1
|
Jethva PN, Gross ML. Hydrogen Deuterium Exchange and other Mass Spectrometry-based Approaches for Epitope Mapping. FRONTIERS IN ANALYTICAL SCIENCE 2023; 3:1118749. [PMID: 37746528 PMCID: PMC10512744 DOI: 10.3389/frans.2023.1118749] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Antigen-antibody interactions are a fundamental subset of protein-protein interactions responsible for the "survival of the fittest". Determining the interacting interface of the antigen, called an epitope, and that on the antibody, called a paratope, is crucial to antibody development. Because each antigen presents multiple epitopes (unique footprints), sophisticated approaches are required to determine the target region for a given antibody. Although X-ray crystallography, Cryo-EM, and nuclear magnetic resonance can provide atomic details of an epitope, they are often laborious, poor in throughput, and insensitive. Mass spectrometry-based approaches offer rapid turnaround, intermediate structural resolution, and virtually no size limit for the antigen, making them a vital approach for epitope mapping. In this review, we describe in detail the principles of hydrogen deuterium exchange mass spectrometry in application to epitope mapping. We also show that a combination of MS-based approaches can assist or complement epitope mapping and push the limit of structural resolution to the residue level. We describe in detail the MS methods used in epitope mapping, provide our perspective about the approaches, and focus on elucidating the role that HDX-MS is playing now and in the future by organizing a discussion centered around several improvements in prototype instrument/applications used for epitope mapping. At the end, we provide a tabular summary of the current literature on HDX-MS-based epitope mapping.
Collapse
Affiliation(s)
- Prashant N. Jethva
- Department of Chemistry, Washington University in St. Louis, St Louis, MO 63130, USA
| | - Michael L. Gross
- Department of Chemistry, Washington University in St. Louis, St Louis, MO 63130, USA
| |
Collapse
|
2
|
Cupp-Sutton KA, Welborn T, Fang M, Langford JB, Wang Z, Smith K, Wu S. The Deuterium Calculator: An Open-Source Tool for Hydrogen-Deuterium Exchange Mass Spectrometry Analysis. J Proteome Res 2023; 22:532-538. [PMID: 36695755 DOI: 10.1021/acs.jproteome.2c00558] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Hydrogen-deuterium exchange mass spectrometry (HDX-MS) is a powerful protein footprinting technique to study protein dynamics and binding; however, HDX-MS data analysis is often challenging and time-consuming. Moreover, the HDX community is expanding to investigate multiprotein and highly complex protein systems which further complicates data analysis. Thus, a simple, open-source software package designed to analyze large and highly complex protein systems is needed. In this vein, we have developed "The Deuterium Calculator", a Python-based software package for HDX-MS data analysis. The Deuterium Calculator is capable of differential and nondifferential HDX-MS analysis, produces standardized data files according to recommendations from the International Conference on Hydrogen-Exchange Mass Spectrometry (IC-HDX) to increase transparency in data analysis, and generates Woods' plots for statistical analysis and data visualization. This standard output can be used to perform time dependent deuteration studies and for the study of protein folding kinetics or differential uptake. Moreover, The Deuterium Calculator is capable of performing these analyses on large HDX-MS data sets (e.g., LC-HDX-MS from cell lysate digest). The Deuterium Calculator is freely available for download at https://github.com/OUWuLab/TheDeuteriumCalculator.git. Data are available via ProteomeXchange with identifier PXD036813.
Collapse
Affiliation(s)
- Kellye A Cupp-Sutton
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma73012, United States
| | - Thomas Welborn
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma73012, United States
| | - Mulin Fang
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma73012, United States
| | - Joel B Langford
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma73012, United States
| | - Zhe Wang
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma73012, United States
| | - Kenneth Smith
- Department of Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma73104, United States
| | - Si Wu
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma73012, United States
| |
Collapse
|
3
|
Fang M, Wu O, Cupp-Sutton KA, Smith K, Wu S. Elucidating Protein-Ligand Interactions in Cell Lysates Using High-Throughput Hydrogen-Deuterium Exchange Mass Spectrometry with Integrated Protein Thermal Depletion. Anal Chem 2023; 95:10.1021/acs.analchem.2c04266. [PMID: 36608260 PMCID: PMC10323047 DOI: 10.1021/acs.analchem.2c04266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Hydrogen-deuterium exchange coupled with mass spectrometry (HDX-MS) is a powerful technique for the characterization of protein-ligand interactions. Currently, there is a growing need for breakthroughs in the application of HDX-MS analysis to protein-ligand interactions in highly complex biological samples such as cell lysates. However, HDX-MS analysis in such systems suffers from extreme spectral complexity as a result of high sample complexity and limited LC separation power due to the traditional use of short LC gradients. Here, we introduced protein thermal depletion (PTD) to reduce protein complexity in E. coli cell lysate for our subzero-temperature long gradient UPLC-HDX-MS platform (PTD-HDX-MS) to facilitate high-throughput analysis of protein-ligand interactions in cell lysates. We spiked bovine carbonic anhydrase II (CaII) and its inhibitor acetazolamide (AZM) into E. coli cell lysate as a model system in our study. We demonstrated that PTD at 60 °C greatly reduces protein complexity in cell lysates, while the AZM-targeted CaII complex remains in solution due to improved thermal stability upon binding. Using both PTD to reduce sample complexity and subzero-temperature long gradient UPLC to boost LC separation power, we successfully elucidated the interaction sites between AZM and CaII in E. coli cell lysate from the high-throughput HDX-MS analysis of thousands of deuterated peptides from hundreds of proteins. Our results highlight the great promise of the PTD-HDX-MS platform for the identification of ligand targets and characterization of protein-ligand interactions in highly complex biological samples such as cell lysates.
