation and cardiovascular systems. Anticoagulant toxicity was demonstrated for the Varanus species studied, with the venoms prolonging clotting times in human and bird plasma due to the destructive cleavage of fibrinogen. In contrast, thromboelastographic analyses on human and bird plasmas in this study demonstrated a procoagulant bioactivity for Heloderma venoms. A previous study on Heloderma venom using factor-depleted plasmas as a proxy model suggested a procoagulant factor was present that activated either Factor XI or Factor XII, but could not ascertain the precise target. Our activation studies using purified zymogens confirmed FXII activation. Comparisons of neonate and adult H. exasperatum, revealed the neonates to be more potent in the ability to activate FXII, being more similar to the venom of the smaller species H. suspectum than the adult H. exasperatum. This suggests potent FXII activation a basal trait in the genus, present in the small bodied last common ancestor. This also indicates an ontogenetic difference in prey preferences in the larger Heloderma species paralleing the change in venom biochemistry. In addition, as birds lack Factor XII, the ability to clot avian plasma suggested an additional procoagulant site of action, which was revealed to be the activation of Factor VII, with H. horridum being the most potent. This study also examined the effects upon the cardiovascular system, including the liberation of kinins from kininogen, which contributes to hypotension induction. This form of toxicity was previously described for Heloderma venoms, and was revealed in this study was to also be a pathophysiological effect of Lanthanotus and Varanus venoms. This suggests that this toxic activity was present in the venom of the last common ancestor of the anguimorph lizards, which is consistent with kallikrein enzymes being a shared toxin trait. This study therefore uncovered novel actions of anguimorph lizard venoms, not only contributing to the evolutionary biology body of knowledge but also revealing novel activities to mine for drug design lead compounds.
Collapse
Affiliation(s)
- James Dobson
- Adaptive Biotoxicology Lab, School of the Environment, University of Queensland, St Lucia, QLD 4072, Australia; (J.D.); (A.C.)
| | - Abhinandan Chowdhury
- Adaptive Biotoxicology Lab, School of the Environment, University of Queensland, St Lucia, QLD 4072, Australia; (J.D.); (A.C.)
| | | | - Harold van der Ploeg
- Working Group Adder Research Netherlands, RAVON, 6525 ED Nijmegen, The Netherlands;
| | - Amber Gillett
- FaunaVet Wildlife Consultancy, Glass House Mountains, QLD 4518, Australia;
| | - Bryan G. Fry
- Adaptive Biotoxicology Lab, School of the Environment, University of Queensland, St Lucia, QLD 4072, Australia; (J.D.); (A.C.)
| |
Collapse
|
4
|
Chandrasekara U, Mancuso M, Seneci L, Bourke L, Trembath DF, Sumner J, Zdenek CN, Fry BG. A Russian Doll of Resistance: Nested Gains and Losses of Venom Immunity in Varanid Lizards. Int J Mol Sci 2024; 25:2628. [PMID: 38473875 DOI: 10.3390/ijms25052628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/18/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024] Open
Abstract
The interplay between predator and prey has catalyzed the evolution of venom systems, with predators honing their venoms in response to the evolving resistance of prey. A previous study showed that the African varanid species Varanus exanthematicus has heightened resistance to snake venoms compared to the Australian species V. giganteus, V. komodoensis, and V. mertensi, likely due to increased predation by sympatric venomous snakes on V. exanthematicus. To understand venom resistance among varanid lizards, we analyzed the receptor site targeted by venoms in 27 varanid lizards, including 25 Australian varanids. The results indicate an active evolutionary arms race between Australian varanid lizards and sympatric neurotoxic elapid snakes. Large species preying on venomous snakes exhibit inherited neurotoxin resistance, a trait potentially linked to their predatory habits. Consistent with the 'use it or lose it' aspect of venom resistance, this trait was secondarily reduced in two lineages that had convergently evolved gigantism (V. giganteus and the V. komodoensis/V. varius clade), suggestive of increased predatory success accompanying extreme size and also increased mechanical protection against envenomation due to larger scale osteoderms. Resistance was completely lost in the mangrove monitor V. indicus, consistent with venomous snakes not being common in their arboreal and aquatic niche. Conversely, dwarf varanids demonstrate a secondary loss at the base of the clade, with resistance subsequently re-evolving in the burrowing V. acanthurus/V. storri clade, suggesting an ongoing battle with neurotoxic predators. Intriguingly, within the V. acanthurus/V. storri clade, resistance was lost again in V. kingorum, which is morphologically and ecologically distinct from other members of this clade. Resistance was also re-evolved in V. glebopalma which is terrestrial in contrast to the arboreal/cliff dwelling niches occupied by the other members of its clade (V. glebopalma, V. mitchelli, V. scalaris, V. tristis). This 'Russian doll' pattern of venom resistance underscores the dynamic interaction between dwarf varanids and Australian neurotoxic elapid snakes. Our research, which included testing Acanthophis (death adder) venoms against varanid receptors as models for alpha-neurotoxic interactions, uncovered a fascinating instance of the Red Queen Hypothesis: some death adders have developed more potent toxins specifically targeting resistant varanids, a clear sign of the relentless predator-prey arms race. These results offer new insight into the complex dynamics of venom resistance and highlight the intricate ecological interactions that shape the natural world.
