1
|
Dashti A, Hosseini HM, Mirhosseini SA. Epsilon toxin induces cytotoxicity by mediating autophagy and apoptosis via the PI3K/AKT/mTOR signaling pathway in A549 cells. Mol Biol Rep 2025; 52:403. [PMID: 40252125 DOI: 10.1007/s11033-025-10439-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 03/14/2025] [Indexed: 04/21/2025]
Abstract
BACKGROUND Epsilon toxin, which is synthesized by Clostridium perfringens, is a type of pore-forming protein that is associated with the development of enterotoxemia in ruminants. As toxins are agents of bioterrorism, exposure to toxin aerosols causes endothelial cell damage and cytotoxicity in human lung cells. However, little information is available regarding the cytotoxicity and mechanisms associated with lung cancer cell lines. The aim of the present study was to explore the cytotoxic effects of epsilon toxin on the human lung cell line A549 and its involvement in the PI3K/AKT/mTOR signaling pathway to clarify the underlying molecular mechanism involved. METHODS AND RESULTS A549 cells were treated with epsilon toxin, and cytotoxicity was assessed via MTT and LDH assays. Flow cytometry evaluated ROS levels, cell cycle arrest, and apoptosis, while Hoechst 33,258 staining confirmed apoptotic morphology. qRT‒PCR and Western blotting measured apoptosis-, autophagy-, and PI3K/AKT/mTOR-related markers. Epsilon toxin reduced cell viability and increased membrane leakage in a concentration-dependent manner, accompanied by ROS overproduction. It upregulated autophagy markers (beclin-1, LC3 II/I, p62) and suppressed PI3K/AKT/mTOR signaling. Cell cycle arrest at the sub-G1 phase and apoptosis were induced via p53 activation, Bax/Bcl-2 imbalance, and caspase-3 cleavage, as confirmed by annexin V/PI and Hoechst 33,258 staining. CONCLUSIONS Epsilon toxin triggers cytotoxicity in A549 cells by activating apoptosis and autophagy through PI3K/AKT/mTOR pathway inhibition. These findings elucidate molecular mechanisms underlying epsilon toxin's action in lung cancer cells, highlighting its dual role in programmed cell death and potential therapeutic relevance.
Collapse
Affiliation(s)
- Ayat Dashti
- Applied Microbiology Research Center, Biomedicine Technologies Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Hamideh Mahmoodzadeh Hosseini
- Applied Microbiology Research Center, Biomedicine Technologies Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Seyed Ali Mirhosseini
- Applied Microbiology Research Center, Biomedicine Technologies Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Dorca-Arévalo J, Santana-Ruiz A, Torrejón-Escribano B, Martín-Satué M, Blasi J. Epsilon Toxin from Clostridium perfringens Induces the Generation of Extracellular Vesicles in HeLa Cells Overexpressing Myelin and Lymphocyte Protein. Toxins (Basel) 2024; 16:525. [PMID: 39728783 PMCID: PMC11728497 DOI: 10.3390/toxins16120525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 11/28/2024] [Accepted: 12/03/2024] [Indexed: 12/28/2024] Open
Abstract
Epsilon toxin (ETX) from Clostridium perfringens is a pore-forming toxin (PFT) that crosses the blood-brain barrier and binds to myelin structures. In in vitro assays, ETX causes oligodendrocyte impairment, subsequently leading to demyelination. In fact, ETX has been associated with triggering multiple sclerosis. Myelin and lymphocyte protein (MAL) is widely considered to be the receptor for ETX as its presence is crucial for the effects of ETX on the plasma membrane of host cells that involve pore formation, resulting in cell death. To overcome the pores formed by PFTs, some host cells produce extracellular vesicles (EVs) to reduce the amount of pores inserted into the plasma membrane. The formation of EVs has not been studied for ETX in host cells. Here, we generated a highly sensitive clone from HeLa cells overexpressing the MAL-GFP protein in the plasma membrane. We observed that ETX induces the formation of EVs. Moreover, the MAL protein and ETX oligomers are found in these EVs, which are a very useful tool to decipher and study the mode of action of ETX and characterize the mechanisms involved in the binding of ETX to its receptor.
Collapse
Affiliation(s)
- Jonatan Dorca-Arévalo
- Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences-Campus Bellvitge, University of Barcelona, 08907 Barcelona, Spain; (A.S.-R.); (B.T.-E.); (M.M.-S.); (J.B.)