Collapse
Affiliation(s)
- Mulin Fang
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK 73019
| | - Oliver Wu
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK 73019
| | | | - Kenneth Smith
- Department of Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104
| | - Si Wu
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK 73019
| |
Collapse
|
4
|
Ma L, Ouyang H, Su A, Zhang Y, Pang D, Zhang T, Sun R, Wang W, Xie Z, Lv D. AbSE Workflow: Rapid Identification of the Coding Sequence and Linear Epitope of the Monoclonal Antibody at the Single-cell Level. ACS Synth Biol 2022; 11:1856-1864. [PMID: 35503752 DOI: 10.1021/acssynbio.2c00018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Monoclonal antibody (mAb) has been widely used in immunity research and disease diagnosis and therapy. Antibody sequence and epitope are the prerequisites and basis of mAb applications, which determine the properties of antibodies and make the preparation of antibody-based molecules controllable and reliable. Here, we present the antibody sequence and epitope identification (AbSE) workflow, a time-saving and cost-effective route for rapid determination of antibody sequence and linear epitope of mAb even at the single-cell level. The feasibility and accuracy of the AbSE workflow were demonstrated through the identification and validation of the coding sequence and epitope of antihuman serum albumin (antiHSA) mAb. It can be inferred that the AbSE workflow is a powerful and universal approach for paired antibody-epitope sequence identification. It may characterize antibodies not only on a single hybridoma cell but also on any other antibody-secreting cells.
Collapse
Affiliation(s)
- Lerong Ma
- Key Lab for Zoonoses Research, Ministry of Education, Animal Genome Editing Technology Innovation Center, Jilin Province, College of Animal Sciences, Jilin University, Changchun 130062, China
| | - HongSheng Ouyang
- Key Lab for Zoonoses Research, Ministry of Education, Animal Genome Editing Technology Innovation Center, Jilin Province, College of Animal Sciences, Jilin University, Changchun 130062, China
- Chongqing Research Institute, Jilin University, Chongqing 401123, China
- Chongqing Jitang Biotechnology Research Institute Co., Ltd., Chongqing 401123, China
- Shenzhen Kingsino Technology Co., Ltd., Shenzhen 518100, China
| | - Ang Su
- Key Lab for Zoonoses Research, Ministry of Education, Animal Genome Editing Technology Innovation Center, Jilin Province, College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Yuanzhu Zhang
- Key Lab for Zoonoses Research, Ministry of Education, Animal Genome Editing Technology Innovation Center, Jilin Province, College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Daxin Pang
- Key Lab for Zoonoses Research, Ministry of Education, Animal Genome Editing Technology Innovation Center, Jilin Province, College of Animal Sciences, Jilin University, Changchun 130062, China
- Chongqing Research Institute, Jilin University, Chongqing 401123, China
- Chongqing Jitang Biotechnology Research Institute Co., Ltd., Chongqing 401123, China
| | - Tao Zhang
- Key Lab for Zoonoses Research, Ministry of Education, Animal Genome Editing Technology Innovation Center, Jilin Province, College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Ruize Sun
- Key Lab for Zoonoses Research, Ministry of Education, Animal Genome Editing Technology Innovation Center, Jilin Province, College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Wentao Wang
- Key Lab for Zoonoses Research, Ministry of Education, Animal Genome Editing Technology Innovation Center, Jilin Province, College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Zicong Xie
- Key Lab for Zoonoses Research, Ministry of Education, Animal Genome Editing Technology Innovation Center, Jilin Province, College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Dongmei Lv
- Key Lab for Zoonoses Research, Ministry of Education, Animal Genome Editing Technology Innovation Center, Jilin Province, College of Animal Sciences, Jilin University, Changchun 130062, China
| |
Collapse
|