Collapse
Affiliation(s)
- Uthpala Chandrasekara
- Adaptive Biotoxicology Lab, School of the Environment, University of Queensland, St Lucia, QLD 4072, Australia
| | - Marco Mancuso
- Adaptive Biotoxicology Lab, School of the Environment, University of Queensland, St Lucia, QLD 4072, Australia
| | - Lorenzo Seneci
- Adaptive Biotoxicology Lab, School of the Environment, University of Queensland, St Lucia, QLD 4072, Australia
| | - Lachlan Bourke
- Adaptive Biotoxicology Lab, School of the Environment, University of Queensland, St Lucia, QLD 4072, Australia
| | - Dane F Trembath
- Herpetology Department, Australian Museum Research Institute, Australian Museum, Sydney, NSW 2010, Australia
| | - Joanna Sumner
- Museums Victoria Research Institute, Melbourne, VIC 3001, Australia
| | - Christina N Zdenek
- School of the Environment, University of Queensland, St Lucia, QLD 4072, Australia
| | - Bryan G Fry
- Adaptive Biotoxicology Lab, School of the Environment, University of Queensland, St Lucia, QLD 4072, Australia
| |
Collapse
|
5
|
Lüddecke T, Paas A, Harris RJ, Talmann L, Kirchhoff KN, Billion A, Hardes K, Steinbrink A, Gerlach D, Fry BG, Vilcinskas A. Venom biotechnology: casting light on nature's deadliest weapons using synthetic biology. Front Bioeng Biotechnol 2023; 11:1166601. [PMID: 37207126 PMCID: PMC10188951 DOI: 10.3389/fbioe.2023.1166601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 04/18/2023] [Indexed: 05/21/2023] Open
Abstract
Venoms are complex chemical arsenals that have evolved independently many times in the animal kingdom. Venoms have attracted the interest of researchers because they are an important innovation that has contributed greatly to the evolutionary success of many animals, and their medical relevance offers significant potential for drug discovery. During the last decade, venom research has been revolutionized by the application of systems biology, giving rise to a novel field known as venomics. More recently, biotechnology has also made an increasing impact in this field. Its methods provide the means to disentangle and study venom systems across all levels of biological organization and, given their tremendous impact on the life sciences, these pivotal tools greatly facilitate the coherent understanding of venom system organization, development, biochemistry, and therapeutic activity. Even so, we lack a comprehensive overview of major advances achieved by applying biotechnology to venom systems. This review therefore considers the methods, insights, and potential future developments of biotechnological applications in the field of venom research. We follow the levels of biological organization and structure, starting with the methods used to study the genomic blueprint and genetic machinery of venoms, followed gene products and their functional phenotypes. We argue that biotechnology can answer some of the most urgent questions in venom research, particularly when multiple approaches are combined together, and with other venomics technologies.