- Laboratory of Molecular and Cellular Neurobiology, Bellvitge Biomedical Research Institute (IDIBELL), 08907 L’Hospitalet de Llobregat, Spain
- Institute of Neuroscience, Bellvitge Health Sciences Campus, University of Barcelona, Carrer de la Feixa Llarga, s/n, 08907 L’Hospitalet de Llobregat, Spain
| | - Antonio Santana-Ruiz
- Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences-Campus Bellvitge, University of Barcelona, 08907 Barcelona, Spain; (A.S.-R.); (B.T.-E.); (M.M.-S.); (J.B.)
| | - Benjamín Torrejón-Escribano
- Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences-Campus Bellvitge, University of Barcelona, 08907 Barcelona, Spain; (A.S.-R.); (B.T.-E.); (M.M.-S.); (J.B.)
- Scientific and Technological Centers (CCiTUB), Bellvitge Campus, University of Barcelona, Carrer de la Feixa Llarga, s/n, 08907 L’Hospitalet de Llobregat, Spain
| | - Mireia Martín-Satué
- Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences-Campus Bellvitge, University of Barcelona, 08907 Barcelona, Spain; (A.S.-R.); (B.T.-E.); (M.M.-S.); (J.B.)
- Oncobell Program, Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), CIBERONC, 08908 L’Hospitalet de Llobregat, Spain
| | - Juan Blasi
- Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences-Campus Bellvitge, University of Barcelona, 08907 Barcelona, Spain; (A.S.-R.); (B.T.-E.); (M.M.-S.); (J.B.)
- Laboratory of Molecular and Cellular Neurobiology, Bellvitge Biomedical Research Institute (IDIBELL), 08907 L’Hospitalet de Llobregat, Spain
- Institute of Neuroscience, Bellvitge Health Sciences Campus, University of Barcelona, Carrer de la Feixa Llarga, s/n, 08907 L’Hospitalet de Llobregat, Spain
| |
Collapse
|
3
|
Camargo A, Ramírez JD, Kiu R, Hall LJ, Muñoz M. Unveiling the pathogenic mechanisms of Clostridium perfringens toxins and virulence factors. Emerg Microbes Infect 2024; 13:2341968. [PMID: 38590276 PMCID: PMC11057404 DOI: 10.1080/22221751.2024.2341968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 04/06/2024] [Indexed: 04/10/2024]
Abstract
Clostridium perfringens causes multiple diseases in humans and animals. Its pathogenic effect is supported by a broad and heterogeneous arsenal of toxins and other virulence factors associated with a specific host tropism. Molecular approaches have indicated that most C. perfringens toxins produce membrane pores, leading to osmotic cell disruption and apoptosis. However, identifying mechanisms involved in cell tropism and selective toxicity effects should be studied more. The differential presence and polymorphisms of toxin-encoding genes and genes encoding other virulence factors suggest that molecular mechanisms might exist associated with host preference, receptor binding, and impact on the host; however, this information has not been reviewed in detail. Therefore, this review aims to clarify the current state of knowledge on the structural features and mechanisms of action of the major toxins and virulence factors of C. perfringens and discuss the impact of genetic diversity of toxinotypes in tropism for several hosts.
Collapse
Affiliation(s)
- Anny Camargo
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
- Health Sciences Faculty, Universidad de Boyacá, Tunja, Colombia
| | - Juan David Ramírez
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
- Molecular Microbiology Laboratory, Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Raymond Kiu
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
- Gut Microbes and Health, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Lindsay J. Hall
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
- Gut Microbes and Health, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
- Norwich Medical School, University of East Anglia, Norwich, UK
| | - Marina Muñoz
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
- Instituto de Biotecnología-UN (IBUN), Universidad Nacional de Colombia, Bogotá, Colombia
| |
Collapse
|
4
|
Cases M, Dorca-Arévalo J, Blanch M, Rodil S, Terni B, Martín-Satué M, Llobet A, Blasi J, Solsona C. The epsilon toxin from Clostridium perfringens stimulates calcium-activated chloride channels, generating extracellular vesicles in Xenopus oocytes. Pharmacol Res Perspect 2024; 12:e70005. [PMID: 39320019 PMCID: PMC11423345 DOI: 10.1002/prp2.70005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 07/18/2024] [Accepted: 08/08/2024] [Indexed: 09/26/2024] Open
Abstract
The epsilon toxin (Etx) from Clostridium perfringens has been identified as a potential trigger of multiple sclerosis, functioning as a pore-forming toxin that selectively targets cells expressing the plasma membrane (PM) myelin and lymphocyte protein (MAL). Previously, we observed that Etx induces the release of intracellular ATP in sensitive cell lines. Here, we aimed to re-examine the mechanism of action of the toxin and investigate the connection between pore formation and ATP release. We examined the impact of Etx on Xenopus laevis oocytes expressing human MAL. Extracellular ATP was assessed using the luciferin-luciferase reaction. Activation of calcium-activated chloride channels (CaCCs) and a decrease in the PM surface were recorded using the two-electrode voltage-clamp technique. To evaluate intracellular Ca2+ levels and scramblase activity, fluorescent dyes were employed. Extracellular vesicles were imaged using light and electron microscopy, while toxin oligomers were identified through western blots. Etx triggered intracellular Ca2+ mobilization in the Xenopus oocytes expressing hMAL, leading to the activation of CaCCs, ATP release, and a reduction in PM capacitance. The toxin induced the activation of scramblase and, thus, translocated phospholipids from the inner to the outer leaflet of the PM, exposing phosphatidylserine outside in Xenopus oocytes and in an Etx-sensitive cell line. Moreover, Etx caused the formation of extracellular vesicles, not derived from apoptotic bodies, through PM fission. These vesicles carried toxin heptamers and doughnut-like structures in the nanometer size range. In conclusion, ATP release was not directly attributed to the formation of pores in the PM, but to scramblase activity and the formation of extracellular vesicles.
Collapse
Affiliation(s)
- Mercè Cases
- Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences-Campus Bellvitge, University of Barcelona, Barcelona, Spain
- Laboratory of Molecular and Cellular Neurobiology, Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, Spain
- Institute of Neuroscience, University of Barcelona, Barcelona, Spain
| | - Jonatan Dorca-Arévalo
- Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences-Campus Bellvitge, University of Barcelona, Barcelona, Spain
- Laboratory of Molecular and Cellular Neurobiology, Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, Spain
- Institute of Neuroscience, University of Barcelona, Barcelona, Spain
| | - Marta Blanch
- Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences-Campus Bellvitge, University of Barcelona, Barcelona, Spain
- Laboratory of Molecular and Cellular Neurobiology, Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, Spain
| | - Sergi Rodil
- Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences-Campus Bellvitge, University of Barcelona, Barcelona, Spain
| | - Beatrice Terni
- Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences-Campus Bellvitge, University of Barcelona, Barcelona, Spain
- Laboratory of Molecular and Cellular Neurobiology, Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, Spain
- Institute of Neuroscience, University of Barcelona, Barcelona, Spain
| | - Mireia Martín-Satué
- Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences-Campus Bellvitge, University of Barcelona, Barcelona, Spain
| | - Artur Llobet
- Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences-Campus Bellvitge, University of Barcelona, Barcelona, Spain
- Laboratory of Molecular and Cellular Neurobiology, Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, Spain
- Institute of Neuroscience, University of Barcelona, Barcelona, Spain
| | - Juan Blasi
- Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences-Campus Bellvitge, University of Barcelona, Barcelona, Spain
- Laboratory of Molecular and Cellular Neurobiology, Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, Spain
- Institute of Neuroscience, University of Barcelona, Barcelona, Spain
| | - Carles Solsona
- Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences-Campus Bellvitge, University of Barcelona, Barcelona, Spain