Collapse
Affiliation(s)
- Tim Lüddecke
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Giessen, Germany
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Frankfurt am Main, Germany
- *Correspondence: Tim Lüddecke,
| | - Anne Paas
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Giessen, Germany
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Frankfurt am Main, Germany
| | - Richard J. Harris
- Venom Evolution Lab, School of Biological Sciences, The University of Queensland, Brisbane, QLD, Australia
- Institute for Molecular Biosciences (IMB), The University of Queensland, Brisbane, QLD, Australia
| | - Lea Talmann
- Syngenta Crop Protection, Stein, Switzerland
| | - Kim N. Kirchhoff
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Giessen, Germany
| | - André Billion
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Giessen, Germany
| | - Kornelia Hardes
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Giessen, Germany
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Frankfurt am Main, Germany
- BMBF Junior Research Group in Infection Research “ASCRIBE”, Giessen, Germany
| | - Antje Steinbrink
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Frankfurt am Main, Germany
- Institute for Insect Biotechnology, Justus Liebig University of Giessen, Giessen, Germany
| | - Doreen Gerlach
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Giessen, Germany
| | - Bryan G. Fry
- Venom Evolution Lab, School of Biological Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Andreas Vilcinskas
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Giessen, Germany
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Frankfurt am Main, Germany
- Institute for Insect Biotechnology, Justus Liebig University of Giessen, Giessen, Germany
| |
Collapse
|
6
|
Coelho GR, da Silva DL, Beraldo-Neto E, Vigerelli H, de Oliveira LA, Sciani JM, Pimenta DC. Neglected Venomous Animals and Toxins: Underrated Biotechnological Tools in Drug Development. Toxins (Basel) 2021; 13:toxins13120851. [PMID: 34941689 PMCID: PMC8708286 DOI: 10.3390/toxins13120851] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 11/24/2021] [Accepted: 11/25/2021] [Indexed: 12/15/2022] Open
Abstract
Among the vast repertoire of animal toxins and venoms selected by nature and evolution, mankind opted to devote its scientific attention—during the last century—to a restricted group of animals, leaving a myriad of toxic creatures aside. There are several underlying and justifiable reasons for this, which include dealing with the public health problems caused by envenoming by such animals. However, these studies became saturated and gave rise to a whole group of animals that become neglected regarding their venoms and secretions. This repertoire of unexplored toxins and venoms bears biotechnological potential, including the development of new technologies, therapeutic agents and diagnostic tools and must, therefore, be assessed. In this review, we will approach such topics through an interconnected historical and scientific perspective that will bring up the major discoveries and innovations in toxinology, achieved by researchers from the Butantan Institute and others, and describe some of the major research outcomes from the study of these neglected animals.
Collapse
Affiliation(s)
- Guilherme Rabelo Coelho
- Laboratório de Bioquímica, Instituto Butantan, São Paulo 05503-900, Brazil; (G.R.C.); (D.L.d.S.); (E.B.-N.)
| | - Daiane Laise da Silva
- Laboratório de Bioquímica, Instituto Butantan, São Paulo 05503-900, Brazil; (G.R.C.); (D.L.d.S.); (E.B.-N.)
| | - Emidio Beraldo-Neto
- Laboratório de Bioquímica, Instituto Butantan, São Paulo 05503-900, Brazil; (G.R.C.); (D.L.d.S.); (E.B.-N.)
| | - Hugo Vigerelli
- Laboratório de Genética, Instituto Butantan, São Paulo 05503-900, Brazil;
| | - Laudiceia Alves de Oliveira
- Laboratório de Moléstias Infecciosas—Faculdade de Medicina de Botucatu, São Paulo State University (UNESP), São Paulo 01049-010, Brazil;
| | - Juliana Mozer Sciani
- Laboratório Multidisciplinar em Pesquisa, Universidade São Francisco, Bragança Paulista 12916-900, Brazil;
| | - Daniel Carvalho Pimenta
- Laboratório de Bioquímica, Instituto Butantan, São Paulo 05503-900, Brazil; (G.R.C.); (D.L.d.S.); (E.B.-N.)
- Correspondence:
| |
Collapse
|