- Laboratory of Molecular and Cellular Neurobiology, Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, Spain
- Institute of Neuroscience, University of Barcelona, Barcelona, Spain
| |
Collapse
|
5
|
Kumar S, Behera SK, Gururaj K, Chaurasia A, Murmu S, Prabha R, Angadi UB, Pawaiya RS, Rai A. In silico mutation of aromatic with aliphatic amino acid residues in Clostridium perfringens epsilon toxin (ETX) reduces its binding efficiency to Caprine Myelin and lymphocyte (MAL) protein receptors. J Biomol Struct Dyn 2024; 42:2257-2269. [PMID: 37129165 DOI: 10.1080/07391102.2023.2204362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 04/11/2023] [Indexed: 05/03/2023]
Abstract
Enterotoxaemia (ET) is a severe disease that affects domestic ruminants, including sheep and goats, and is caused by Clostridium perfringens type B and D strains. The disease is characterized by the production of Epsilon toxin (ETX), which has a significant impact on the farming industry due to its high lethality. The binding of ETX to the host cell receptor is crucial, but still poorly understood. Therefore, the structural features of goat Myelin and lymphocytic (MAL) protein were investigated and defined in this study. We induced the mutations in aromatic amino acid residues of ETX and substituted them with aliphatic residues at domains I and II. Subsequently, protein-protein interactions (PPI) were performed between ETX (wild)-MAL and ETX (mutated)-MAL protein predicting the domain sites of ETX structure. Further, molecular dynamics (MD) simulation studies were performed for both complexes to investigate the dynamic behavior of the proteins. The binding efficiency between 'ETX (wild)-MAL protein' and 'ETX (mutated)-MAL protein complex' interactions were compared and showed that the former had stronger interactions and binding efficiency due to the higher stability of the complex. The MD analysis showed destabilization and higher fluctuations in the PPI of the mutated heterodimeric ETX-MAL complex which is otherwise essential for its functional conformation. Such kind of interactions with mutated functional domains of ligands provided much-needed clarity in understanding the pre-pore complex formation of epsilon toxin with the MAL protein receptor of goats. The findings from this study would provide an impetus for designing a novel vaccine for Enterotoxaemia in goats.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Sunil Kumar
- ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | | | - Kumaresan Gururaj
- ICAR-Central Institute for Research on Goats, Makhdoom, Mathura, India
| | | | - Sneha Murmu
- ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Ratna Prabha
- ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - U B Angadi
- ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | | | - Anil Rai
- ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| |
Collapse
|
6
|
Shetty SV, Mazzucco MR, Winokur P, Haigh SV, Rumah KR, Fischetti VA, Vartanian T, Linden JR. Clostridium perfringens Epsilon Toxin Binds to and Kills Primary Human Lymphocytes. Toxins (Basel) 2023; 15:423. [PMID: 37505692 PMCID: PMC10467094 DOI: 10.3390/toxins15070423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/30/2023] [Accepted: 06/07/2023] [Indexed: 07/29/2023] Open
Abstract
Clostridium perfringens epsilon toxin (ETX) is the third most lethal bacterial toxin and has been suggested to be an environmental trigger of multiple sclerosis, an immune-mediated disease of the human central nervous system. However, ETX cytotoxicity on primary human cells has not been investigated. In this article, we demonstrate that ETX preferentially binds to and kills human lymphocytes expressing increased levels of the myelin and lymphocyte protein MAL. Using flow cytometry, ETX binding was determined to be time and dose dependent and was highest for CD4+ cells, followed by CD8+ and then CD19+ cells. Similar results were seen with ETX-induced cytotoxicity. To determine if ETX preference for CD4+ cells was related to MAL expression, MAL gene expression was determined by RT-qPCR. CD4+ cells had the highest amount of Mal gene expression followed by CD8+ and CD19+ cells. These data indicate that primary human cells are susceptible to ETX and support the hypothesis that MAL is a main receptor for ETX. Interestingly, ETX bindings to human lymphocytes suggest that ETX may influence immune response in multiple sclerosis.
Collapse
Affiliation(s)
- Samantha V. Shetty
- Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY 10065, USA (T.V.)
| | - Michael R. Mazzucco
- Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY 10065, USA (T.V.)
| | - Paige Winokur
- Harold and Margaret Milliken Hatch Laboratory of Neuro-Endocrinology Rockefeller University, New York, NY 10065, USA
| | - Sylvia V. Haigh
- Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY 10065, USA (T.V.)
| | - Kareem Rashid Rumah
- Laboratory of Bacterial Pathogenesis and Immunology, Rockefeller University, New York, NY 10065, USA
| | - Vincent A. Fischetti
- Laboratory of Bacterial Pathogenesis and Immunology, Rockefeller University, New York, NY 10065, USA
| | - Timothy Vartanian
- Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY 10065, USA (T.V.)
| | - Jennifer R. Linden
- Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY 10065, USA (T.V.)
| |
Collapse
|